Управление и подключение шагового двигателя к ардуино (arduino)

Эксперимент №1. L293D + ATtiny44

Как мы знаем, для управления биполярным шаговым двигателем необходимо не просто прикладывать напряжения к двум обмоткам в нужной последовательности, но и изменять направление тока в этих обмотках, причём делать это независимо друг от друга. Для этого на каждую обмотку нужен собственный Н-мост. Чтобы не городить его из транзисторов, был взят готовый в лице микросхемы L293D. Ещё одно её преимущество — у микросхемы имеются специальные выводы Enable1 и Enable2, который включают и выключают каждый мост. Их можно использовать чтобы подавать ШИМ сигнал, тем самым, возможно контролировать напряжения питания каждого моста. Зачем это может понадобиться, мы увидим дальше. Кроме того, L293D может коммутировать напряжения до 36В и выдавать до 1,2А на каждый канал

, чего вполне должно хватить для питания обмоток нашего моторчика.

Итак, схема:

Управляющие входы L293D подключены к выходам OC0A и OC0B, что позволит в будущем подавать на них ШИМ сигнал.

Прошивать контроллер будем через внутрисхемный программатор (на схеме не указан). Вот как выглядит собранная схема на макетной плате:

И вот так расположен наш подопытный:

Теперь можно приступать к экспериментам.

Рассчитаем ток, который будет течь через обмотки двигателя при подключении их к напряжению 5В:

I=U/R = 5В/26Ом = 190мА

Совсем небольшой. Интересно как долго он сможет держать такой ток и не перегреться.

Включим в цепь одной из обмоток амперметр и вольтметр, и проведём замеры соответствующих величин при подачи питания на эту обмотку через драйвер.

При падении напряжения на обмотке 2.56В амперметр показывает ток 150мА

, причём хорошо заметно, как начинает падать величина силы тока в процессе нагревания обмоток. Надо отметить, что не так уж и сильно он греется.

Убедившись, что напряжение 5В для моторчика опасности не представляет, попробуем покрутить им в разные стороны. И вот теперь пару слов мы скажем про режимы работы шагового двигателя.

Об этом довольно хорошо сказано здесь.

Не будем повторяться, но вспомним, что шаговый двигатель может работать в трёх режимах:

  • Полношаговый однофазный это когда одновременно напряжение подаётся только на одну фазу двигателя, ротор делает шаг, затем текущая фаза выключается и включается следующая.
  • Полношаговый двухфазный это когда напряжение подаётся одновременно на две фазы мотора, при этом, ротор притягивается одновременно к двум обмоткам, что создаёт больший крутящий момент.
  • Микрошаговый режим в этом случае реализуется тот же принцип, что и на полношаговом двухфазном, то есть работают одновременно две обмотки, но напряжение (и как следствие ток) распределяется между ними неравномерно. Фактически, это означает, что мы можем поставить моторчик в неограниченное количество положений (на практике, разумеется, такого сделать нельзя). Увеличивается точность позиционирования.

Попробуем реализовать первые два режима на микросхеме L293D а для микрошагового режима оставим специальный драйвер из второго эксперимента. Исходный код программы выглядит следующим образом:Исходный код в среде WinAVR #define F_CPU 8000000UL // указываем частоту в герцах // фьюзы необходимо выставить L: E2; H:DF; Ex:FF; // это будет частота 8МГц от внутреннего генератора с выключенным предделителем тактовый частоты (включен по умолчанию и равен

Полношаговый режим. Одна фаза

Двигатель делает 16 шагов на один оборот. Причём шаги для двух фаз имеют не одинаковую угловую величину. Не знаю с чем это связано. Может конструкция двигателя такая? Посмотрим на максимальную частоту шагов, которую он может обеспечить в таком режиме, не пропуская их.

Минимальная задержка между шагами 2мс, значит 500 шагов/секунду. Неплохо, это 31 об/сек = 1850 об/мин.

Полношаговый режим. Две фазы

Обратите внимание, что в этом случае шаги получаются ровнее, они одинаковы по величине (во всяком случае, более одинаковы, чем в предыдущем случае). Естественно, в этом случае под напряжением находятся одновременно две обмотки и теплоотдача возрастает

Двигатель уже через несколько секунд нагревается достаточно сильно, потому эксперимент я прекратил.

Что с максимальной частотой шагов? 500 шагов/секунду; 31 об/сек = 1875 об/мин.

Надо сказать, что для шагового двигателя он довольно шустрый. Это связано с малым количеством магнитных полюсов на роторе.

Продолжаем…

Пример использования

В качестве примера использования рассмотрим управление дроблением шага и направлением вращения шагового двигателя с платы Arduino. Нам потребуются следующие компоненты:

  • Плата Arduino Uno -1;
  • Драйвер A4988 — 1;
  • Шаговый двигатель NEMA17 — 1;
  • Потенциометр 10 кОм — 1;
  • Кнопка — 1;
  • Переключатель 2-х позиционный — 1;
  • Резистор 10 кОм – 3;
  • Провода MF — 20
  • Соединение деталей по схеме соединений на рис. 4.

Рисунок 4. Схема подключения для управления скоростью и направлением движения

Приступим к написанию скетча. Нажатие на кнопку включает/выключает двигатель, подавая сигнал LOW/HIGH на вход ENABLE драйвера A4988. С помощью переключателя выбираем направление вращения двигателя (сигнал с переключателя подается напрямую на вход DIR драйвера A4988). C помощью потенциометра мы выбираем один из режимов микрошага. Содержимое скетча представлено в листинге 2. двигателя с постоянной скоростью на один оборот в одну сторону, затем в другую, и далее в цикле.

Листинг 2

// пины для подключения контактов STEP, DIR const int STEP 3 int DIR 2 // для регулировки скорости — пин потенциометра #define POT A0 // для кнопки #define BUTTON 9 // для включения/выключения #define EN 8 // количество шагов на 1 оборот #define ROUND 200 // скорость двигателя #define SPEED 10 // массив пинов для MS1,MS2,MS3 int pins_steps[]={7,6,5}; int steps={ {0,0,0}, // 1 {1,0,0}, // 1/2 {0,1,0}, // 1/4 {1,1,0}, // 1/8 {1,1,1} // 1/16 }; // для кнопки int prevB=0; int tekB=0; boolean movement=false; void setup() { // режим для выводов STEP и DIR как pinModeSTEP, OUTPUT); pinMode(DIR, OUTPUT); // начальные значения digitalWrite(STEP, 1); digitalWrite(DIR, 0); // режим для enable pinMode(EN, OUTPUT); // не разрешать digitalWrite(EN, 1); // для MS1,MS2,MS3 for(int i=0;i<3;i++) { pinMode(pins_steps, OUTPUT); } } void loop() { // получить режим микрошага digitalWrite(DIR, 1); int mode=map(analogRead(POT),0,1024,0,5); // установить for(int i=0;i<3;i++) { digitalWrite(pins_steps, steps); } // сделать 1 оборот if(movement==true) { digitalWrite(STEP, 1); delay(SPEED); digitalWrite(STEP, 0); delay(SPEED); } // проверка нажатия кнопки tekB = debounce(prevB, BUTTON); if (prevB == 0 && tekB == 1) { movement=!movement; digitalWrite(EN,!movement); } prevB = tekB; } // проверка на дребезг int debounce(int prev,int pin) { int tek = digitalRead(pin); if (prev != tek) { delay(5); tek = digitalRead(pin); return tek; } }

Pin Arrangement

Schematic of the pin arrangement(Source: Geeetech wiki)

Connecting the ULN2003 driver board to the Arduino

Connect the ULN2003 driver lN1, lN2, lN3, lN4 to the Arduino digital pins 8, 9, 10, and 11 respectively. The driver board has two pins which are labeled GND and VCC, which are two pins for the power supply. The ULN2003 driver board’s GND pin must be connected to the Arduino’s GND pin. Similarly, the driver board’s VCC pin should be connected to the Arduino’s 5V pin.

Important note: By using this setup, we are powering the stepper motor directly from the Arduino. Although this is the simplest way to provide power to the motor, it is not recommended to do so (connecting the driver board VCC pin to the 5V pin of the Arduino).

This is because if the motor draws too much power, your Arduino can potentially be damaged. Do make sure that not more than 300mA is drawn out of your Arduino. If more power is needed, simply connect your driver board to an external voltage supply rather than using the Arduino’s onboard power supply.

But since we are at the initial learning stage of familiarizing ourselves with the setup, we will be powering the motor from the Arduino in this example to keep the connections simple. Once you have familiarized yourself with the connections, be sure to connect your motor to an external power source instead if more power is needed.

Обзор драйвера L298N

Драйвер L298N используется радиолюбителями для многофункционального управления двигателями постоянного тока. Схема модуля, состоящая из двух H-мостов, позволяет подключать к нему один биполярный шаговый двигатель или одновременно два щёточных двигателя постоянного тока. При этом есть возможность изменять скорость и направление вращения моторов. Управление осуществляется путём подачи соответствующих сигналов на командные входы, выполненные в виде штыревых контактов. На рисунке №1 показан внешний вид модуля с кратким описанием всех его составляющих.

Рисунок №1 – внешний вид модуля L298N

  • OUT1 и OUT2 – разъёмы для подключения первого щёточного двигателя или первой обмотки шагового двигателя;
  • OUT3 и OUT4 – разъёмы для подключения второго щёточного двигателя или второй обмотки шагового двигателя;
  • VSS – вход для питания двигателей (максимальный уровень +35V);
  • GND – общий провод (не забываем соединить с аналогичным входом Arduino. );
  • Vs – вход для питания логики +5V. Через него непосредственно запитывается сама микросхема L298N. Есть ещё второй способ питания, при котором 5V для L298N берётся от встроенного в модуль стабилизатора напряжения. В таком случае на разъём подаётся только питание для двигателей (Vss), контакт Vs остаётся не подключенным, а на плате устанавливается перемычка питания от стабилизатора, который ограничит питающее моторы напряжение до приемлемых 5V.
  • IN1, IN2 – контакты управления первым щёточным двигателем или первой обмоткой шагового двигателя.
  • IN3, IN4 – контакты управления вторым щёточным двигателем или второй обмоткой шагового двигателя.
  • ENA, ENB – контакты для активации/деактивации первого и второго двигателей или соответствующих обмоток ШД. Подача логической единицы на эти контакты разрешает вращение двигателей, а логический ноль – запрещает. Для изменения скорости вращения щёточных моторов на эти контакты подаётся ШИМ-сигнал. Для работы с шаговым двигателям, как правило, на эти контакты ставят перемычки, обеспечивающие постоянную подтяжку к +5V.

На рисунке №2 показана электрическая схема модуля L298N.

Рисунок №2 – электрическая схема модуля L298N

Как видно из вышеприведенной схемы, основным элементом модуля является микросхема L298N, в состав которой входят два полноценных H-моста. Каждый H-мост выполнен в виде сборки из четырёх транзисторных ключей с включённой в центре нагрузкой в виде обмотки двигателя. Такой подход позволяет менять полярность в обмотке и как следствие направление вращения двигателя путём чередования пар открытых и закрытых ключей. Более наглядно этот процесс демонстрирует рисунок №3.

Рисунок №3 – транзисторные мосты Н-типа

На рисунке изображены два транзисторных моста Н-типа. В первом случае на вход IN1 подаётся логическая единица, а на вход IN2 – логический ноль. Так как транзисторы в схеме моста имеют разный тип проводимости, то при таком входном сигнале транзисторы Т1 и Т4 останутся в закрытом состоянии, в то время, как через транзисторы Т2 и Т3 потечёт ток. Ввиду того, что единственный путь протекания тока лежит через обмотку двигателя, то последний окажется подключен правой клеммой к плюсу питания, а левой к минусу. Всё это приведёт к вращению мотора в определённом направлении. Абсолютно противоположная картина показана на нижнем рисунке. Здесь IN3 установлен в логический ноль, а IN4 в логическую единицу. Теперь ток течёт в обратном направлении (левая клемма – плюс, правая – минус), заставляя второй двигатель крутиться в противоположную сторону.

Управление шаговым двигателем на Ардуино

Рассмотрим управление шаговым мотором при помощи стандартной библиотеки stepper.h и с помощью более удобной и популярной библиотеки accelstepper.h, где реализовано намного больше дополнительных команд и функций. Схема подключения мотора при этом остается неизменной. Чуть дальше мы перечислили возможные команды, которые можно использовать в программе с этими библиотеками.

Скетч для шагового двигателя на Ардуино (Stepper.h)

#include <Stepper.h> // библиотека для шагового двигателя // количество шагов на 1 оборот, измените значение для вашего мотора const int stepsPerRevolution = 200; // устанавливаем порты для подключения драйвера Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11); void setup() { myStepper.setSpeed(60); // устанавливаем скорость 60 об/мин } void loop() { // поворачиваем ротор по часовой стрелке myStepper.step(stepsPerRevolution); delay(500); // поворачиваем ротор против часовой стрелки myStepper.step(-stepsPerRevolution); delay(500); }

Пояснения к коду:

  1. вместо портов 8,9,10,11 можно использовать любые цифровые порты;
  2. библиотека Stepper.h имеет маленький функционал, поэтому подходит только для тестирования шагового двигателя и проверки подключения драйвера.

Скетч для шагового мотора с библиотекой AccelStepper.h

#include // библиотека для шагового двигателя

Пояснения к коду:

  1. библиотеку AccelStepper.h можно использовать при подключении шагового двигателя к Motor Shield L293D совместно с библиотекой AFMotor.h;
  2. в программе можно задавать не только максимальную скорость, но и ускорение и замедление вала шагового двигателя.

Описание команд библиотеки AccelStepper.h

AccelStepper mystepper(DRIVER, step, direction);// Шаговый двигатель, управляемый платой AccelStepper mystepper(FULL2WIRE, pinA, pinB);// Шаговый двигатель, управляемый Н-мостом AccelStepper mystepper(FULL4WIRE, pinA1, pinA2, pinB1, pinB2);// Униполярный двигатель mystepper.setMaxSpeed(stepsPerSecond);// Установка скорости оборотов в минуту mystepper.setSpeed(stepsPerSecond);// Установка скорости в шагах за секунду mystepper.setAcceleration(stepsPerSecondSquared);// Установка ускорения

mystepper.currentPosition(); // Возвращает текущее положение в шагах mystepper.setCurrentPosition (long position); Обнуляет текущую позицию до нуля mystepper.targetPosition(); // Конечное положение в шагах mystepper.distanceToGo(); // Вернуть расстояние до указанного положения mystepper.moveTo(long absolute); // Переместиться в абсолютно указанное положение mystepper.move(long relative); // Переместиться в относительно указанное положение

mystepper.run(); // Начать движение с ускорением, функцию следует вызывать повторно mystepper.runToPosition(); // Начать движение до указанной точки mystepper.runToNewPosition(); // Начать движение с ускорением до заданной позиции mystepper.stop(); // Максимально быстрая остановка (без замедления) mystepper.runSpeed(); // Начать движение с заданной скоростью без плавного ускорения mystepper.runSpeedToPosition(); // Начать движение без плавного ускорения, до позиции

mystepper.disableOutputs(); // Деактивирует зарезервированные пины и устанавивает их в режим LOW. Снимает напряжение с обмоток двигателя, экономя энергию mystepper.enableOutputs(); // Активирует зарезервированные пины и устанавивает их в режим OUTPUT. Вызывается автоматически при запуске двигателя

Драйвер для управления шаговым двигателем

Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Для управления биполярным шаговым двигателем чаще всего используется драйверы L298N и ULN2003.

Работа двигателя в биполярном режиме имеет несколько преимуществ:

  • Увеличение крутящего момента на 40% по сравнению с униполярными двигателями;
  • Возможность применения двигателей с любой конфигурацией фазной обмотки.

Но существенным минусов в биполярном режиме является сложность самого драйвера. Драйвер униполярного привода требует всего 4 транзисторных ключа, для обеспечения работы драйвера биполярного привода требуется более сложная схема. С каждой обмоткой отдельно нужно проводить различные действия – подключение к источнику питания, отключение. Для такой коммутации используется схема-мост с четырьмя ключами.

Драйвер шагового двигателя на базе L298N

Этот мостовой драйвер управляет двигателем с током до 2 А и питанием до 46В. Модуль на основе драйвера L298N состоит из микросхемы L298N, системы охлаждения, клеммных колодок, разъемов для подключения сигналов, стабилизатора напряжения и защитных диодов.


Драйвер двигателя L298N

Драйвер шагового двигателя ULN2003


Описание драйвера шаговых двигателей UNL2003 Шаговые двигателями с модулями драйверов на базе ULN2003 – частые гости в мастерских Ардуино благодаря своей дешевизне и доступности. Как правило, за это приходится платить не очень высокой надежностью и точностью.

Другие драйвера

Существует другой вид драйверов – STEP/DIR драйверы. Это аппаратные модули, которые работают по протоколу STEP/DIR для связи с микроконтроллером. STEP/DIR драйверы расширяют возможности:

  • Они позволяют стабилизировать фазные токи;
  • Возможность установки микрошагового режима;
  • Обеспечение защиты ключа от замыкания;
  • Защита от перегрева;
  • Оптоизоляция сигнала управления, высокая защищенность от помех.

В STEP/DIR драйверах используется 3 сигнала:

  • STEP – импульс, который инициирует поворот на шаг/часть шага в зависимости от режима. От частоты следования импульсов будет определяться скорость вращения двигателя.
  • DIR – сигнал, который задает направление вращения. Обычно при подаче высокого сигнала производится вращение по часовой стрелке. Этот тип сигнала формируется перед импульсом STEP.
  • ENABLE – разрешение/запрет работы драйвера. С помощью этого сигнала можно остановить работу двигателя в режиме без тока удержания.

Одним из самых недорогих STEP/DIR драйверов является модуль TB6560-V2. Этот драйвер обеспечивает все необходимые функции и режимы.

Измененный код для Arduino

Окончательная версия скетча для шагового двигателя:

/* Скетч для шагового двигателя BYJ48

Схема подключения: IN1 >> D8 IN2 >> D9 IN3 >> D10 IN4 >> D11 VCC . 5V.

Лучше использовать внешний источник питания Gnd

Автор кода: Mohannad Rawashdeh

Детали на русском языке: /arduino-shagovii-motor-28-BYJ48-draiver-ULN2003

Англоязычный вариант: http://www.instructables.com/member/Mohannad+Rawashdeh/ 28/9/2013 */

boolean Direction = true;

unsigned long last_time;

unsigned long currentMillis ;

void stepper(int xw)

StepperMotor::StepperMotor(int In1, int In2, int In3, int In4)

// Записываем номера пинов в массив inputPins

// Проходим в цикле по массиву inputPins, устанавливая каждый из них в режим Output

for (int inputCount = 0; inputCount inputPins, OUTPUT);

void StepperMotor::setStepDuration(int duration)

void StepperMotor::step(int noOfSteps)

* в данном 2D массиве хранится последовательность, которая

* используется для поворота. В строках хранится шаг,

* а в столбцах — текущий input пин

int factor = abs(noOfSteps) / noOfSteps; // Если noOfSteps со знаком +, factor = 1. Если noOfSteps со знаком -, factor = -1

noOfSteps = abs(noOfSteps); // Если noOfSteps был отрицательным, делаем его позитивным для дальнейших операций

* В цикле ниже обрабатываем массив sequence

* указанное количество раз

for(int sequenceNum = 0; sequenceNum inputPins, sequence);

Давайте посмотрим на конструктор на строчке 4. Мы начинаем с того, что добавляем выбранные пользователем пины в массив inputinputPins в строчках 6-9. В результате мы получаем простой и интуитивно понятный доступ к номерам пинов в дальнейшем коде.

В 12 строке мы пробегаемся по массиву inputinputPins и устанавливаем для каждого режим OUTPUT.

В 15 строке мы устанавливаем длительность шага по-умолчанию равной 15 мс.

В 18 строчке у нас функция-сеттер для установки длительности шага.

Теперь давайте рассмотрим метод step. Этот метод дает возможность шаговому двигателю делать переданное методу количество шагов.

В 28 строчке мы объявляем частоту вращения с использованием 2-х мерного массива. Строки представляют шаг, столбцы — выходящие пины.

В 37 строчке рассчитывается значение переменной factor, которое равно +1 или -1 в зависимости от знака, который мы передали при указании шагов. Это значение используется для определения направления перебора массива, то есть, в результате, для изменения направления вращения.

В 38 строчке мы присваем noOfSteps переменной позитивное значение.

В 44 строке мы запускаем цикл, который будет отрабатывать для каждой последовательности оборотов, то есть в начале каждого 8-го щага.

В 45 строке мы запускаем второй цикл, который пробегается по строкам в нашем массиве.

В 46 строчке мы устанавливаем задержку в соответствии со спецификацией.

В 47 строке мы пробегаемся по номерам пинов.

В 48 строке мы передаем цифровой сигнал на текущий номер пина.

Если переменная factor отрицательная, в 48-й строчке кода строки массива обрабатываются в противоположном порядке, то есть с низу вверх.

Доступ к библиотеке для шагового двигателя из Arduino IDE

Нам осталось добавить созданные файлы в папку библиотек Arduino IDE и мы сможем импортировать ее в любой наш проект.

Перейдите в папку:

C:\Program Files (x86)\Arduino\libraries

И создайте папку под названием StepperMotor.

Переместите созданные файлы .h и .cpp в созданную папку.

Теперь вы можете импортировать библиотеку в IDE (sketch > import library. > StepperMotor) с помощью директивы

Общие принципы работы шаговых двигателей

Внешний вид шагового двигателя 28-BYJ48 (купить на AliExpress) представлен на следующем рисунке:

Первый вопрос, который напрашивается при взгляде на этот рисунок – почему в отличие от обычного двигателя из этого шагового двигателя выходят 5 проводов различных цветов? Чтобы понять это давайте сначала разберемся с принципами работы шагового двигателя.

Начнем с того, что шаговые двигатели не вращаются, а “шагают”, поэтому они и называются шаговыми двигателями. То есть в один момент времени они будут передвигаться только на один шаг. Чтобы добиться этого в устройстве шаговых двигателей присутствует несколько катушек и на эти катушки нужно подавать питание в определенной последовательности чтобы двигатель вращался (шагал). При подаче питания на каждую катушку двигатель делает один шаг, при последовательной подаче питания на катушки двигатель будет совершать непрерывные шаги, то есть вращаться. Давайте более подробно рассмотрим катушки, присутствующие внутри шагового двигателя.

Как можно видеть из рисунка, двигатель имеет однополярную катушку с 5 выводами. Но фактически это 4 катушки, на которые нужно подавать питание в определенной последовательности. На красные провода необходимо подать +5V, на остальные 4 провода необходимо подать землю чтобы запустить в работу соответствующую катушку. Мы будем использовать плату Arduino чтобы подавать питание на эти катушки в определенной последовательности и тем самым заставлять двигатель вращаться. Более подробно ознакомиться с принципами работы шаговых двигателей можно в статье про подключение шагового двигателя к микроконтроллеру AVR.

Так почему же этот двигатель называется 28-BYJ48? Честно говоря, мы не знаем точного ответа на этот вопрос. Некоторые наиболее важные технические характеристики этого шагового двигателя приведены на следующем рисунке.

На первый взгляд от такого количества характеристик может закружиться голова, но давайте попробуем выделить из них самые важные, те, которые нам понадобятся для дальнейшей работы. Во-первых, мы знаем, что это шаговый двигатель 5V, поэтому необходимо подавать на красный провод 5V. Также мы знаем что это четырехфазный шаговый двигатель поскольку в нем четыре катушки. Передаточное число этого двигателя — 1: 64. Это означает, что вал, который вы видите снаружи, сделает одно полное вращение в том случае, когда двигатель внутри сделает 64 оборота. Это происходит благодаря шестерням, которые включены между двигателем и выходным валом. Эти шестерни помогают в увеличении крутящего момента.

Еще одним важным показателем, который нам следует знать, является угол шага: 5.625°/64. Это значит что когда двигатель сделает последовательность в 8 шагов он будет поворачиваться на 5.625° при каждом шаге и за один полный оборот он сделает 64 шага (5.625*64=360).

Расчет шагов на оборот для шагового двигателя

Важно знать, как рассчитать количество шагов за один оборот для вашего шагового двигателя, потому что только тогда вы можете эффективно его запрограммировать. В Arduino для управления двигателем мы будем использовать 4-шаговую последовательность, поэтому угол шага будет составлять 11.25°

Поскольку изначально он равен 5.625°(приведен в даташите), то для 8 шаговой последовательности получим 11.25° (5.625*2=11.25)

В Arduino для управления двигателем мы будем использовать 4-шаговую последовательность, поэтому угол шага будет составлять 11.25°. Поскольку изначально он равен 5.625°(приведен в даташите), то для 8 шаговой последовательности получим 11.25° (5.625*2=11.25).

Справедлива следующая формула:

Количество шагов за оборот = 360 / угол шага.

В нашем случае 360/11.25 = 32 шага за оборот.

Зачем нужен драйвер мотора для управления шаговым двигателем

Большинство шаговых двигателей будут работать только с помощью модуля драйвера мотора. Это связано с тем, что микроконтроллер (в нашем случае плата Arduino) не может обеспечить достаточный ток на своих контактах ввода/вывода для работы двигателя. Поэтому мы будем использовать внешний драйвер мотора для управления нашим шаговым двигателем — модуль ULN2003 (купить на AliExpress). В сети интернет можно найти рейтинги эффективности различных драйверов мотора, но эти рейтинги будут меняться в зависимости от типа используемого шагового двигателя. Основной принцип, которого следует придерживаться при выборе драйвера мотора – он должен обеспечивать достаточный ток для управления шаговым двигателем.

Работа шагового двигателя и описание драйвера

Как работает шаговик?

Для практических задач с точным перемещением объекта обязательно требуется ШД. Это мотор, который перемещает свой вал в зависимости от заданных шагов в программе контроллера. Чаще всего их применяют в станках ЧПУ, робототехнике, манипуляторах, 3D-принтерах.

Мы же с вами рассмотрим конкретный двигатель
28BYj-48
с драйвером управления
. Он достаточно дешёвый, прост в сборке и легко писать программу.

В 4-шаговом режиме он может совершать 2048 шагов, в 8-шаговом 4096 шагов. Питание 5 В, ток потребления 160 мА. Передаточное число 1:64 , то есть один шаг он совершит на 5,625 градусов. Крутящий момент составляет 34 мН.м. Средняя скорость 15 об/мин, с помощью программного кода можно ускорить до 35 об/мин, но вы должны понимать, что мы при этом теряем мощность и точность.

Размеры двигателя указаны из первоисточника — даташита производителя
Kiatronics.

А вот таким образом он выглядит изнутри:

Для небольших технических проектов —
28BYj-48 идеальный вариант. Его главным преимуществом является дешевизна и простота. Прилагаю спецификацию:

ШД имеет четыре обмотки, которые запитываются последовательно:

Для того, чтобы заставить мотор двигаться по часовой стрелке, нужно попеременно подавать на обмотки напряжение. Движок работает в двух режимах в шаговом и полушаговом, чем они отличаются, мы сейчас разберём.

1.Шаговый режим —
это когда две из четырех обмоток запитываются на каждом шаге. Смотрите карту включения обмоток: Для этого способа используется библиотека my
Stepper.h.

2.Полушаговый режим —
это когда запитывается первая обмотка, потом вторая и третья вместе, потом четвёртая и т.д. В Даташите разработчика указано, что предпочтительнее режим полушага для мотора. Подробно изображено на карте подключений:

Провод Фазы для полушагового режима
1 2 3 4 5 6 7 8
4 оранжевый
3 желтый
2 розовый
1 синий

Описание драйвера

Плата представляет собой силовой модуль, который содержит в себе семь независимых транзисторов Дарлингтона. Каждая пара представляет собой каскад из двух биполярных транзисторов.
является неким усилителем с током нагрузки 500 мА и напряжением 50 В. На изображении отображена сама плата и описание выводов к ней.