Типы аналого-цифровых преобразователей

Быстродействие

АЦП используется для разных задач: в осциллографе важна большая скорость оцифровки сигналов, а точностью можно пренебречь; в измерительном приборе скорость не сильно важна, важна точность. В общем виде правило такое: чем выше скорость выборки, тем меньше точность измерения. Для тех или иных задач были придуманы разные топологии. Вот некоторые из них:

  • Параллельные, прямого преобразования — обычно не превышают разрядности в 8 бит;
  • Последовательные, например последовательного приближения (англ. successive approximation, или просто SAR) — как раз такие применяются в STM32F10x;
  • Сигма-Дельта АЦП — применяются в STM32F3x серии (эти микроконтроллеры созданы больше для задач цифровой обработки сигналов).
  • и другие.

Алгоритм

Схема аналого-цифрового преобразователя последовательного приближения обычно состоит из четырех основных подсхем:

  1. Выборки и удержание цепи для получения входного напряжения V в .
  2. Аналоговый компаратор напряжения, который сравнивает V in с выходом внутреннего ЦАП и выводит результат сравнения в регистр последовательного приближения (SAR).
  3. Подсхема регистра последовательного приближения, предназначенная для подачи приблизительного цифрового кода V во внутренний ЦАП.
  4. Внутренний эталонный ЦАП, который, для сравнения с V ref , подает на компаратор аналоговое напряжение, равное выходному цифровому коду SAR в .

Анимация 4-битного АЦП последовательного приближения

Регистр последовательного приближения инициализируется так, чтобы старший бит (MSB) был равен 1 цифре . Этот код подается в ЦАП, который затем передает аналоговый эквивалент этого цифрового кода ( V ref / 2) в схему компаратора. для сравнения с дискретным входным напряжением. Если это аналоговое напряжение превышает V in , то компаратор заставляет SAR сбрасывать этот бит; в противном случае бит остается равным 1. Затем следующий бит устанавливается в 1, и выполняется тот же тест, продолжая этот двоичный поиск до тех пор, пока не будет протестирован каждый бит в SAR. Результирующий код представляет собой цифровую аппроксимацию дискретизированного входного напряжения и, наконец, выводится SAR в конце преобразования (EOC).

Математически пусть V in = xV ref , поэтому x in — это нормализованное входное напряжение. Задача состоит в том, чтобы приблизительно оцифровать x с точностью до 1/2 n . Алгоритм работает следующим образом:

  1. Начальное приближение x = 0.
  2. i- е приближение x i = x i −1s ( x i −1x ) / 2 i , где s ( x ) — знаковая функция (sign ( x ) = +1 для x ≥ 0, −1 для х <0). Используя математическую индукцию, следует, что | х пх | ≤ 1/2 п .

Как показано в приведенном выше алгоритме, АЦП последовательного приближения требует:

  1. Источник входного напряжения V в .
  2. Источник опорного напряжения V ref для нормализации входа.
  3. ЦАП для преобразования i- го приближения x i в напряжение.
  4. Компаратор для выполнения функции s ( x ix ) путем сравнения напряжения ЦАП с входным напряжением.
  5. Регистр для хранения выходных данных компаратора и применения x i −1s ( x i −1x ) / 2 i .

Срабатывание АЦП последовательного приближения при падении входного напряжения от 5 до 0 В. Итерации по оси x . Значение приближения по оси y .

Пример: Десять шагов преобразования аналогового входа в 10-битный цифровой с использованием последовательного приближения показаны здесь для всех напряжений от 5 В до 0 В с итерациями 0,1 В. Поскольку опорное напряжение равно 5 В, когда входное напряжение также равно 5 В, все биты установлены. При снижении напряжения до 4,9 В очищаются только некоторые из младших битов. MSB будет оставаться установленным до тех пор, пока входное напряжение не станет равным половине опорного напряжения, 2,5 В.

Двоичные веса, присвоенные каждому биту, начиная со старшего бита, равны 2,5, 1,25, 0,625, 0,3125, 0,15625, 0,078125, 0,0390625, 0,01953125, 0,009765625, 0,0048828125. Все это в сумме дает 4,9951171875, что означает двоичное 1111111111 или один младший бит меньше 5.

Когда аналоговый вход сравнивается с внутренним выходом ЦАП, он эффективно сравнивается с каждым из этих двоичных весов, начиная с 2,5 В и либо сохраняя его, либо очищая в результате. Затем путем добавления следующего веса к предыдущему результату, повторного сравнения и повторения до тех пор, пока все биты и их веса не будут сравнены с входными данными, находится конечный результат — двоичное число, представляющее аналоговый вход.

Варианты

Тип счетчика АЦП
Цифро-аналоговый преобразователь можно легко развернуть, чтобы обеспечить обратную функцию аналого-цифрового преобразования. Принцип заключается в корректировке входного кода ЦАП до тех пор, пока выходной сигнал ЦАП не окажется в пределах ± 1 ⁄ 2 младшего разряда от аналогового входа, который должен быть преобразован в двоично-цифровую форму.
Сервопривод АЦП слежения
Это улучшенная версия счетного АЦП. Схема состоит из счетчика, направленного вверх-вниз, с компаратором, контролирующим направление счета. Аналоговый выход ЦАП сравнивается с аналоговым входом. Если входной сигнал больше, чем выходной сигнал ЦАП, выход компаратора становится высоким, и счетчик начинает отсчет. АЦП слежения имеет то преимущество, что он прост. Однако недостатком является время, необходимое для стабилизации, поскольку новое значение преобразования прямо пропорционально скорости, с которой изменяется аналоговый сигнал.

Выбираем АПЦ с необходимым нам принципом работы

Допустим, перед нами стоит определенная задача. Какое выбрать устройство, чтобы оно могло удовлетворить все наши запросы? Для начала давайте поговорим про разрешающую способность и точность. Очень часто их путают, хотя на практике они очень слабо зависят один от второго. Запомните, что 12-разрядный аналого-цифровой преобразователь может иметь меньшую точность, чем 8-разрядный. В этом случае разрешение – это мера того, какое количество сегментов может быть выделено с входного диапазона измеряемого сигнала. Так, 8-разрядные АЦП обладают 2 8 =256 такими единицами.

Точность – это суммарное отклонение полученного результата преобразования от идеального значения, которое должно быть при данном входном напряжении. То есть первый параметр характеризует потенциальные возможности, которые имеет АЦП, а второй показывает, что же мы имеем на практике. Поэтому нам может подойти и более простой тип (например, прямые аналого-цифровые преобразователи), который позволит удовлетворить потребности благодаря высокой точности.

Чтобы иметь представление о том, что нужно, для начала необходимо просчитать физические параметры и построить математическую формулу взаимодействия. Важными в них являются статические и динамические погрешности, ведь при использовании различных компонентов и принципов построение устройства они будут по-разному влиять на его характеристики. Более детальную информацию можно обнаружить в технической документации, которую предлагает производитель каждого конкретного прибора.

Разрядность АЦП

Разрядность АЦП – это количество битов в числе на выходе
аналого-цифрового преобразователя. (Разрядность выходного значения).

Чем больше разрядность, тем точнее измеряемое значение.

Настало время моих любимых примеров:

К аналоговому входу (0-10 В) подключен датчик давления.
Предел измеряемых значений датчика от 0 до 10 Бар.

Разрядность АЦП= 1111111111111111. (16-разрядный). Если мы воспользуемся калькулятором и переведём двоичное значение 1111111111111111 в десятичное, то получим следующее число:

Что это за число? Это количество значений, которое может выдать
наш АЦП.

Т.е если у нас датчик давления, у которого предел измерения
от 0 до 10 бар, будет выдавать 10 бар (10 вольт) – это максимальное значение
выдаваемое датчиком, то уже в программе мы получим значение равное 65535. А
если будет приходить 0 вольт, то и получим 0 в программе.

Если на аналоговый вход приходит 5 бар (5 вольт), то в
программе будет 32767.Мы поделили максимальное значение пополам.

В результате у нас получается следующее:

Диапазон измеряемых значений от 0 до 10 бар (0-10 вольт) переносится
на диапазон от 0 до 65535 (в программе).

Из этих данных мы можем определить шаг измерения показаний.
Т.е полный диапазон датчика надо разделить на разрядность. Получим минимальный
шаг измеряемой величины.

0-10 бар-это 11 значений. 11/65535=0,000167 Вольт – это точность
измерений.

Сейчас приведу пример расчёта по вычислению значения на
выходе АЦП.

У нашего датчика предел измерений от 0 до 10. Из
максимального значения вычитаем минимальное и получаем число 10. Разрядность
нашего АЦП равна 65535. Делим это число на 10 и получаем 6553,5. И теперь это
число умножаем на показание нашего датчика. Т.е.в данный момент датчик у нас
показывает 3 бара. 3 умножаем на 6553,5 и получаем число на выходе ацп 19660,5.
Всё легко и просто. Поехали дальше…

Увидели, допустим, мы следующее число, которое пришло к нам
в контроллер 23565. Нам надо перевести это число на понятный нам диапазон 0-10
бар. Что надо сделать?

Воспользуемся формулой линейной интерполяции:

f(X) =
f(X1)+( f(X2) — f(X1) )*(X — X1)/(X2 — X1)

Х1 — это минимальное число из диапазона от 0 до 65535 (0)

Х – это число в данный момент (23565)

Х2 – это максимальноечисло из диапазона от 0 до 65535
(65535)

f(X1) – это
минимальное число из нашего диапазона давлений 0-10 бар (0 бар)

f(X2) – это
максимальное число из нашего диапазона давлений 0-10 бар (10 бар)

f(X)- это
число которое мы ищем.

Подставляем всё в формулу и получаем следующее:

f(X) =
f(X1)+( f(X2) — f(X1) )*(X — X1)/(X2 — X1) = 0 + (10 — 0)*(23565 — 0)/(65535 —
0) = 3.5958

Т.е. значение в контроллере 23565 при пересчёте на наш диапазон 0-10 бар будет равно 3.5958 Бар.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

Преимущества

  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки

Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала

Но это сглаживается удобством и быстрой работой.
Подключения на любое расстояние по кабелю RJ 45.
Качество картинки при диагностике, что не маловажно при работе.
Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

5.4. Интеллектуальные датчики

В настоящее время все чаще применяют «интеллектуальные датчики». Интеллектуальный датчик имеет встроенный микропроцессор, выполняющий некоторую обработку сигнала, и поэтому может давать более точные показания благодаря применению числовых вычислений для компенсации нелинейностей чувствительного элемента или температурной зависимости. В круг возможностей некоторых приборов входит измерение нескольких параметров и пересчет их в одно измерение (например, объемный расход, температуру и давление – в массовый расход, т.н. многопараметрические датчики), функции встроенной диагностики, автоматическая калибровка.

Некоторые интеллектуальные приборы (например, семейство приборов Rosemount SMART FAMILY) позволяют посылать в канал передачи аналоговый сигнал, и цифровой. В случае одновременной трансляции обоих видов сигналов, аналоговый используется для трансляции значения измеренного параметра, а цифровой – для функций настройки, калибровки, а также позволяет считывать измеряемый параметр. d = 0,075%. Эти устройства обеспечивают преимущества цифровой связи и, в то же время, сохраняют совместимость и надежность аналоговых средств, которые требуются для существующих систем.

Считывание измеряемого параметра в цифровой форме повышает точность за счет ограничений операций цифро-аналогового и аналого-цифрового преобразований сигнала 4..20 мА. Но цифровой способ измерения вносит задержку в измерения (время, затраченное на последовательную передачу информационной посылки), которая может быть неприемлема для управления быстродействующими контурами.

Цифровой датчик позволяет хранить последовательную информацию о процессе (тэг, описатель позиции измерения, диапазон калибровки, единицы измерения), записи о процедурах его обслуживания и т.п., считываемой по запросу. Многопараметрические приборы содержат базу данных по физическим свойствам измеряемых жидкостей и газов. Для сильно распределенных объектов интеллектуальному датчику нет альтернативы. благодаря встроенному интерфейсу с промышленной локальной сетью.

В класс интеллектуальных цифровых устройств входят и специализированные микросхемы, например контроллеры для работы с термопарами.

Фирма Analog Device выпускает AD596/AD597 – монолитные контроллеры, оптимизированные для использования в условиях любых температур в различных случаях. В них осуществляется компенсация напряжения холодного спая и усиление сигналов с J- и К-термопары таким образом, чтобы получить сигнал, пропорциональный температуре. Схемы могут быть подстроены так, чтобы обеспечить выходное напряжение 10 мВ/°С непосредственно от термопар типа J или К. Каждый из чипов размещен в металлическом корпусе с десятью выводами и настроен на работу при температуре окружающей среды от 25°С до 100°С.

AD596 усиливает сигналы термопары, работающей в температурном диапазоне от 200°С до +760°С, рекомендованном для термопар типа J, в то время как AD597 работает в диапазоне от -200°С до +1250°С (диапазон термопар типа К). Усилители откалиброваны с точностью ±4°С при температуре окружающей среды 60°С и характеризуются температурной стабильностью 0,05°С/°С при изменении температуры окружающей среды в пределах от 25°С до 100°С.

Все вышеописанные усилители не в состоянии компенсировать нелинейность термопары: они способны лишь корректировать и усиливать сигнал с термопарного выхода. АЦП с высокой разрешающей способностью, входящие в семейство AD77xx, могут использоваться для прямой оцифровки сигнала с выхода термопары, без предварительного усиления. Преобразование и линеаризацию осуществляет микроконтроллер. Два мультиплексируемых входа АЦП используются для прямой оцифровки сигнала с термопары и с теплового датчика, находящегося в контакте с ее холодным спаем. Вход PGA (программируемого усилителя) программируется на усиление от 1 до 128, и разрешающая способность АЦП лежит в пределах от 16 до 22 бит в зависимости от того, какая из микросхем выбрана пользователем. Микроконтроллер осуществляет как компенсацию напряжения холодного спая, так и линеаризацию характеристики.

Настройка АЦП

Как было отмечено ранее, в микроконтроллерах серии 1986ВЕ9x и 1901ВЦ1Т есть два независимых АЦП. Поэтому в спецификации есть два регистра настроек ADC1_CFG и ADC2_CFG.

В МК 1986ВЕ1Т, 1986ВЕ3Т, 1986ВЕ4У по одному АЦП, однако регистр ADC2_CFG тоже присутствует. В этом регистре (ADC2_CFG) описан только 17 бит ADC1_OP «Выбор источника для формирования внутренней рабочей точки».

Настройка АЦП в 1986ВЕ9x происходит с использованием двух структур: ADC_StructInit и ADCx_StructInit. Это обусловлено тем, что первая структура ADC_StructInit содержит «общие настройки», которые применимы для самого контроллера блока ADC. А уже структура ADCx_StructInit содержит в себе настройку конкретного АЦП1 или АЦП2. Рассмотрим каждую структуру по отдельности.

Первую структуру ADC_StructInit оставим без изменений:

Здесь стоит отметить следующий момент: параметр ADC_IntVRefConversion разрешает и запрещает выбор источника опорного напряжения бит SEL_VREF регистра ADC1_CFG. Затем с помощью параметра ADC_IntVRefTrimming можно выполнить подстройку значений от 0 до 7 — биты 24..21 TR того же регистра ADC1_CFG. 

В микроконтроллерах 1986ВЕ1Т и 1986ВЕ3Т разрешение выбора данного датчика, а также подстройка значений, выполняется в отдельном регистре ADC1_TRIM.

Чтобы лучше понимать настройку работы с температурным сенсором и датчиком опорного напряжения, необходимо обратиться к рисунку 2 в статье АЦП и сигналы.

Рассмотрим конфигурацию АЦП1.

Описание регистров ADS1115

АЦП имеет всего 4 внутренних регистра, все регистры 16-ти битные, соответственно для каждой сессии записи/чтения по интерфейсу I2C передается 2 информационных байта (кроме байта адреса регистра). Описание регистров приведено ниже в таблице:

Адрес Название Описание регистра
0x00 Conversion register Регистр хранения результата преобразования
0x01 Config register Конфигурационный регистр
0x02 Lo_thresh register Регистр уставки, минимальное значение
0x03 Hi_thresh register Регистр уставки, максимальное значение

С помощью конфигурационного регистра осуществляется управление АЦП, описание регистра приведено ниже в таблице:

Бит Название бита Значение бита Описание
15 OS. Бит определяет состояние устройства и может быть записан только в режиме пониженного потребления Для записи
Нет эффекта
1 Начать преобразование, для режима одиночного преобразования (пониженное потребление)
Для чтения
Выполняется преобразование
1 Преобразование закончено
14-12 MUX. Настройка мультиплексора 000 AINp=AIN0 и AINn=AIN1 (умолч)
001 AINp=AIN0 и AINn=AIN3
010 AINp=AIN1 и AINn=AIN3
011 AINp=AIN2 и AINn=AIN3
100 AINp=AIN0 и AINn=GND
101 AINp=AIN1 и AINn=GND
110 AINp=AIN2 и AINn=GND
111 AINp=AIN3 и AINn=GND
11-9 PGA. Коэффициент усиления усилителя 000 FS=±6,144 В
001 FS=±4,096 В
010 FS=±2,048 В (умолч.)
011 FS=±1,024 В
100 FS=±0,512 В
101 FS =±0,256 В
110 FS =±0,256 В
111 FS =±0,256 В
8 MODE. Режим работы Непрерывное преобразование
1 Одиночное преобразование, режим пониженного потребления (умолч)
7-5 DR. Частота дискретизации 000 8 ГЦ
001 16 ГЦ
010 32 ГЦ
011 64 ГЦ
100 128 ГЦ (умолч)
101 250 ГЦ
110 475 ГЦ
111 860 ГЦ
4 COMP_MODE. Тип компаратора Компаратор с гистерезисом (умолч)
1 Компаратор без гистерезиса
3 COMP_POL. Полярность компаратора Низкий активный уровень (умолч)
1 Высокий активный уровень
2 COMP_LAT. Режим компаратора Компаратор без “защелки” (умолч)
1 Компаратор с “защелкой”
1-0 COMP_QUE. Управление компаратором 00 Установка сигнала на выходе после одного преобразования
01 Установка сигнала на выходе после двух преобразований
10 Установка сигнала на выходе после четырех преобразований
11 Компаратор выключен (умолч)

Статические параметры

  • Максимальный (Vref) и минимальный (обычно 0) уровни входного сигнала — устанавливают диапазон шкалы преобразования, относительно которой будет оцениваться входной сигнал (рис. 1). Также этот параметр может обозначаться как FS — full scale. Для дифференциального АЦП шкала определяется от -Vref до +Vref, однако для упрощения далее будем рассматривать только single-ended шкалы.
  • Разрядность (N) — разрядность выходного кода, характеризующая количество дискретных значений (), которые преобразователь может выдать на выходе (рис. 1).
  • Ток потребления (Idd) — сильно зависит от частоты преобразования, поэтому информацию об этом параметре лучше искать на соответствующем графике.
  • МЗР (LSB) – младший значащий разряд (Least Significant Bit) — минимальное входное напряжение, разрешаемое АЦП (по сути единичный шаг в шкале преобразования). Определяется формулой: (рис. 1).
  • Ошибка смещения (offset error) – определяется как отклонение фактической передаточной характеристики АЦП от передаточной характеристики идеального АЦП в начальной точке шкалы. Измеряется в долях LSB. При ошибке смещения переход выходного кода от 0 в 1 происходит при входном напряжении отличном от 0.5LSB (рис. 2).Рис. 2: Ошибка смещения
    Существует и другой вариант квантователя, когда переход осуществляется при целых значения LSB (характеристика у него будет смещена относительно первого варианта, который представлен на рисунке 2). Оба этих квантователя равноправны, и для простоты далее будем рассматривать только первый вариант.
  • Ошибка усиления (gain error) – определяется как отклонение средней точки последнего шага преобразования (которому соответствует входное напряжение Vref) реального АЦП от средней точки последнего шага преобразования идеального АЦП после компенсации ошибки смещения (рис. 3).Рис. 3: Ошибка усиления
  • Дифференциальная нелинейность (DNLDifferential nonlinearity) – отклонение ширины ступеньки на передаточной характеристике реального АЦП от номинальной ширины ступеньки у идеального преобразователя. Из-за дифференциальной нелинейности шаги квантования имеют различную ширину (рис. 4).
    Рис. 4: Дифференциальная нелинейность
    Для 3-х битного АЦП с рисунка 4:
  • Интегральная нелинейность ( INLIntegral nonlinearity) – разница по вертикали между реальной и идеальной характеристикой преобразования (рис. 5). INL можно интерпретировать как сумму DNL. Отрицательная INL указывает на то, что реальная характеристика находится ниже идеальной в данной точке шкалы. Для положительной INL реальная характеристика находится выше идеальной. Распределение DNL определяет интегральную нелинейность АЦП.
    Рис. 5: Интегральная нелинейность
  • Общая нескорректированная ошибка ( TUETotal Unadjusted Error) – абсолютная ошибка, включающая в себя следующие ошибки: квантования, смещения, усиления и нелинейности. Другими словами, это максимальное отклонение между реальной и идеальной характеристикой преобразования. Для идеального АЦП TUE = 0.5LSB, обусловлена ошибкой квантования (или шум квантования — возникает из-за округления значения аналогового сигнала, которое соответствует цифровому коду). Ошибки усиления и смещения обычно вносят наиболее весомый вклад в абсолютную ошибку. Однако с точки зрения динамических параметров (см. ниже) ошибки смещения и усиления ничтожны, так как они не порождают нелинейных искажений.

5.3. Типовые схемы АЦП

Существуют различные типы АЦП. Мы остановимся лишь на тех типах, которые получили в настоящее время наибольшее распространение.

АЦП параллельного типа является самым быстродействующим. У него существенно меньше, чем у других АЦП время преобразования (tпр). Структурная схема АЦП параллельного типа приведена на рис. 51.

Рис. 51. Схема АЦП параллельного типа

Здесь входная аналоговая величина Uвх с выхода схемы ВХ сравнивается с помощью 2n+1 – 1 компараторов с 2(2n-1) эталонными уровнями, образованными делителем из резисторов равного сопротивления. На вход делителя подается стабилизированное опорное напряжение Uоп. При этом срабатывают те (m) младших компараторов, на входе которых уровень сигнала выше эталонного уровня. На выходах этих компараторов образуется единичный код, на выходе остальных (n-m) нулевой код. Код с выхода компараторов затем с помощью специального кодера-дешифратора преобразуется в двоично-кодированный выходной сигнал.

Погрешность АЦПП определяется неточностью и нестабильностью эталонного напряжения, резистивного делителя и погрешностями компараторов. Значительную роль могут играть входные токи компараторов, если делитель недостаточно низкоомный. Основной недостаток требуется набор прецизионных сопротивлений.

АЦП последовательного приближения является наиболее распространенным. Существует много различных вариантов схемы такого АЦП. Структурная схема АЦППП со счетчиком приведена на рисунке 52. Схема работает следующим образом. Входной аналоговый сигнал Х перед началом преобразования запоминается схемой выборки – хранения (В/Х), что необходимо, так как в процессе преобразования необходимо фиксировать значение аналогового сигнала. Сигнал с выхода схемы выборки – хранения подается на один из входов компаратора, на второй вход которого подается сигнал с выхода ЦАП. Состояние ЦАП определяется кодом, хранящимся в запоминающем устройстве (ЗУ), а этот код соответствует в свою очередь состоянию счетчика, входящего в состав устройства управления (УУ).

В начальный момент времени счетчик обнулен, на выходе ЦАП нулевой сигнал, на выходе компаратора сигнал логической единицы.

Рис. 52. Схема АЦП последовательного приближения

Далее по команде “Пуск” с генератора G на счетчик подаются тактовые счетные импульсы; код на выходе счетчик последовательно увеличивается; соответственно увеличивается напряжение на выходе ЦАП. Как только оно сравнивается с входным аналоговым сигналом, срабатывает компаратор, процесс счета останавливается и на выходе ЗУ формируется двоичный цифровой код, соответствующий входному аналоговому сигналу.

Погрешность АЦП определяется разрядностью АЦП, неточностью ЦАП, зоной нечувствительности и т. д.

, например для n=8 имеем d=100/256=0,4%.

На входе АЦП тоже включают аналоговый фильтр нижних частот, для уменьшения помех, после АЦП. В системах управления обязательно используют цифровой фильтр для усреднения сигнала, устранения влияния помех и субчастот.

Список ранее опубликованных глав

  1. Способ прямого согласования входа АЦП ПП (SAR) без буферного усилителя
  2. Измерения с использованием датчиков малой мощности: 12-битная несимметричная схема с двумя источниками питания на 3,3 В при 1 ksps
  3. Измерения с использованием датчиков малой мощности: 12-битная, несимметричная схема с одним источником питания на 3,3 В, 1 ksps
  4. Цепь контроля высоковольтной аккумуляторной батареи на основе 18-разрядного дифференциального АЦП
  5. Схема преобразователя несимметричного сигнала в дифференциальный с использованием дифференциального усилителя
  6. Схема истинно дифференциального аттенюатора аналогового входного блока с высокоимпедансным входом для SAR АЦП
  7. Схема расширения диапазона входных напряжений на встроенном аналоговом входном блоке (AFE) SAR АЦП

Перевел Александр Русу по заказу АО КОМПЭЛ

•••

АЦП с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)

При Uвх = 0, поскольку для всех ОУ разность напряжений (U+ − U−) < 0 (U+, U− — напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Епит а на выходах кодирующего преобразователя (КП) Z0, Z1, Z2 устанавливаются нули. Если Uвх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U+ − U−) > 0 и лишь на его выходе появляется напряжение +Епит, что приводит к появлению на выходах КП следующих сигналов: Z0 = 1, Z2 = Zl = 0. Если Uвх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Епит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

Прямые аналого-цифровые преобразователи

Они стали весьма популярными в 60-70-х годах прошлого столетия. В виде интегральных схем производятся с 80-х гг. Это весьма простые, даже примитивные устройства, которые не могут похвастаться значительными показателями. Их разрядность обычно составляет 6-8 бит, а скорость редко превышает 1 GSPS.

Принцип работы АЦП данного типа таков: на плюсовые входы компараторов одновременно поступает входной сигнал. На минусовые выводы подается напряжение определённой величины. А затем устройство определяет свой режим работы. Это делается благодаря опорному напряжению. Допустим, что у нас есть устройство, где 8 компараторов. При подаче ½ опорного напряжения будет включено только 4 из них. Приоритетным шифратором сформируется двоичный код, который и зафиксируется выходным регистром. Относительно достоинств и недостатков можно сказать, что такой принцип работы позволяет создавать быстродействующие устройства. Но для получения необходимой разрядности приходится сильно попотеть.

Общая формула количества компараторов выглядит таким образом: 2^N. Под N необходимо поставить количество разрядов. Рассматриваемый ранее пример можно использовать ещё раз: 2^3=8. Итого для получения третьего разряда необходимо 8 компараторов. Таков принцип работы АЦП, которые были созданы первыми. Не очень удобно, поэтому в последующем появились другие архитектуры.

Что такое частота выборки?

Скорость, с которой сигналы преобразуются из аналоговых в цифровые, называется частотой выборки или частотой дискретизации. Оне не бывает плохой или хорошей — все зависит от сферы применения. Например, атмосферное давление за несколько минут или часов почти не меняется, а значит нет и необходимости измерять его более одного раза в секунду. С другой стороны, если вы пытаетесь измерить радиолокационную заметность, ваша частота выборки — сотни миллионов или даже миллиардов выборок в секунду.

Системы сбора данных служат для измерения напряжения и силы переменного тока, ударов и вибрации, температуры, деформации, давления и тому подобного. Сигналам и датчикам в диапазоне постоянного тока требуется частота выборки в среднем до 200 тысяч в секунду (200 квыб./с) а иногда и до миллиона (1 Мвыб./с).

Частота выборки обычно называется осью измерения T (время) или X.

Сигма-дельта АЦП

Для проведения большинства измерений часто не требуется АЦП со скоростью преобразования, которую даёт АЦП последовательного приближения, зато необходима большая разрешающая способность. Сигма-дельта АЦП могут обеспечивать разрешающую способность до 24 разрядов, но при этом уступают в скорости преобразования. Так, в сигма-дельта АЦП при 16 разрядах можно получить частоту дискретизации до 100К отсчетов/сек, а при 24 разрядах эта частота падает до 1К отсчетов/сек и менее, в зависимости от устройства.

Обычно сигма-дельта АЦП применяются в разнообразных системах сбора данных и в измерительном оборудовании (измерение давления, температуры, веса и т.п.), когда не требуется высокая частота дискретизации и необходимо разрешение более 16 разрядов.

Принцип работы сигма-дельта АЦП сложнее для понимания. Эта архитектура относится к классу интегрирующих АЦП. Но основная особенность сигма-дельта АЦП состоит в том, что частота следования выборок, при которых собственно и происходит анализ уровня напряжения измеряемого сигнала, существенно превышает частоту появления отсчетов на выходе АЦП (частоту дискретизации). Эта частота следования выборок называется частотой передискретизации. Так, сигма-дельта АЦП со скоростью преобразования 100К отсчетов/сек, в котором используется частота передискретизации в 128 раз больше, будет производить выборку значений входного аналогового сигнала с частотой 12.8М отсчетов/сек.

Блок-схема сигма-дельта АЦП первого порядка приведена на рис. 5. Аналоговый сигнал подается на интегратор, выходы которого подсоединены к компаратору, который в свою очередь присоединен к 1-разрядному ЦАП в петле обратной связи. Путем серии последовательных итераций интегратор, компаратор, ЦАП и сумматор дают поток последовательных битов, в котором содержится информация о величине входного напряжения.

Рис. 5. Сигма-дельта АЦП

Результирующая цифровая последовательность затем подается на фильтр нижних частот для подавления компонентов с частотами выше частоты Котельникова (она составляет половину частоты дискретизации АЦП). После удаления высокочастотных составляющих следующий узел — дециматор — прореживает данные. В рассматриваемом нами АЦП дециматор будет оставлять 1 бит из каждых полученных 128 в выходной цифровой последовательности.

Так как внутренний цифровой ФНЧ в сигма-дельта АЦП представляет собой неотъемлемую часть для осуществления процесса преобразования, время установления ФНЧ становится фактором, который необходимо учитывать при скачкообразном изменении входного сигнала. Например, при переключении входного мультиплексора или при переключении предела измерения прибора необходимо подождать, пока пройдут несколько отсчетов АЦП, и лишь потом считывать корректные выходные данные.

Дополнительным и очень важным достоинством сигма-дельта АЦП является то, что все его внутренние узлы могут быть выполнены интегральным способом на площади одного кремниевого кристалла. Это заметно снижает стоимость конечных устройств и повышает стабильность характеристик АЦП.

Что такое битовое разрешение и почему оно важно?

Частота выборки, рассмотренная в предыдущем разделе, отображается осью времени (T или X) цифрового потока данных, а битовое разрешение — осью амплитуды (Y).

В эпоху зарождения сбора данных 8-битные АЦП были обычным явлением. На момент написания этой статьи 24-битные АЦП являются стандартом для большинства систем сбора данных, предназначенных для проведения динамических измерений, а 16 бит считаются минимальным разрешением для сигналов в целом. Существует ряд бюджетных систем, использующих 12-битные АЦП.

Поскольку каждый бит разрешения эффективно удваивает разрешение преобразования, системы с 24-битными АЦП обеспечивают 2^24 = 16 777 216. Таким образом входной одновольтный сигнал можно разделить на более чем 16 миллионов шагов по оси Y.

16 777 216 шагов для 24-битного АЦП значительно лучше, чем максимальные теоретические 65 656 шагов для 16-битного АЦП. Таким образом, чем выше разрешение, тем лучше форма и точность волновых функций. То же самое применимо и к оси времени.

Сравните 24-битное разрешение (оранжевый) и 16-битное (серый)

Итог

Итак, мы разобрались с весьма сложной и важной темой в мире электроники. АЦП используется повсеместно, и в робототехнике без этого устройства уж точно не обойтись

Для понимания окружающего мира роботам как-то нужно переводить аналоговые ощущения в числа.

На нашем портале можно найти несколько уроков, выполнение которых зависит от понимания темы АЦП: датчик температуры, ёмкостный датчик, фоторезистор, потенциометр и аналоговый джойстик

А в совокупности с еще одной важной темой — ШИМ, применение АЦП позволит создать диммер светодиодной лампы и регулятор хода двигателя. Успехов!

+1