Оглавление
- Апериодическая составляющая тока короткого замыкания
- Полный ток при наступлении КЗ
- Что такое апериодический ток?
- Полный ток при наступлении КЗ
- Периодическая составляющая — ток
- Физические свойства апериодической составляющей
- Что такое апериодический ток?
- Особенности вычислений в многоконтурных схемах
- Межфазное замыкание: способы защиты и предотвращения, места возникновения
- Апериодическая составляющая тока короткого замыкания
- Апериодическая составляющая тока короткого замыкания
- Как вычислить апериодическую компоненту
- Пример приближенного расчета токов короткого замыкания в сети 0,4 кв
- Физические свойства апериодической составляющей
- Короткие замыкания в однофазных сетях
- Особенности вычислений в многоконтурных схемах
- Периодическая составляющая — ток
Апериодическая составляющая тока короткого замыкания
При наступлении режима КЗ постоянные токовые величины подвергаются существенным изменениям. В самое первое мгновение появляется так называемая апериодическая составляющая тока короткого замыкания, которая достаточно быстро угасает и принимает нулевое значение. Данный временной интервал, когда наблюдаются эти перемены, представляет собой переходный период, определяемый в числовом выражении. Пока аварийное состояние тока не будет отключено, работа электрической сети производится в установившемся режиме короткого замыкания.
- Физические свойства апериодической составляющей
- Полный ток при наступлении КЗ
- Как вычислить апериодическую компоненту
- Особенности вычислений в многоконтурных схемах
Полный ток при наступлении КЗ
Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.
Что такое апериодический ток?
Трехфазное короткое замыкание генератора. | Кривая изменения тока в обмотке возбуждения при коротком замыкании генератора без автоматического регулятора возбуждения.
Апериодические токи в обмотках статора создают неподвижный в пространстве магнитный поток. При вращении ротора обмотка возбуждения пересекает указанный неподвижный поток статора, поэтому в ней наводится переменный ток, накладывающийся на свободный ток постоянного направления.
3Ток небаланса в реле при внешних.
Апериодический ток Ia затухает со скоростью, значи — тельно меньшей, чем скорость изменения периодического ( переменного) тока. Продолжительность апериодического тока / а зависит от постоянной времени Г, первичной цепи. Поэтому ток / а трансформируется во вторичную обмотку значительно хуже и большая его часть идет на намагничивание сердечника. Ток намагничивания от апериодического тока во много раз превосходит ток намагничивания, имеющий место при протекании переменного тока.
Полный ток при наступлении КЗ
Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.
Периодическая составляющая — ток
Периодическая составляющая тока изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора. Апериодическая-определяется характером затухания тока короткого замыкания, зависящего от активного сопротивления цепи и обмоток статора генератора.
Периодическая составляющая тока / г в ветви Г изменяется во времени в соответствии с параметрами генераторов ( компенсаторов), характеристиками регуляторов возбуждения, удаленностью точки замыкания и др. Периодическая составляющая тока 1пС ветви С неизменна во времени.
Периодическая составляющая тока изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора. Апериодическая — определяется характером затухания тока короткого замыкания, зависящего от активного сопротивления цепи и обмоток статора генератора.
Периодическая составляющая тока / п ( г в ветви Г изменяется во времени по сложному закону, определяемому параметрами генераторов и характеристиками регуляторов возбуждения. Периодическую составляющую тока / п с в ветви С принимают незатухающей. Периодическая составляющая тока в месте замыкания равна сумме этих двух токов. Двухлучевая схема используется при определении импульса квадратичного тока при к.
Периодическая составляющая тока КЗ от генератора изменяется во времени по сложному закону.
Периодическая составляющая тока статора в условиях нормального включения не должна превышать более чем в 3 5 раза величину номинального тока. При аварийных режимах работы допускается пятикратность периодической составляющей по отношению к номинальному току.
Периодическая составляющая тока статора при нормальном включении генератора не должна превышать более чем в 3 5 раза величину номинального тока. При аварийных режимах работы допускается пятикратность периодической составляющей по отношению к номинальному току.
Периодическая составляющая тока статора ( одновременно со всеми нечетными гармониками) убывает до своей установившейся величины с постоянной времени цепи ротора. Апериодическая составляющая тока ротора, возникающая при внезапном коротком замыкании, уменьшается по тому же закону до установившейся величины постоянного тока IrL. В цепи ротора все четные высшие гармонические обнаруживаются и в установившемся режиме.
Периодическая составляющая тока КЗ в начальный момент времени / п то называется начальным током КЗ. Значение начального тока КЗ используют, как правило, для выбора уставок и проверки чувствительности релейной защиты.
Периодическая составляющая тока статора при нормальном включении генератора не должна превышать более чем в 3 5 раза силу номинального тока. При аварийных режимах работы допускается пятикратиость периодической составляющей по отношению к номинальному току.
При замыкании за реактором периодическая составляющая тока короткого замыкания не изменяется во времени ( / 7), что позволяет принять t tpac4 22 сек.
Физические свойства апериодической составляющей
Подобное состояние тока возникает в момент короткого замыкания. Его продолжительность и характеристики могут быть разными, в зависимости от многих факторов. Например, при наличии у двигателя демпферной обмотки, апериодическая составляющая тока короткого замыкания будет ниже, чем при ее отсутствии. Вначале возникает сверхпереходный ток, который вначале становится просто переходным, и лишь потом он начинает затухать.
Во время двухфазного замыкания, в статоре не появляются скачкообразные изменения тока. В подобных ситуациях, на холостом ходе возникает апериодическая составляющая, параметры которой совпадают с начальной величиной переменной компоненты. Поскольку ток КЗ внутри статора является однофазным, в отдельных случаях появление апериодической компоненты полностью исключается. В двигателях асинхронного типа этот показатель не учитывается, поскольку данные процессы очень быстро затухают
Он не принимается во внимание даже при расчетных вычислениях ударных токов КЗ
В общем и целом, величина данных компонентов будет отличаться для каждой фазы. Ее начальные параметры будут зависеть от момента появления КЗ. На графиках она представляет собой сплошную кривую линию, поскольку все начальные амплитуды других составляющих будут ей равны, но направлены в обратную сторону.
Наличие апериодической составляющей устанавливается при расхождении контактов. Для ее оценки существует специальный параметр, представляющий собой соотношение между ней и периодической амплитудой в момент размыкания контактов. Время затухания составляет примерно 0,1-0,2 с и сопровождается значительным выделением тепла. Под действием высокой температуры заметно нагреваются токоведущие части и вся аппаратура в целом, несмотря на столь короткий промежуток времени.
Что такое апериодический ток?
Трехфазное короткое замыкание генератора. | Кривая изменения тока в обмотке возбуждения при коротком замыкании генератора без автоматического регулятора возбуждения.
Апериодические токи в обмотках статора создают неподвижный в пространстве магнитный поток. При вращении ротора обмотка возбуждения пересекает указанный неподвижный поток статора, поэтому в ней наводится переменный ток, накладывающийся на свободный ток постоянного направления.
3Ток небаланса в реле при внешних.
Апериодический ток Ia затухает со скоростью, значи — тельно меньшей, чем скорость изменения периодического ( переменного) тока. Продолжительность апериодического тока / а зависит от постоянной времени Г, первичной цепи. Поэтому ток / а трансформируется во вторичную обмотку значительно хуже и большая его часть идет на намагничивание сердечника. Ток намагничивания от апериодического тока во много раз превосходит ток намагничивания, имеющий место при протекании переменного тока.
Особенности вычислений в многоконтурных схемах
Если в расчетах используются многоконтурные схемы, тогда на апериодическую составляющую не действует экспоненциальный закон временного изменения. Фактически, она выглядит в виде суммы токов, каждый из которых является экспоненциальной временной функцией и угасает в различные интервалы времени. Количество таких компонентов в цепях с активными и индуктивными ветвями, совпадает с численностью независимых контуров.
В этом случае апериодические составляющие могут быть вычислены с использованием специальных систем дифференциальных уравнений, учитывающих все активные и индуктивные сопротивления. Методика расчетов во многом зависит от того, как выглядит изначальная схема расчетов, и где расположена рассчитываемое место КЗ.
В некоторых вариантах источники энергии многоконтурной схемы замыкаются на расчетное место КЗ с помощью общего сопротивления. Приближенные расчеты позволяют установить затухание апериодической составляющей в течение какого-то постоянного промежутка времени. Существуют два метода решений, которые, относительно точного результате выдают погрешность с положительной или отрицательной направленностью. То есть, постоянная времени будет завышаться или занижаться.
Расчетная схема, разделенная точкой короткого замыкания на части, независимые между собой, в произвольный момент времени определяется в виде суммы апериодических составляющих, предусмотренных для каждого участка схемы. Их изменение по времени происходит относительно постоянного показателя, а полученные данные учитываются в расчетах.
Ударный ток короткого замыкания
Межфазное замыкание: способы защиты и предотвращения, места возникновения
При эксплуатации высоковольтных электрических цепей нередко явление, определяемое нормативными документами как межфазное замыкание. Такое отклонение от нормального режима работы систем электроснабжения связано с неисправностями питающих линий, последствия которых бывают непредсказуемыми. Особо опасный характер возможных повреждений вынуждает разобраться с рядом вопросов, касающихся того, что собой представляет это явление, к каким неприятностям оно приводит и как их избежать.
Понятие и причины замыканий
Причиной замыкания, как правило, становится нарушение изоляции проводов
Межфазным замыканием электричества в многофазных цепях называют непреднамеренное соединение между собой изолированных проводников с поврежденным защитным покрытием.
В отдельных случаях оно проявляется как однофазное замыкание на землю или корпус работающего электрооборудования.
Такое состояние электрической сети является нарушением нормального режима работы системы и трактуется как аварийное. В этом случае в местах замыкания двух проводников или в точках их контакта с землей величина тока существенно возрастает. Максимальное его значение достигает порой нескольких тысяч Ампер. Неуправляемые потоки электричества способны привести к разрушительным последствиям.
Причинами возникновения аварийных ситуаций в высоковольтных электрических сетях являются:
- Повреждение защитной изоляции каждого из фазных проводников из-за нарушений правил эксплуатации кабельных линий.
- Случайный обрыв одной из жил воздушного кабеля и его замыкание на другой провод или землю.
- Замыкание провода с поврежденной изоляцией на корпус действующей электроустановки.
Каждый из случаев возникновения короткого замыкания является следствием грубейшего нарушения правил эксплуатации электрооборудования и в соответствии с требованиями нормативных документов нуждается в тщательном расследовании.
Виды аварийных замыканий
По типу электропитания все короткие замыкания делятся на повреждения, произошедшие в однофазных или в трехфазных цепях, а по их количеству – на одиночные и двойные КЗ. Самый простой случай – однофазные линии, в которых возможно только одиночное замыкание фазы на нейтраль или землю. Трехфазное короткое замыкание отличается большим вариантом возможностей, поскольку число проводов в кабеле увеличивается до 3-х. При этом возможны следующие варианты повреждений:
- Замыкание двух высоковольтных проводов между собой.
- КЗ одного провода на нейтраль или землю (однофазные короткие замыкания).
- Контакт сразу двух проводников с поверхностью грунта.
Апериодическая составляющая тока короткого замыкания
При наступлении режима КЗ постоянные токовые величины подвергаются существенным изменениям. В самое первое мгновение появляется так называемая апериодическая составляющая тока короткого замыкания, которая достаточно быстро угасает и принимает нулевое значение. Данный временной интервал, когда наблюдаются эти перемены, представляет собой переходный период, определяемый в числовом выражении. Пока аварийное состояние тока не будет отключено, работа электрической сети производится в установившемся режиме короткого замыкания.
- Физические свойства апериодической составляющей
- Полный ток при наступлении КЗ
- Как вычислить апериодическую компоненту
- Особенности вычислений в многоконтурных схемах
Апериодическая составляющая тока короткого замыкания
При наступлении режима КЗ постоянные токовые величины подвергаются существенным изменениям. В самое первое мгновение появляется так называемая апериодическая составляющая тока короткого замыкания, которая достаточно быстро угасает и принимает нулевое значение. Данный временной интервал, когда наблюдаются эти перемены, представляет собой переходный период, определяемый в числовом выражении. Пока аварийное состояние тока не будет отключено, работа электрической сети производится в установившемся режиме короткого замыкания.
- Физические свойства апериодической составляющей
- Полный ток при наступлении КЗ
- Как вычислить апериодическую компоненту
- Особенности вычислений в многоконтурных схемах
Как вычислить апериодическую компоненту
Первоначальная величина апериодической части в модульном выражении определяется как разница между мгновенным показателем периодической части в начале КЗ и величиной тока непосредственно перед замыканием. То есть, апериодическая составляющая с максимальным первоначальным значением, сравняется с амплитудными параметрами периодической части тока при появлении КЗ. Это утверждение определяет формула: ia0 = √2Iп0, действующая при условии сниженной активной доли сопротивления в точке КЗ относительно индуктивной составляющей.
1.
2.
Кроме того, перед началом замыкания в расчетной точке не должно быть нагрузки, а напряжение какой-либо фазы к этому времени проходит по нулевому проводнику. Если же перечисленные требования не будут выполнены, то апериодическая часть в первоначальной стадии снизит свои показатели по отношению к амплитуде периодической составляющей.
Для того чтобы выполнить расчет апериодической составляющей тока короткого замыкания в любое произвольное время, заранее прорабатывается вариант замещения. Согласно первоначальной расчетной схеме, все составные элементы учитываются в качестве активных и индуктивных сопротивлений. Учет синхронных генераторов и компенсаторов, асинхронных и синхронных электродвигателей проводится путем перевода их в категорию индуктивных сопротивлений с обратной последовательностью. Обязательно учитываются сопротивления обмоток статора постоянному току с рабочей температурой установленной нормы.
3.
Когда в изначальной схеме расчетов присутствуют лишь компоненты, соединенные последовательно, в этом случае величина апериодической доли в любой момент времени определяется формулой 1, в которой Та является постоянной величиной, определяющей время затухания данной части. В свою очередь, Та можно вычислить по формуле 2, в которой Xэк и Rэк будут индуктивной и активной составляющими, а ωсинх является синхронной угловой частотой сетевого напряжения. Если же при расчетах необходимо учесть величину генераторного тока непосредственно перед коротким замыканием, тогда уже используется формула 3.
Пример приближенного расчета токов короткого замыкания в сети 0,4 кв
Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.
Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».
Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.
Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания. Расчет
Расчет
Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.
Рис.1 – Однолинейная электрическая схема 380 В
Расчет токов к.з. для точки К1
Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.
1. Определяем активное и индуктивное сопротивление фазы трансформатора:
где:
- Sт – мощность трансформатора, кВА;
- с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
- d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
- k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.
2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:
где:
- L – длина участка, км;
- Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
- а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
- b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;
3. Определяем полное сопротивление фазы:
4. Определяем ток трехфазного короткого замыкания:
Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.
Расчет токов к.з. для точки К2
5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:
6. Определяем полное сопротивление петли фаза-нуль:
где: Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.
7. Определяем ток однофазного короткого замыкания на землю:
Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.
Таблица 1 – Расчет токов к.з.
Точка КЗ | Rф, Ом | R0, Ом | Хф, Ом | Х0, Ом | Rт, Ом | Хт, Ом | Zф-0, Ом | Zт, Ом | Iк.з.(3), А | Iк.з.(1), А |
К1 | 0,07 | 0,02 | — | — | 0,0078 | 0,023 | — | 0,089 | 2468 | — |
К2 | 0,241 | 0,374 | 0,022 | 0,022 | — | — | 0,674 | — | — | 326 |
К3 | 0,374 | 0,598 | 0,0231 | 0,0231 | — | — | 0,99 | — | — | 222 |
К4 | 0,174 | 0,278 | 0,022 | 0,022 | — | — | 0,512 | — | — | 429 |
К5 | 0,694 | 1,11 | 0,0259 | 0,0259 | — | — | 1,8 | — | — | 122 |
К6 | 0,174 | 0,278 | 0,022 | 0,022 | — | — | 0,512 | — | — | 429 |
Всего наилучшего! До новых встреч на сайте Raschet.info.
Физические свойства апериодической составляющей
Подобное состояние тока возникает в момент короткого замыкания. Его продолжительность и характеристики могут быть разными, в зависимости от многих факторов. Например, при наличии у двигателя демпферной обмотки, апериодическая составляющая тока короткого замыкания будет ниже, чем при ее отсутствии. Вначале возникает сверхпереходный ток, который вначале становится просто переходным, и лишь потом он начинает затухать.
Во время двухфазного замыкания, в статоре не появляются скачкообразные изменения тока. В подобных ситуациях, на холостом ходе возникает апериодическая составляющая, параметры которой совпадают с начальной величиной переменной компоненты. Поскольку ток КЗ внутри статора является однофазным, в отдельных случаях появление апериодической компоненты полностью исключается. В двигателях асинхронного типа этот показатель не учитывается, поскольку данные процессы очень быстро затухают
Он не принимается во внимание даже при расчетных вычислениях ударных токов КЗ
В общем и целом, величина данных компонентов будет отличаться для каждой фазы. Ее начальные параметры будут зависеть от момента появления КЗ. На графиках она представляет собой сплошную кривую линию, поскольку все начальные амплитуды других составляющих будут ей равны, но направлены в обратную сторону.
Наличие апериодической составляющей устанавливается при расхождении контактов. Для ее оценки существует специальный параметр, представляющий собой соотношение между ней и периодической амплитудой в момент размыкания контактов. Время затухания составляет примерно 0,1-0,2 с и сопровождается значительным выделением тепла. Под действием высокой температуры заметно нагреваются токоведущие части и вся аппаратура в целом, несмотря на столь короткий промежуток времени.
Короткие замыкания в однофазных сетях
При выполнении расчетов энергосистем однофазного тока допускаются вычисления, производимые в упрощенной форме. Приборы и оборудование в таких сетях не потребляют большого количества электроэнергии, поэтому надежная защита может быть обеспечена обычным автоматическим выключателем, рассчитанным на ток срабатывания 25 ампер.
Ток однофазного короткого замыкания вычисляется в следующем порядке:
- Определение параметров трансформатора или реактора, питающих сеть, в том числе их электродвижущей силы.
- Устанавливаются технические характеристики проводников, используемых в сети.
- Разветвленную электрическую схему необходимо упростить, разбив на отдельные участки.
- Вычисление полного сопротивления между фазой и нулем.
- Определения полных сопротивлений трансформатора или других питающих устройств, если такие данные отсутствуют в технической документации.
- Все полученные значения вставляются в формулу.
Особенности вычислений в многоконтурных схемах
Если в расчетах используются многоконтурные схемы, тогда на апериодическую составляющую не действует экспоненциальный закон временного изменения. Фактически, она выглядит в виде суммы токов, каждый из которых является экспоненциальной временной функцией и угасает в различные интервалы времени. Количество таких компонентов в цепях с активными и индуктивными ветвями, совпадает с численностью независимых контуров.
В этом случае апериодические составляющие могут быть вычислены с использованием специальных систем дифференциальных уравнений, учитывающих все активные и индуктивные сопротивления. Методика расчетов во многом зависит от того, как выглядит изначальная схема расчетов, и где расположена рассчитываемое место КЗ.
В некоторых вариантах источники энергии многоконтурной схемы замыкаются на расчетное место КЗ с помощью общего сопротивления. Приближенные расчеты позволяют установить затухание апериодической составляющей в течение какого-то постоянного промежутка времени. Существуют два метода решений, которые, относительно точного результате выдают погрешность с положительной или отрицательной направленностью. То есть, постоянная времени будет завышаться или занижаться.
Расчетная схема, разделенная точкой короткого замыкания на части, независимые между собой, в произвольный момент времени определяется в виде суммы апериодических составляющих, предусмотренных для каждого участка схемы. Их изменение по времени происходит относительно постоянного показателя, а полученные данные учитываются в расчетах.
Ударный ток короткого замыкания
Ток короткого замыкания однофазных и трехфазных сетей
Источник
Периодическая составляющая — ток
Периодическая составляющая тока изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора. Апериодическая-определяется характером затухания тока короткого замыкания, зависящего от активного сопротивления цепи и обмоток статора генератора.
Периодическая составляющая тока / г в ветви Г изменяется во времени в соответствии с параметрами генераторов ( компенсаторов), характеристиками регуляторов возбуждения, удаленностью точки замыкания и др. Периодическая составляющая тока 1пС ветви С неизменна во времени.
Периодическая составляющая тока изменяется по гармонической кривой в соответствии с синусоидальной ЭДС генератора. Апериодическая — определяется характером затухания тока короткого замыкания, зависящего от активного сопротивления цепи и обмоток статора генератора.
Периодическая составляющая тока / п ( г в ветви Г изменяется во времени по сложному закону, определяемому параметрами генераторов и характеристиками регуляторов возбуждения. Периодическую составляющую тока / п с в ветви С принимают незатухающей. Периодическая составляющая тока в месте замыкания равна сумме этих двух токов. Двухлучевая схема используется при определении импульса квадратичного тока при к.
Периодическая составляющая тока КЗ от генератора изменяется во времени по сложному закону.
Периодическая составляющая тока статора в условиях нормального включения не должна превышать более чем в 3 5 раза величину номинального тока. При аварийных режимах работы допускается пятикратность периодической составляющей по отношению к номинальному току.
Периодическая составляющая тока статора при нормальном включении генератора не должна превышать более чем в 3 5 раза величину номинального тока. При аварийных режимах работы допускается пятикратность периодической составляющей по отношению к номинальному току.
Периодическая составляющая тока статора ( одновременно со всеми нечетными гармониками) убывает до своей установившейся величины с постоянной времени цепи ротора. Апериодическая составляющая тока ротора, возникающая при внезапном коротком замыкании, уменьшается по тому же закону до установившейся величины постоянного тока IrL. В цепи ротора все четные высшие гармонические обнаруживаются и в установившемся режиме.
Периодическая составляющая тока КЗ в начальный момент времени / п то называется начальным током КЗ. Значение начального тока КЗ используют, как правило, для выбора уставок и проверки чувствительности релейной защиты.
Периодическая составляющая тока статора при нормальном включении генератора не должна превышать более чем в 3 5 раза силу номинального тока. При аварийных режимах работы допускается пятикратиость периодической составляющей по отношению к номинальному току.
При замыкании за реактором периодическая составляющая тока короткого замыкания не изменяется во времени ( / 7), что позволяет принять t tpac4 22 сек.