Как подключить кнопку к arduino

Know your Pinout

The Arduino Uno Microcontroller is one of the most versatile boards on the market today and that’s why we decided to focus on it in this guide. This guide displays most of its capabilities, but there are also more advanced options which we did not go into in this post.

The important thing to know when you choose a board for your project is its capabilities and limitations. It’s also important to understand the different communication protocols that the board uses. Of course, you don’t need to remember all of this information, you can always go back to this post and read the relevant information for you (this is a good time to bookmark this post btw).

If you have any comments or questions, you are welcome to write them below and of course, feel free to share this post with your Arduino-loving friends

=D

Связь с внешним миром

Для осуществления связи с внешними устройствами (компьютером и другими микроконтроллерами) на плате существует несколько дополнительных устройств. На контактах 0 (RX) и 1 (TX) контроллер ATmega328 поддерживает UART – последовательный интерфейс передачи данных. ATmega8U2, выполняющий на плате роль программатора, транслирует этот интерфейс через USB, позволяя платформе общаться с компьютером через стандартный COM-порт.

На платах китайского производства, вместо контроллера ATmega8U2 используется другой программатор – CH340G, который не распознается Windows в автоматическом режиме. Для него необходимо установить дополнительный драйвер. При помощи мониторинга последовательной шины, называемого Serial Monitor, среда Arduino IDE посылает и получает данные от Arduino. При обмене данными на плате видно мигание светодиодов RX и TX. При использовании UART-интерфейса через контакты 0 и 1, светодиоды не мигают.

Плата может взаимодействовать по UART-интерфейсу не только через аппаратным, но и через программным способом. Для этого в среде Arduino IDE предусмотрена библиотека SoftwareSerial. Также, на плате предусмотрены выводы основных интерфейсов взаимодействия с периферией: SPI и I2C (TWI).

Подключение DS1307 к дисплею LCD 1602 i2c

Схема подключения часов реального времени с дисплеем

Рассмотрим два варианта подключения модуля RTC к Arduino и текстового дисплея 1602. В первом варианте используется протокол SPI для модуля часов, поэтому к предыдущей схеме потребуется добавить только дисплей с iic модулем. А в скетче следует расскомментировать соответствующую строку. После внесения правок в схему и программу — загрузите следующий скетч в микроконтроллер.

Скетч. Часы с экраном LCD 1602 и DS1302

#include <iarduino_RTC.h>
iarduino_RTC time(RTC_DS1302,6,8,7);  // для модуля DS1302 - RST, CLK, DAT

#include <Wire.h>                             // библиотека для устройств I2C 
#include <LiquidCrystal_I2C.h>       // подключаем библиотеку для дисплея
LiquidCrystal_I2C LCD(0x27,16,2);  // присваиваем имя дисплею

void setup() {
   delay(300);
   LCD.init();            // инициализация LCD дисплея
   LCD.backlight();  // включение подсветки дисплея
   time.begin();
   time.settime(0, 30, 18, 12, 6, 20, 5); // 0  сек, 30 мин, 18 часов, 12, июня, 2020, четверг
}

void loop() {
   // если прошла 1 секунда выводим время на дисплей
   if (millis() % 1000 == 0) {
      LCD.setCursor(0,0);
      LCD.print(time.gettime("d M Y, D"));
      LCD.setCursor(4,1);
      LCD.print(time.gettime("H:i:s"));
      delay(1);
   }
}
  1. в данном примере с помощью команды можно выводить на текстовый экран текущее время и дату в разном формате.

При подключении экрана и модуля RTC к одной шине iic — порты SDA(A4) и SCL(A5), следует указать в скетче какой модуль используется. Схема подключения размещена выше, кроме того вы можете использовать сканер шины i2c для того, чтобы увидеть адреса устройств. Если адреса, которые установлены производителем по умолчанию вы не изменяли — соберите схему и загрузите следующий пример в плату.

Схема подключения DS1307 и LCD по i2c

Скетч. Часы с LCD 1602 и DS1302 I2C Arduino

#include <iarduino_RTC.h>
iarduino_RTC time(RTC_DS1307);       // для модуля DS1307 с i2C

#include <Wire.h>                             // библиотека для устройств I2C 
#include <LiquidCrystal_I2C.h>       // подключаем библиотеку для дисплея
LiquidCrystal_I2C LCD(0x27,16,2);  // присваиваем имя дисплею

void setup() {
   delay(300);
   LCD.init();            // инициализация LCD дисплея
   LCD.backlight();  // включение подсветки дисплея
   time.begin();
   time.settime(0, 30, 18, 12, 6, 20, 5); // 0  сек, 30 мин, 18 часов, 12, июня, 2020, четверг
}

void loop() {
   // если прошла 1 секунда выводим время на дисплей
   if (millis() % 1000 == 0) {
      LCD.setCursor(0,0);
      LCD.print(time.gettime("d M Y, D"));
      LCD.setCursor(4,1);
      LCD.print(time.gettime("H:i:s"));
      delay(1);
   }
}

Подключение и настройка

Проблема с микроконтроллерами заключается в том, что при больших функциональных возможностях ведь в них кроме процессора есть еще довольно богатый набор периферийных устройств они имеют ограниченное число выводов. Если скачан архив, то его нужно распаковать и запустить файл Arduino.

На шилде расположены дополнительные разъемы питания и земли, разъемы для подключения внешнего источника напряжения, светодиод и кнопка перезагрузки.

Память ATmega обладает 16 килобайтами флэш-памяти для хранения кода программы из которых 2 килобайта используется загрузчиком ; ATmega обладает 32 килобайтами из которых 2 килобайта также используется загрузчиком. Можно подавать ток на него и все это будет работать только при условии, что напряжение подаваемого тока строго равно пяти вольтам!

Эти выводы могут быть сконфигурированы для вызова прерывания по фронту или по спаду импульса или по изменению уровня на выводе. Конструктор Arduino создан для любителей электроники и робототехники начального уровня, чтобы помочь им обойти сложности низкоуровнего программирования микроконтроллеров, где требуются знания инженера-профи и опыт. Все выводы, цифровые и аналоговые, могут работать в диапазоне 0 … 5 В. Входы и выходы Каждый из 20 , на схеме аrduino nano распиновка помещены в сиреневые параллелограммы, на той же схеме в серых параллелограммах указаны выводы микроконтроллера цифровых выводов Arduino Nano может работать в качестве входа или выхода.

Распиновка Arduino Nano v 3.0

Например, остался без внимания аналоговый компаратор. Обычно используется для добавления кнопки сброса на платы расширения, закрывающей доступ к кнопке сброса на самой плате Arduino. Все выводы могут быть программно подключены к источнику питания микроконтроллера 5 В через подтягивающие резисторы сопротивлением кОм.

Данные выводы могут быть сконфигурированы в качестве источников прерываний, возникающих при различных условиях: при низком уровне сигнала, по фронту, по спаду или при изменении сигнала. Экран подключен. Для проверки работоспособности откроем приложение для Arduino. Для работы используйте библиотеку Wire. На первых двух светодиод загорается, когда уровень сигнала низкий, и показывает, что сигнал TX или RX активен.

Если все прошло нормально, вы увидите сообщение «загрузка успешно завершена». Вместе с тем активное распространение Ардуино-плат для освоения разработки и проектирования устройств на микроконтроллерных системах породило новый виток в вопросе качества и эргономики.

Пришлось это сделать вручную. Arduino Nano 2.
Уроки Ардуино #0 — что такое Arduino, куда подключаются датчики и как питать Ардуино

Память Arduino Uno R3

Плата Uno по умолчанию поддерживает три типа памяти:

  • Flash – память объемом 32 кБ. Это основное хранилище для команд. Когда вы прошиваете контроллер своим скетчем, он записывается именно сюда. 2кБ из данного пула памяти отводится на bootloader- программу, которая занимается инициализацией системы, загрузки через USB и запуска скетча.
  • Оперативная SRAM память объемом 2 кБ. Здесь по-умолчанию хранятся переменные и объекты, создаваемые в ходе работы программы. Память эта энерго-зависимая, при выключении питания все данные, разумеется, сотрутся.
  • Энергонезависимая память (EEPROM) объемом 1кБ. Здесь можно хранить данные, которые не сотрутся при выключении контроллера. Но процедура записи и считывания EEPROM требует использования дополнительной библиотеки, которая доступна в Arduino IDE по-умолчанию. Также нежно помнить об ограничении циклов перезаписи, присущих технологии EEPROM.

Некоторые модификации стандартной платы Uno могут поддерживать память с большими значениями, чем в стандартном варианте. Но следует понимать, что для работы с ними потребуются и дополнительные библиотеки.

Шаг 4. Создаем печатную плату

Как только схема завершена, пришло время сделать печатную плату. Мы использовали веб-сайт JLCPCB (ссылка), чтобы сделать печатную плату. Эти ребята являются одними из лучших в производстве печатных плат в последние дни.

После завершения проектирования схемы преобразуйте ее в печатную плату и спроектируйте печатную плату на веб-сайте easyEDA (ссылка). Будьте терпеливы. Ошибка на этом шаге испортит вашу печатную плату. Проверьте несколько раз перед генерацией файла gerber. Вы также можете проверить 3d модель вашей платы здесь. Нажмите на создание файла gerber и оттуда вы можете напрямую заказать эту плату через JLCPCB. Загрузите файлы gerber, выберите правильную спецификацию, ничего не меняйте в этом разделе. Оставьте как есть. Это достаточно хорошие настройки для старта. Разместите заказ. Вы получите его через 1-2 недели.

Прием последовательных данных

Принимающее устройство UART проверяет принятый пакет (через вывод RX) на наличие ошибок, вычисляя число единиц и сравнивая его со значением бита четности, содержащегося в пакете.

Если ошибки при передаче отсутствуют, то для получения блока данных он перейдет к обработке стартового бита, стоповых битов и бита четности. Возможно, ему понадобится получить несколько пакетов, прежде чем он сможет пересобрать весь байт данных из фреймов данных. После восстановления байт сохраняется в буфере UART.

Принимающее устройство UART использует бит четности для определения факта потери данных при передаче. Потеря данных при передаче происходит, когда бит во время передачи изменил свое состояние. Бит может меняться, в том числе, из-за расстояния передачи, магнитного излучения, несовпадения скоростей передачи.

Шаг 2. Необходимые компоненты

Компоненты, которые вам нужны для этого проекта. Везде, где количество не указано, считайте его единственным.

  • Микроконтроллер Atmel Atmega328p-pu
  • 28-контактная база IC
  • 16 МГц кварцевый генератор
  • конденсатор 22 пФ — 2 шт.
  • конденсатор 100 нФ — 4 шт.
  • Электролитический конденсатор 100 мкФ — 3 шт.
  • 3 мм красный светодиод — 2 шт.
  • 330E 1/4W резистор — 2 шт.
  • 240E 1/4W резистор — 1 шт.
  • 390E 1/4W резистор — 1 шт.
  • 10K 1/4W резистор — 1 шт.
  • Кнопка для сброса
  • Диод общего назначения 1N4007
  • Линейный регулятор напряжения 7805
  • Линейный регулятор переменного напряжения LM317
  • DC разъем мама
  • 2-контактный винтовой клеммный блок
  • много разъемов «папа» и «мама»

Кроме всего вышеперечисленного для своей собственной Arduino Uno вам также понадобится паяльное оборудование и некоторые аппаратные средства, чтобы облегчить жизнь.

Вам также понадобится программатор USBASP ICSP или конвертер USB в TTL, такой как FTDI для программирования Arduino с вашего компьютера.

Вот проектная спецификация от компании Easyeda:

Собираем все компоненты и переходим к следующему шагу.

Объяснение программы для ведомой (Slave) платы Arduino

1. Как и в ведущей плате, первым делом в программе мы должны подключить библиотеку Wire для задействования возможностей протокола I2C и библиотеку для работы с ЖК дисплеем. Также нам необходимо сообщить плате Arduino к каким ее контактам подключен ЖК дисплей.

Arduino

#include<Wire.h>
#include<LiquidCrystal.h>
LiquidCrystal lcd(2, 7, 8, 9, 10, 11);

1
2
3

#include<Wire.h>    
#include<LiquidCrystal.h>      

LiquidCrystallcd(2,7,8,9,10,11);

  1. В функции void setup():

—  мы инициализируем последовательную связь со скоростью 9600 бод/с;

Arduino

Serial.begin(9600);

1 Serial.begin(9600);

— далее мы инициализируем связь по протоколу I2C на контактах A4 и A5

В качестве адреса ведомого мы будем использовать значение 8 – очень важно здесь указать адрес ведомого;. Arduino

Wire.begin(8);

Arduino

Wire.begin(8);

1 Wire.begin(8);

После этого мы должны вызвать функцию в которой ведомый принимает значение от ведущего и функцию в которой ведущий запрашивает значение от ведомого.

Arduino

Wire.onReceive(receiveEvent);
Wire.onRequest(requestEvent);

1
2

Wire.onReceive(receiveEvent);

Wire.onRequest(requestEvent);

— затем мы инициализируем ЖК дисплей для работы в режиме 16х2, отображаем на нем приветственное сообщение и очищаем его экран через 5 секунд.

Arduino

lcd.begin(16,2); //Initilize LCD display
lcd.setCursor(0,0); //Sets Cursor at first line of Display
lcd.print(«Circuit Digest»); //Prints CIRCUIT DIGEST in LCD
lcd.setCursor(0,1); //Sets Cursor at second line of Display
lcd.print(«I2C 2 ARDUINO»); //Prints I2C ARDUINO in LCD
delay(5000); //Delay for 5 seconds
lcd.clear(); //Clears LCD display

1
2
3
4
5
6
7

lcd.begin(16,2);//Initilize LCD display

lcd.setCursor(,);//Sets Cursor at first line of Display

lcd.print(«Circuit Digest»);//Prints CIRCUIT DIGEST in LCD

lcd.setCursor(,1);//Sets Cursor at second line of Display

lcd.print(«I2C 2 ARDUINO»);//Prints I2C ARDUINO in LCD

delay(5000);//Delay for 5 seconds

lcd.clear();//Clears LCD display

3. Затем нам будут необходимы две функции: одна для события запроса (request event) и одна для события приема (receive event).

Для события запроса:

Эта функция будет выполняться когда ведущий будет запрашивать значение от ведомого. Эта функция будет считывать значение с потенциометра, подключенного к ведомой плате Arduino, преобразовывать его в диапазон 0-127 и затем передавать его ведущей плате.

Arduino

void requestEvent()
{
int potvalue = analogRead(A0);
byte SlaveSend = map(potvalue,0,1023,0,127);
Wire.write(SlaveSend);
}

1
2
3
4
5
6

voidrequestEvent()

{

intpotvalue=analogRead(A0);

byteSlaveSend=map(potvalue,,1023,,127);

Wire.write(SlaveSend);

}

Для события приема:

Эта функция будет выполняться когда ведущий будет передавать данные ведомому с адресом 8. Эта функция считывает принятые значения от ведущего и сохраняет ее в переменной типа byte.

Arduino

void receiveEvent (int howMany)
{
SlaveReceived = Wire.read();
}

1
2
3
4

voidreceiveEvent(inthowMany)

{

SlaveReceived=Wire.read();

}

4. В функции Void loop():

Мы будем непрерывно отображать принятые от ведущей платы значения на экране ЖК дисплея.

Arduino

void loop(void)
{
lcd.setCursor(0,0); //Sets Currsor at line one of LCD
lcd.print(«>> Slave <<«); //Prints >> Slave << at LCD
lcd.setCursor(0,1); //Sets Cursor at line two of LCD
lcd.print(«MasterVal:»); //Prints MasterVal: in LCD
lcd.print(SlaveReceived); //Prints SlaveReceived value in LCD received from Master
Serial.println(«Slave Received From Master:»); //Prints in Serial Monitor
Serial.println(SlaveReceived);
delay(500);
lcd.clear();
}

1
2
3
4
5
6
7
8
9
10
11
12

voidloop(void)

{

lcd.setCursor(,);//Sets Currsor at line one of LCD

lcd.print(«>>  Slave  <<«);//Prints >> Slave << at LCD

lcd.setCursor(,1);//Sets Cursor at line two of LCD

lcd.print(«MasterVal:»);//Prints MasterVal: in LCD

lcd.print(SlaveReceived);//Prints SlaveReceived value in LCD received from Master

Serial.println(«Slave Received From Master:»);//Prints in Serial Monitor

Serial.println(SlaveReceived);

delay(500);

lcd.clear();

}

После того как вы соберете всю схему проекта и загрузите обе программы в платы Arduino вы можете приступать к тестированию работы проекта. Вращая потенциометр на одной стороне вы должны увидеть изменяющиеся значения на экране ЖК дисплея на другой стороне.

Теперь, когда вы разобрались, как работать с интерфейсом I2C в плате Arduino, вы можете использовать описанные в данной статье приемы для подключения к плате Arduino любых датчиков, работающих по данному протоколу.

Arduino UNO: прошивка, память

Arduino UNO программирование для начинающих

Программирование платы происходит в бесплатной среде Arduino IDE на русском, которую можно скачать на официальном сайте. Для подключения устройств и модулей используются коннекторы («папа-папа» и «папа-мама»), которые подключаются к портам плате Uno. Чтобы начать работать с платформой, перейдите в раздел Arduino uno r3 «Уроки для начинающих» , где представлены инструкции с примерами.

Плата поддерживает три типа памяти:

Flash – память объемом 32 кБ, используется для хранения программы. Когда контроллер прошивается скетчем через USB, он записывается именно во Flash – память. Чтобы очистить память Arduino UNO следует загрузить пустой скетч.

SRAM память — это оперативная память Uno объемом 2 кБ. Здесь хранятся переменные и объекты, создаваемые в скетче. SRAM память энерго-зависимая, при отключении источника питания от платы Uno, все данные удалятся.

EEPROM — это энергонезависимая память объемом 1кБ. Сюда можно записывать данные, которые при выключении питания Uno не исчезнут. Минус EEPROM в ограничении циклов перезаписи — 100 000 раз по утверждениям производителя.

Описание выводов Ардуино УНО на русском

Заключение. Рекомендуем ознакомиться с другими платами из линейки Arduino-Genuino, например, аналог самой популярной платы UNO — RobotDyn UNO R3 от китайского производителя. Плата по характеристикам не уступает официальному производителю, но при этом имеет более демократичную цену и ряд преимуществ. Таких как, удобный USB-разъем и большее количество аналоговых входов.

Работа с тактовыми кнопками на Ардуино

Главная проблема использования кнопок для управления Arduino заключается в «дребезге контактов». Дело в том, что механические контакты в тактовых кнопках никогда не замыкаются и размыкаются мгновенно. В течении нескольких миллисекунд происходит многократное замыкание и размыкание контактов — в итоге на микроконтроллер поступает не единичный сигнал, а серия импульсов.

Подключение кнопки к Ардуино и дребезг

Для того, чтобы исключить на микроконтроллере Arduino дребезг кнопки используют различные электрические схемы с триггерами и конденсаторами. Но намного удобнее и проще использовать программный способ борьбы с возможным дребезгом тактовой кнопки — для этого применяют задержку на несколько миллисекунд или используют библиотеку Bounce2.h для борьбы с дребезгом контактов для Arduino.

Принципиальная схема

Для лучшего понимания работы с реле Ардуино давайте рассмотрим принципиальную схему релейного модуля в этой конфигурации. Таким образом, мы можем видеть ниже, что 5 вольт от нашего микроконтроллера, подключенного к выводу Vcc для активации реле через оптрон, также подключены к выводу JDVcc, который питает электромагнит реле. Таким образом, в этом случае мы не получили изоляции между реле и микроконтроллером.

Чтобы изолировать микроконтроллер от реле, нам нужно снять перемычку и подключить отдельный источник питания для электромагнита к JDVcc и контакту заземления. Теперь с этой конфигурацией микроконтроллер не имеет физического соединения с реле, он просто использует светодиодную подсветку ИС оптопары для активации реле.

Есть еще одна вещь, которую следует отметить в этой принципиальной схеме. Входные контакты модуля работают в обратном порядке. Как мы видим, реле будет активировано, когда входной контакт будет НИЗКИМ, потому что таким образом ток сможет течь от VCC к входному контакту, который является низким или заземленным, светодиод загорится и активирует реле. Когда входной вывод будет ВЫСОКИМ, ток не будет течь, поэтому светодиод не загорится и реле не будет активировано.

Предупреждение о высоком напряжении! Прежде чем мы продолжим изучение этого урока, предупреждаем вас, что будет использоваться высокое напряжение, которое в случае неправильного использования может привести к серьезным травмам или смерти. Поэтому будьте очень осторожны в том, что вы делаете! Проект ArduinoPlus.ru не несет никакой ответственности за любые ваши действия.

Удивительные проекты на Ардуино Уно

Большинство профессионалов в сфере разработки электронных проектов на Аrduino uno любят экспериментировать. Вследствие этого появляются интересные и удивительные устройства, которые рассмотрены ниже:

  1. Добавление ИК-пульта в акустическую систему. В бытовой электронике пульт дистанционного управления является компонентом электронного устройства, такого как телевизор, DVD-плеер или другой бытовой прибор, используемый для беспроводного управления устройством с короткого расстояния. Пульт дистанционного управления, в первую очередь, удобен для человека и позволяет работать с устройствами, которые не подходят для непосредственной работы элементов управления.
  2. Будильник. Часы реального времени используются для получения точного времени. Здесь эта система отображает дату и время на ЖК-дисплее, и мы можем установить будильник с помощью кнопок управления. Как только время сигнала тревоги наступит, система подает звуковой сигнал.
  3. Шаговый двигатель. Шаговый двигатель означает точный двигатель, который можно поворачивать на один шаг за раз. Такое устройство делают с помощью робототехники, 3D-принтеров и станков с ЧПУ.- Для этого проекта возьмите самый дешевый шаговый двигатель, который вы можете найти. Двигатели доступны в режиме онлайн. В этом проекте используется шагомер 28byj-48, который подходит для большинства других подобных проектов. Его легко подключить к плате Arduino.
    — Вам понадобятся 6 кабелей с разъемами типа «женщина-мужчина». Вам просто нужно подключить двигатель к плате, и все! Вы также можете добавить небольшую часть ленты на вращающуюся головку, чтобы увидеть, что она производит вращательные движения.
  4. Ультразвуковой датчик расстояния. В этом проекте используется популярный ультразвуковой датчик HC-SR04, чтобы устройство могло избежать препятствий и двигаться в разных направлениях.

Когда вы закончите работу, на экране появится результат ваших действий. Чтобы все было просто и понятно, рекомендуется использовать ЖК-дисплей с конвертером I2C, поэтому вам нужно всего лишь 4 кабеля для подключения к плате Arduino.

Где купить Arduino Uno

Минимальные цены на платы UNO можно найти в китайских электронных магазинах. Если у вас есть несколько недель на ожидание, вы можете существенно сэкономить, купив дешево (в районе 200-300 рублей) с бесплатной доставкой. Причем можно найти как самые простые варианты, так и официальные или “почти оригинальные” платы на базе оригинального микроконтроллера. Еще одна группа товаров – необычные платы со встроенными WiFi (на базе ESP8266 или ESP32), дополнительными разъемами для более удобного подключения периферии. Вот некоторые варианты, которые можно купить у проверенных поставщиков на Алиэкспрессе:

Если вы интересуетесь наборами Ардуино, то более подробный обзор доступных вариантов вы можете найти на нашем сайте.

Аналоговые входы Arduino

Как мы уже знаем, цифровые пины могут быть как входом так и выходом и принимать/отдавать только 2 значения: HIGH и LOW. Аналоговые пины могут только принимать сигнал. И в отличии от цифровых входов аналоговые измеряют напряжение поступающего сигнала. В большинстве плат ардуино стоит 10 битный аналогово-цифровой преобразователь. Это значит что 0 считывается как 0 а 5 В считываются как значение 1023. То есть аналоговые входы измеряют, подаваемое на них напряжение, с точностью до 0,005 вольт. Благодаря этому мы можем подключать разнообразные датчики и резисторы (терморезисторы, фоторезисторы) и считывать аналоговый сигнал с них.

Для этих целей в Ардуино есть функция analogRead(). Для примера подключим фоторезистор к ардуино и напишем простейший скетч, в котором мы будем считывать показания и отправлять их в монитор порта. Вот так выглядит наше устройство:

Подключение фоторезистора к Ардуино

В схеме присутствует стягивающий резистор на 10 КОм. Он нужен для того что бы избежать наводок и помех. Теперь посмотрим на скетч:

Вот так из двух простейших элементов и четырех строк кода мы сделали датчик освещенности. На базе этого устройства мы можем сделать умный светильник или ночник. Очень простое и полезное устройство.

Вот мы и рассмотрели основы работы с Arduino. Теперь вы можете сделать простейшие проекты. Что бы продолжить обучение и освоить все тонкости, я советую прочитать книги по ардуино и пройти бесплатный обучающий курс. После этого вы сможете делать самые сложные проекты, которые только сможете придумать.

Описание пинов платы

Микроконтроллер имеет 14 цифровых пинов, они могут быть использованы, как вход или выход. Из них 6 могут выдавать ШИМ-сигнал. Они нужны для регулировки мощности в нагрузке и других функций.

Пин ардуино Адресация в скетче Специальное назначение ШИМ
Цифровой пин 0 RX
Цифровой пин 1 1 TX
Цифровой пин 2 2 Вход для прерываний
Цифровой пин 3 3 Вход для прерываний ШИМ
Цифровой пин 4 4
Цифровой пин 5 5 ШИМ
Цифровой пин 6 6 ШИМ
Цифровой пин 7 7
Цифровой пин 8 8
Цифровой пин 9 9 ШИМ
Цифровой пин 10 10 SPI (SS) ШИМ
Цифровой пин 11 11 SPI (MOSI) ШИМ
Цифровой пин 12 12 SPI (MISO)
Цифровой пин 13 13 SPI (SCK)
К выходу дополнительно подсоединен встроенный светодиод

Вызов ШИМ-сигнала осуществляется через команду AnalogWrite (номер ножки, значение от 0 до 255). Для работы с аналоговыми датчиками присутствует 6 аналоговых входов/выходов.

Пин Адресация в скетче Специальное назначение
Аналоговый пин A0 A0 или 14
Аналоговый пин A1 A1 или 15
Аналоговый пин A2 A2 или 16
Аналоговый пин A3 A3 или 17
Аналоговый пин A4 A4 или 18 I2C (SCA)
Аналоговый пин A5 A5 или 19 I2C (SCL)

Их тоже можно использовать, как цифровые.

Аналоговый сигнал обрабатывается 10 битным аналогово-цифровым преобразователем (АЦП), а при чтении микроконтроллер выдаёт численное значение от 0 до 1024. Это равно максимальному значению, которое можно записать в 10 битах. Каждый из выводов способен выдать постоянный ток до 40 мА.

Принципиальная схема платы выглядит так (нажмите для увеличения):

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;
  • GND.

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • DS ;
  • SCL;
  • SDA;
  • VCC;
  • GND;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307

Важно правильно поставить скорость передачи на 57600 bps

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В  этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но  если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

1 Виды кнопок

Кнопки бывают разные, но все они выполняют одну функцию – физически соединяют (или, наоборот, разрывают) между собой проводники для обеспечения электрического контакта. В простейшем случае – это соединение двух проводников, есть кнопки, которые соединяют большее количество проводников.

Виды кнопок, их внешний вид и обозначение на электрической схеме

Некоторые кнопки после нажатия оставляют проводники соединёнными (фиксирующиеся кнопки), другие – сразу же после отпускания размыкают цепь (нефиксирующиеся кнопки).

Также кнопки делят на:

  • нормально разомкнутые,
  • нормально замкнутые.

Первые при нажатии замыкают цепь, вторые – размыкают.

Сейчас нашёл широкое применение тип кнопок, которые называют «тактовые кнопки». Тактовые – не от слова «такт», а от слова «тактильный», т.к. нажатие хорошо чувствуется пальцами. Но этот ошибочный термин устоялся, и теперь эти кнопки у нас повсеместно так называют. Это кнопки, которые при нажатии замыкают электрическую цепь, а при отпускании – размыкают, т.е. это нефиксирующиеся, нормально разомкнутые кнопки.