Оглавление
- Замена автоматического выключателя в щитке
- Типы ВА (полюса и четыре группы)
- Отрицательные стороны
- Устройство и принцип работы автоматического выключателя.
- Автоматы подключения в жилых домах
- Особенности подбора автоматов
- Автоматы ABB: устройство
- Недетерминированные конечные автоматы (nondeterministic finite automaton)
- Виды автоматических выключателей
- Как устроены автоматы защиты?
- Независимый расцепитель для автоматических выключателей
Замена автоматического выключателя в щитке
Если откроете крышку электрического щита, то увидите, что все модули зафиксированы на металлической полосе, которая называется DIN-рейкой. Ширина пластины – 3,5 см, каждый модуль занимает 1,75 см.
Для установки потребуется следующий инструмент:
- плоскогубцы;
- отвертки – крестообразные и прямые;
- инструмент для резки кабеля, например, кусачки;
- индикаторная отвертка;
- стриппер для удаления изоляции;
- кримпер только для многожильного кабеля.
Первое, что необходимо всегда делать перед любыми манипуляциями в электрическом щите, – обесточить его и проследить, чтобы во время работы никто случайно не подключил питание. Для подстраховки следует использовать индикаторную отвертку и проверить отсутствие напряжения.
Далее берете приобретенный заранее автоматический выключатель и прикрепляете его к DIN-рейке так, чтобы он встал в один ряд с аналогичными устройствами. Если по краям осталось свободное место, то модуль лучше зафиксировать специальными ограничителями – металлическими скобами на винтах.
Установка не требует специального крепежа, так как защелка находится прямо на корпусе устройства, достаточно прислонить его к рейке и немного нажать. Чтобы снять вышедший из строя прибор, защелку придется ослабить отверткой
Подключение элементов с несколькими полюсами имеет различия:
- 2-полюсные – левая часть: верх – фаза, низ – фаза цепи; правая часть: верх и низ – ноль;
- 3-полюсные – верхние части – фазы по порядку, нижние – фазы цепи в соответствующем порядке;
- 4-полюсные – как 3-полюсные, но крайний правый модуль – ноль.
Как видите, главный принцип подключения в том, что вход подключается к верхним клеммам, выход – к нижним. Провода, как правило, выведены в щиток. Для удобства использования их группируют при помощи стяжек.
Важно правильно распределить места подсоединения кабеля. Для однополюсных устройств: фаза, идущая с УЗО или аппарата ввода, подключается к верхней клемме, фаза цепи – к нижней (+). Протянув концы проводов к соответствующим клеммам, расположите их свободно, без натяжки, а лишнее удалите кусачками
Строительным ножом или стриппером снимите часть изоляции – длина оголенного провода –составляет около 1 см
Протянув концы проводов к соответствующим клеммам, расположите их свободно, без натяжки, а лишнее удалите кусачками. Строительным ножом или стриппером снимите часть изоляции – длина оголенного провода –составляет около 1 см.
Если используете подручный инструмент, старайтесь не повредить кабель в поперечном направлении, чтобы не спровоцировать залом.
Протягивая провода в щитке, старайтесь их не перегибать, не делать как можно больше поворотов и заломов, а также не натягивать, как струну
Присоединение фазы можно оборудовать с помощью гребенки – специальной шины с необходимым количеством полюсов. Вместо гребенки также используют самодельные перемычки из провода ПВ3.
Два провода в одну клемму помещать нельзя, поэтому их необходимо обжать наконечником НШВИ.
Многожильные провода обязательно нужно обжать – прикрепить наконечник НШВИ. Подручный инструмент не подходит, лучше используйте специальное приспособление, напоминающее кусачки, – кримпер
Подготовленные провода вставляем в специально предназначенные отверстия.
После того как провода зачищены и вставлены в клеммы, их необходимо зафиксировать с помощью аккуратного закручивания крепежа отверткой
По правилам, устройство необходимо промаркировать, чтобы обозначить его принадлежность к определенной цепи. Аналогичная маркировка должна присутствовать и на защитной крышке щита.
Типы ВА (полюса и четыре группы)
Классифицировать типы автоматических выключателей можно по нескольким признакам, остановимся на некоторых из них.
Число полюсов: 1p, 2p, 3p и 4p
Данная характеристика показывает, какое количество независимых электрических цепей может коммутировать автомат. По этому параметру ВА делятся на однополюсные (обозначение 1p), двухполюсные (2p), трёхполюсные (3p) и четырёхполюсные (4p).
Каждый из полюсов представляет собой обособленный механический контакт, имеющий два вывода для подключения внешних электрических цепей. Иногда полюса называют главными цепями, т.е. это цепи контактов, предназначенных для коммутации токов защищаемой нагрузки.
Количество полюсов (1п, 2п, 3п, 4п) каждого выключателя можно определить без труда.
Понятие главных полюсов или цепей было введено, т.к. некоторые разновидности автоматов имеют до нескольких вспомогательных контактов. Эти контакты не предназначены для коммутации силовой электрической нагрузки и не оборудованы устройствами дугогашения. Есть еще вспомогательные контакты (называемые также блок-контактами), они работают в цепях сигнализации и блокировки.
Время-токовая характеристика
В зависимости от особенностей электрической цепи, автоматический выключатель должен обладать соответствующими свойствами защит. Значение токов короткого замыкания является характеристикой питающей сети, а не подключаемой нагрузки. Нагрузку одной и той же номинальной мощности и напряжения можно подключить к мощным шинам подстанции, либо к длинной линии электропередачи, на большом удалении от источника питания. СтабЭксперт.ру напоминает, что в первом случае ток короткого замыкания будет иметь максимальное значение, во втором, из-за влияния сопротивления линии электропередачи может быть значительно снижен. Таким образом, при выборе подходящего автоматического выключателя недостаточно учитывать только характеристики нагрузки, нужно иметь расчётные значения токов короткого замыкания в месте предполагаемой установки.
Отрицательные стороны
Главным недостатком является дорогостоящий монтаж и последующий ремонт воздушных выключателей. Также они отличаются меньшей скоростью срабатывания на превышение номинального тока, из-за этого есть вероятность повреждения электронных устройств. Помимо этого, они отличаются чувствительностью к механическим воздействиям и вибрациям.
С учетом того, что воздушный выключатель и предохранитель предназначаются для различных функций, они не могут заменять друг друга. Для того чтобы определиться с тем, какое устройство необходимо, стоит обратиться к профессионалам, они помогут подобрать оптимальный вариант для имеющейся электрической сети.
Устройство и принцип работы автоматического выключателя.
На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.
- 1 — корпус;
- 2,3 — нижняя и верхняя винтовые клеммы для подключения провода;
- 4 — неподвижный контакт;
- 5 — подвижный контакт;
- 6 — дугогасительная камера;
- 7 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя);
- 8 — механизм взвода и расцепления
- 9 — катушка электромагнитного расцепителя;
- 10 — рычаг управления;
- 11 — тепловой расцепитель (биметаллическая пластина);
- 12 — регулировочный винт;
Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.
Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:
Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку с находящимся в ее центре сердечником который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.
При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:
При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.
Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции электропроводки и выходу ее из строя.
Тепловой расцепитель представляет из себя биметаллическую пластину. Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.
При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя, который размыкает подвижный контакт. В простой схеме это выглядит так:
Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.
Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45 мин — 1 час.
Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)
При любом отключении автоматического выключателя под нагрузкой на подвижном контакте образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее воздействие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру, которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.
Автоматы подключения в жилых домах
Для безопасного использования бытовых приборов к застройщикам предъявляют требования:
- установка распределительных щитов;
- использование компактных выключателей;
- защита цепи;
- дополнительные панели для установки выключателей.
Проектировщики, в свою очередь, придерживаются стандарта МК 6002-50, в них описаны токовые характеристики. Есть пункт касательно защиты оборудования от короткого замыкания. В стандарте установка происходит согласно показателям номинального тока, напряжения. Проверяется защита от обратного направления мощности. Данный пункт распространяется лишь на сети с параллельной работой генераторов.
Информация по теме: УЗО — устройство защитного отключения.
Особенности подбора автоматов
Некоторые люди думают, что самый надежный автоматический выключатель – это тот, который может выдерживать наибольший ток, а значит, именно он может обеспечить максимальную защиту цепи. Исходя из этой логики, к любой сети можно подключать автомат воздушного типа, и все проблемы будут решены. Однако это совсем не так.
Ошибки в подборе АВ чреваты неприятными последствиями. Если подсоединить к обычной бытовой цепи защитный аппарат, рассчитанный на высокую мощность, то он не будет обесточивать цепь, даже когда величина тока значительно превысит ту, которую может выдержать кабель. Изоляционный слой нагреется, затем начнет плавиться, но отключения не произойдет. Дело в том, что сила тока, разрушительная для кабеля, не превысит номинал АВ, и устройство «посчитает», что аварийной ситуации не было. Лишь когда расплавленная изоляция вызовет короткое замыкание, автомат отключится, но к тому времени может уже начаться пожар.
Приведем таблицу, в которой указаны номиналы автоматов для различных электросетей.
Если же устройство будет рассчитано на меньшую мощность, чем та, которую может выдержать линия и которой обладают подключенные приборы, цепь не сможет нормально работать. При включении аппаратуры АВ будет постоянно выбивать, а в конечном итоге под воздействием больших токов он выйдет из строя из-за «залипших» контактов.
Наглядно про типы автоматических выключателей на видео:
Автоматы ABB: устройство
Устройства защиты для отключения напряжения при аварийных ситуациях издавна используют свойства биметаллических пластин менять свои геометрические параметры при нагревании. Устройства защиты типа АВВ не исключение из этого правила. Кроме биметаллического расцепителя, отключающего нагрузку в результате перегрузки, имеется электромагнитный расцепитель, обеспечивающий отключение от сети при коротком замыкании.
Производство автоматических выключателей АВВ постоянно совершенствуется. В последние годы их корпуса делают из полиамида, выдерживающие температуру до 900 градусов. Появилась индикация «включено» (красный флажок), «выключено» (зеленый флажок), сечение клемм увеличили до 35 мм.
Широкий температурный диапазон от -50 до +70 позволяет применять их в помещениях различного назначения.
Конструктивные части, входящие в выключатель АВВ, следующие:
- Рычаг управления.
- Механизм крепления автомата на дин-рейке.
- Искрогасящая камера.
- Нижняя и верхняя клеммы.
- Биметаллическая пластина с рацепителем.
- Регулировочный винт теплового расцепителя.
- Электромагнит с расцепителем короткого замыкания.
- Подвижный и неподвижный контакты сетевого контактора.
Выпускаются промышленностью и выключатели АВВ Tmax стационарные трех- и четырехполюсные. Типы Т4 и Т5 изготавливаются во втычном исполнении. В выкатном исполнении изготавливаются Т4, Т5, Т6 и Т7.
Все варианты исполнения компактны и обладают высокой реакцией на отключение.
Параметры соответствуют:
- до 200 кА при напряжении 415 В;
- до 80 кА при напряжении 690 В.
По принципу действия расцепители бывают термомагнитные для переменного и постоянного тока и электронные для переменного тока.
Недетерминированные конечные автоматы (nondeterministic finite automaton)
НКА не является каким-то существенным улучшением ДКА, просто в нем добавлен так сказать синтаксический сахар, в виде свободных переходов ,недетерминированности имножеств состояний . Реализовать можно как массив состоящий из структур в которой хранится состояние, входной символ и следующее состояние.
Реализация НКА
// Ячейка массива состоящая из: текущее_состояние, считаный_символ, следующее_состояние. struct state { unsigned char current; signed char sym; // signed, для обозначения свободного перехода как -1. unsigned char next; }; // Таблица переходов для НКА на примере 2 struct state machine[] = { {0, ‘a’, 1}, {1, ‘a’, 1}, {2, ‘a’, 1}, {1, ‘b’, 2}, {2, ‘c’, 3} };Свободные переходы (эпсилон переходы) — переходы, которые можно совершать без чтения входного символа.
Недетерминированность
— ноль и более переходов для одного символа в каких-либо состояниях.
Множества состояний
— в один момент времени НКА может находится в нескольких состояниях.
Пример 3Заключительное состояние обозначается двойным кругом.
В стартовом состоянии у нас текущим состоянием является {1}, при входном символе ‘b’ у нас появляется возможность, пойти в состояние 1 и в состояние 2, то есть после входного символа ‘b’ текущим состоянием является множество {1, 2}.
Пример 4Свободным переходом обозначается пунктирной линией. Здесь видно два свободных перехода из стартового состояния, то есть без чтения входного символа мы сразу находимся в множестве состоянии {2, 4}. Для преобразования НКА в ДКА используется алгоритм Томпсона. При преобразовании НКА в ДКА может получиться не совсем минимальный ДКА и для его минимизации можно применить алгоритм Бржозовского. Это тот же КА, но с дополнительной памятью в виде стека. Теперь для совершения перехода нужно учитывать еще несколько факторов, символ который нужно удалить из стека и символы которые нужнодобавить в стек .
КАМП можно применять в таких местах, где может быть неограниченное количество вложений, например при разборе языков программирование или подсчету вложенных скобок в математических выражениях. Реализовать с помощью КА невозможно, ведь количество возможных состояний конечно в отличие от стека (я понимаю, что память тоже конечна).
Удаление символа из стека
— при любом переходе решается какой символ вытолкнуть, если на вершине стека не оказалось такого символа, то он и не выталкивается. Так же если символ нужно оставить в стеке, то он добавляется вместе с добавляемыми символами.
Добавление символов в стек
— при любом переходе решает какие символы добавить в стек.
Виды
- Детерминированные — к нему применяются те же правила как к ДКА к тому же завершает работу только в заключительном состоянии.
- Недетерминированные — к нему применяются те же правила как к НКА к тому же он может завершать работу в заключительном состоянии или когда стек станет пуст.
Пример 5Шаблон: входной_символ; удаляемый_символ/добавляемый символ. На дно стека добавляется символ $ для, того, что понять когда он закончился. Этот КАМП подсчитывает вложенность скобок, за счет добавления и удаления символов из стека. ДАМП не равен НАМП, поэтому невозможно одно преобразовать в другое, следовательно НАМП обладает преимуществом перед ДАМП. Самая мощная машина из существующих, его преимущество перед другими в ленте с которой он может работать как хочет. В нем нет свободных переходов. Умеет интерпретировать другие автоматы такие как КА, КАМП.Лента
— это одномерный массив в который могут записываться данные за счет головки над ячейкой, который можно заранее заполнить входными данными.
Пример 6Шаблон: считаный_символ_с_головки/записаный_символ; сторона_смещения_головки. края ленты обозначаются ‘_’.
Эта МТ выполняет инкремент двоичного числа, головка стоит слева, там где начинается лента.
Выполнение:
- Если находится в состоянии 1 и прочитан нуль, записать единицу, сдвинуть вправо и перейти в состояние 2.
- Если находится в состоянии 1 и прочитана единица, записать нуль, сдвинуть влево и перейти в состояние 1.
- Еcли находится в состоянии 1 и прочитан пустой квадратик, записать единицу, сдвинуть вправо и перейти в состояние 2.
- Если находится в состоянии 2 и прочитан нуль, записать нуль, сдвинуть вправо и остаться в состояние 2.
- Если находится в состоянии 2 и прочитана единица, записать единицу, сдвинуть вправо и остаться в состояние 2.
- Если находится в состоянии 2 и прочитать пустой квадратик, записать пустой квадратик, сдвинуть влево и перейти в состояние 3.
ДМТ эквивалентен НМТ, так, что они тоже не различаются.
Виды автоматических выключателей
Самая узнаваемая для пользователей – бытовая серия модульных автоматических выключателей. Они устанавливаются на DIN-рейку и не имеют регулировок характеристик срабатывания. Все уставки расцепителей у модульной серии автоматических выключателей и дифференциальных автоматов отсчитываются от их номинального тока.
Модульный автоматический выключатель
Ток отсечки зависит от буквенного обозначения, стоящего перед значением номинального тока.
Буквенное обозначение | Кратность тока отсечки |
В | 2-5 от Iном |
С | 5-10 от Iном |
D | 10-20 от Iном |
Это означает, что реальное значение тока, при котором сработает автомат, лежит в некотором диапазоне. Завод-изготовитель гарантирует, что это будет так.
Тепловые расцепители автоматов модульной серии начинают работу при превышении номинального тока. Время, по истечении которого произойдет отключение, зависит от кратности проходящего через автомат тока перегрузки к номинальному. У автоматических выключателей разных производителей время отключения отличается. Определить его можно по характеристикам, которые определяются по справочным данным на данную серию автоматов. Но и эта величина имеет разброс, поэтому характеристика отключения представляет собой не одну кривую линию, а их семейство, обозначаемое заштрихованной зоной. При определенном токе через автомат ожидаемое время срабатывания лежит в диапазоне, определяемое на границах этой зоны.
Время-токовые характеристики модульных выключателей
До сих пор в распределительных щитках встречаются автоматы, имеющие в своем составе либо только тепловую, либо максимальную защиту. Проверка этих устройств наиболее актуальна, так как их электромеханическая часть отслужила много лет, часть деталей заржавела и недееспособна.
Устаревшие модели выключателей
Следующий вид автоматических выключателей имеет нерегулируемую отсечку и регулируемую тепловую защиту. Для этого на его передней панели есть регулятор, с помощью которого номинальный ток теплового расцепителя изменяется в пределах 0,5 – 1,0 от номинального тока автомата. Такие автоматы применяются для защиты электродвигателей и точной настройки на ток защищаемой кабельной линии, обеспечения селективности защит от перегрузки. Регулятором выставляется ток, при котором начинается работа тепловой защиты. Положение регулятора отражается и на семействе характеристик выключателя.
Автомат с регулируемой тепловой защитой
Еще сложнее конструкция выключателя, имеющего кроме регулируемого теплового расцепителя еще и регулируемый электромагнитный. Есть модели, в которых регулировка осуществляется механически: изменением усилия пружины, противодействующей усилию, создаваемому катушкой отключения. Такие устройства встречаются у выключателей старого образца.
У современных автоматов регулировки выполняются при помощи встроенного блока защиты. Это комплекс, включающий в себя датчики тока, установленные на всех трех фазах выключателя, и полупроводниковое устройство, обрабатывающее полученные сигналы.
Автомат с полупроводниковым расцепителем
Состав защит, устанавливаемых в максимальной комплектации в такие автоматы:
- максимально токовая отсечка с регулируемой независимой от тока выдержкой времени;
- защита от перегрузки с регулируемым стартовым током и характеристикой срабатывания по времени;
- защита от токов однофазного замыкания, с регулируемой уставкой и выдержкой по времени.
Как устроены автоматы защиты?
Рассмотрим подробно устройство автоматического выключателя. Корпус автомата выполнен из диэлектрического материала. Он состоит из двух частей, которые соединены между собой заклепками. Если необходимо разобрать корпусную часть, заклепки высверливаются, и открывается доступ к внутренним элементам защитного автомата. К ним относятся:
- Винтовые клеммы.
- Гибкие проводники.
- Рукоятка управления.
- Подвижный и неподвижный контакт.
- Электромагнитный расцепитель, представляющий собой соленоид с сердечником.
- Тепловой расцепитель, в состав которого входит биметаллическая пластина и регулировочный винт.
- Газоотводное отверстие.
- Дугогасительная камера.
С задней стороны автоматический защитный предохранитель оборудован специальным фиксатором, с помощью которого он крепится на DIN-рейке.
Последняя представляет собой рейку из металла, имеющую ширину 3,5 см, на которую крепятся модульные устройства, а также некоторые виды электрических счетчиков. Чтобы присоединить автомат к рейке, корпус защитного устройства следует завести за ее верхнюю часть, после чего защелкнуть фиксатор, надавив на нижнюю часть аппарата. Снять автомат защиты с DIN-рейки можно, подцепив защелку снизу.
Можно сделать проще – при защелкивании фиксатора сильно нажать на его нижнюю часть отверткой.
Наглядно, зачем нужен автоматический выключатель, на видео:
Независимый расцепитель для автоматических выключателей
Наибольшее распространение они получили при создании вентиляционных шахт, обеспечивая выключение вентиляционной системы при задымлении или пожаре. Они подключаются к автоматам в щитах, обеспечивающих функционирование вентиляции. При возникновении внештатной ситуации устройства централизованно блокируют поступление электропитания на распределительные щиты вентиляции, предотвращая распространение задымления и угарного газа по этажам здания.