Bt134 600 схема включения. симисторы: принцип работы, проверка и включение, схемы

Для схемы «Простой регулятор мощности»

Индуктивная нагрузка в цепи регулятора мощности предъявляет жесткие требования к схемам менеджмента симисторов- синхронизация системы менеджмента должна осуществляться непосредственно от питающей сети сигнал должен иметь длительность равную интервалу проводимости симистора. На рисунке приведена схема регулятора удовлетворяющего этим требованиям в котором используется сочетание динистора и симистора Постоянная времени (R4 + R5)C3 определяет угол запаздывания отпирания динистора VS1 а значит и симистора VS2 Перемещением ползунка переменного резистора R5 регулируют мощность потребляемую нагрузкой. Конденсатор С2 и резистор R2 используются для синхронизации и обеспечения длительности сигнала менеджмента Конденсатор СЗ перезаряжается от С2 после переключения так как в конце каждого полупериода на нем оказывается напряжение обратной полярности. Для защиты от помех создаваемых регулятором введены два Фильтра R1C1 — в цепь питания и R7C4 — в цепь нагрузки. Для налаживания устройства нужно резистор R5 поставить в положение максимального сопротивления и резистором R3 установить минимальную мощность на нагрузке Конденсаторы С1 и С4 типа К40П-2Б на 400 В конденсаторы С2 и СЗ типа К73-17 на 250 В Диодный мост VD1 можно сменить диодами КД105Б Выключатель SA1 рассчитан на ток не менее 5 A. В.Ф.Яковлев, г.Шостка, Сумская обл. … Смотреть описание схемы …

Самостоятельное изготовление

На сегодня возможно установить простые регуляторы на электрические приборы своими руками, если имеется необходимый инструмент и схемы. Существует несколько возможных вариантов таких схем. К одной из схем можно отнести bt136 600e. Она идеально подходит, например, для регулировки степени нагрева паяльника.

Варианты схем

Паяльник можно оборудовать устройством для регулировки мощности до 90 Вт. Для этого необходимо всего лишь несколько деталей. Именно благодаря такому устройству можно изменять не только степень нагрева жала паяльника, но и уровень свечения настольной лампы, скорость вращения вентилятора для многих других приборов, которые требуют регулировки.

Такой регулятор можно собрать на основе многих симисторов, к примеру, ВТА 16600. Но идеальным вариантом будет использование устройства bt136 600e. Симистор этого типа лучше подходит для регулировки мощности жала паяльника.

С другой стороны, если имеется минимальный опыт работы с микросхемами, то можно вмонтировать такую лампу в схему регулятора мощности на симисторе типа bt136 600e. Главное, правильно выбрать неоновую лампу. От правильного выбора такого устройства будет зависеть качество работы регулятора, его функциональные возможности и многое другое. Она должна иметь минимальные показатели напряжения.

От этого показателя непосредственно зависит плавность регулировки степени нагрева жала паяльника или скорости вентилятора. При монтаже стартера в светильник неоновую лампу можно не применять. Хотя функциональность устройства от этого уменьшается, поскольку показатель напряжения (мощности) прибора при работе не будет виден.

В схемах регулятора для паяльника нет ничего сложного. Для создания диодного моста используются диоды D226. К нему в обязательном порядке следует монтировать тиристор KY202H. Он имеет личную цепь управления. Если диапазон регулировки мощности устройства должен быть довольно большим, то применяются схемы с дополнительной установкой элемента логики — счётчика K561NE8. Регулировать мощность здесь также будет тиристор.

После установки диодного моста, согласно схеме следует обычный параметрический стабилизатор. Он будет включать подачу электричества на микросхему

Также важно правильно подобрать мощность и количество диодов. Они должны соответствовать желаемому диапазону регулировки

Существует и другой вариант схемы для регулировки мощности паяльника. Она очень проста, никаких дорогостоящих и дефицитных деталей в ней нет. Предварительно установив светодиод, можно регулировать включённое/выключенное состояние.

Возможное допустимое напряжение на входе должно равняться от 120 до 210 вольт. Для любых приборов такого типа можно использовать индикатор напряжения. Такое устройство можно найти в старом магнитофоне и использовать его для личных целей. Для усовершенствования прибора можно использовать светодиод или любые другие комплектующие такого типа. Он будет подсвечивать шкалу напряжения устройства, а также включённое или выключенное состояние. Это позволит значительно увеличить его функциональность.

Сборка устройства

При сборке симисторного или тиристорного регулятора мощности своими руками следует позаботиться о качественном корпусе для устройства. Лучшим вариантом будет использование пластика, поскольку его легко согнуть, обрезать, склеить и в целом обрабатывать. Таким образом, нужно из пластика вырезать заготовки, зачистить и обработать края, после чего склеить вместе в форме коробки под устройство. В коробке монтируется сделанный регулятор. После того как прибор собран, его необходимо предварительно проверить на правильность схемы и на работоспособность перед эксплуатацией.

Для того чтобы совершить такую проверку, можно использовать обычный паяльник. В качестве альтернативы применяется мультиметр. Приборы просто нужно подключить к выходу самой регулировочной схемы и вращать ручку регулятора. Если в схеме предусмотрена проверочная лампочка, то при регулировке яркость её свечения должна изменяться.

Симистор BT134-600E(D)

Ежедневная отправка заказов производится из г. Каменск-Шахтинский, Ростовской области по фиксированному тарифу (количество товаров не влияет на стоимость доставки). При общей сумме заказа более 2000 рублей — доставка почтой России за счет магазина!

Гибкая система оплаты банковскими картами (Visa, Mastercard, Maestro, МИР) любого банка, через интернет-банкинг (Промсвязьбанк, Альфа-Банк, ВТБ24, Банк Русский Стандарт), электронными деньгами (Webmoney, Яндекс деньги, Qiwi), наличными в салонах связи (Евросеть, Связной) — позволит вам оплатить заказ + стоимость доставки он-лайн без всяких комиссий.

После получения он-лайн оплаты, мы предоставим Вам электронный чек ОФД – который приравнен к обычному бумажному чеку и может быть использован Вами для любых целей – для отчета в бухгалтерии или разрешения спорных ситуаций, а после комплектации и отправки заказа (как правило 1-2 суток) – предоставим ссылку для отслеживания местонахождения заказа на электронную почту и продублируем смс сообщением. Вы в любой момент можете узнать – где именно находится заказ!

Доставка осуществляется почтой России до Вашего почтового отделения или Транспортной Компанией до точки самовывоза (ПВЗ Транспортой Компании) либо курьером до Двери в кротчайшие сроки — от 3 до 8 суток (в зависимости от региона получателя и способа доставки).

Доставка в Казахстан и Белоруссию осуществляется только транспортной компанией! При этом он-лайн оплата может производится банковскими картами в национальной валюте с прямой конвертацией в Российские рубли без всяких комиссий.

В настоящее время жесткой конкуренции на стоимость — скорость доставки заказов — Обратите внимание на способ доставки Транспортной Компанией. т.к

Стоимость ее доставки уже сравнялась с Почтой России, зато скорость выполнения работы, специальные логистические центры и отсутствие очередей, а так же лояльное отношение к клиенту — несоизмеримо выше!

Даже если по какой-то причине Вам не удалось оплатить заказ, мы отправим на Ваш электронный ящик письмо с уведомлением о заказе и ссылкой его для оплаты.

Все неоплаченные в течении 5 банковских дней заказы анулируются.

*Изображение для продукта Симистор BT134-600E(D) служит только для ознакомления и не предназначено для использования в конструкторской документации.

**Цены и наличие товара на сайте и в розничных магазинах «Radio-Sale» могут отличаться.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Основные характеристики симисторов BT134

Параметр Обозначение Еди-ница Тип симистора
BT134-500 BT134-600 BT134-800
Максимальное обратное напряжение U обр. В 500 600 800
Макс. повторяющееся импульсное напр. в закрытом состоянии U зс.повт.макс. В 500 600 800
Макс. среднее за период значение тока в открытом состоянии I ос.ср.макс. А 4 4 4
Макс. кратковременный импульсный ток в открытом состоянии I кр.макс. А 25 25 25
Наименьший постоянный ток управления, необходимый для включения симистора I у.от.мин. А 0.025 0.025 0.025

Instruments NationalSilicon Power

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Устройство и особенности работы лампы

Возникает вопрос, зачем для включения подобных лампочек нужно собирать какую-то схему. Чтобы на него ответить, стоит разобрать их принцип действия. Итак, люминесцентные (иначе – газоразрядные) лампы состоят из следующих элементов:

  1. Стеклянная колба, чьи стенки покрыты изнутри веществом на основе фосфора. Этот слой выделяет равномерное белое свечение при попадании на него ультрафиолетового излучения и носит название люминофора.
  2. По бокам колбы установлены герметичные торцевые цоколи с двумя электродами каждая. Внутри контакты соединены вольфрамовой нитью накала, покрытой специальной защитной пастой.
  3. Источник дневного света наполнен инертным газом вперемешку с парами ртути.

Свечение люминофора вызывает поток электронов, проходящий сквозь пары ртути в среде аргона. Но вначале между двумя нитями накала должен возникнуть устойчивый тлеющий разряд. Для этого требуется кратковременный импульс высокого напряжения (до 600 В). Чтобы его создать при включении светильника, как раз и нужны вышеупомянутые детали, подключенные по определенной схеме. Техническое название устройства – балласт или пускорегулирующая аппаратура (ПРА).

В экономках ПРА уже встроена в цоколь

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Ценовые категории

Сегодня на рынке имеется множество современных производителей, которые предлагают разные по качеству и цене товары. Нужно тщательно выбирать приспособление в зависимости от того, какой результат нужно получить.

Среди множества предложений обращать внимание необходимо на такие характеристики:

  1. Мощность приспособления. Чем она будет выше, тем и стоимость прибора будет больше.
  2. Сложность самой схемы. В самых простых схемах цена устройства будет зависеть от самих симисторов и ограничиваться их стоимостью. В более сложных схемах с микроконтроллером стоимость в несколько раз увеличивается. Хотя они и дают более высокие возможности, но и цена соответственно возрастает.
  3. Марка производителя. От этого параметра цена в некоторых случаях может возрастать в два раза. Но можно найти менее раскрученный бренд намного дешевле, а по своим показателям устройство будет ничем не хуже.

Таким образом, собрать тиристорный или симисторный регулятор мощности не составит особого труда даже для начинающих мастеров. Более сложной задачей будет усвоение правил его эксплуатации. Очень важным остаётся то, чтобы все вышеуказанные правила и инструкции по сборке учитывались. Это позволит сделать более качественное приспособление, которое будет бесперебойно и эффективно работать, а также приносить пользу своему владельцу.

Локтев Дмитрий

Источник

Некоторые нюансы по настройке

Существуют и более мощные регуляторы, в которых при постоянном напряжении будет показатель в 450−500 Вт, а при переменном токе — 220 вольт. Они устанавливаются на приборы, которые нуждаются в такой нагрузке. К их числу можно отнести вентиляторы, болгарки, перфораторы и т. п.

В таких приборах симистор будет выполнять функцию фазового регулятора. Диапазон мощности должен быть соответствующий. Основной функциональной обязанностью будет момент включения симистора, переключение его на более высокую или низкую нагрузку, когда она переходит через ноль.

По умолчанию симистор находится в закрытом положении. По факту увеличения напряжения происходит зарядка конденсаторов, которая делится на два направления. Этот процесс будет происходить до того момента, пока он не зарядится до 32 В суммарно по двум направлениям. После этого происходит открытие симистора и динистора. Первый будет открыт на весь полупериод. Из-за такого принципа действия и происходит на практике регулировка мощности любого устройства.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Преимущества и недостатки

Сегодня на профильном рынке начинают лидировать по продажам симисторные регуляторы. В отличие от тиристоров симисторы имеют двухстороннее действие, поскольку у них есть катод и анод. Это позволяет изменять в процессе работы направление тока.

Стоит отметить, что заменять их на контакторы, реле или пускатели нецелесообразно. Связано это с долговечностью симистора, а также многими другими положительными качествами такого приспособления. Установив его на схему, он практически никогда не выйдет из строя. Также положительным моментом можно считать полное отсутствие искры при работе. Анализировались схемы на симисторах, которые по себестоимости были значительно дешевле аналогов, базирующихся на транзисторах и микросхемах.

Таким образом, использование симисторов имеет ряд значительных преимуществ:

  • большой срок эксплуатации (детали практически не изнашиваются);
  • цена прибора невысока;
  • при работе можно избежать механических контактов.

Имеются и специфические минусы:

  • посторонние помехи и шумы;
  • устройство имеет большую чувствительность к переходным процессам;
  • во избежание перегрева прибор устанавливается в радиатор;
  • использование на больших частотах невозможно.

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Использование тиристора

Использование такого регулятора напряжения, как тиристор, позволяет сделать плавную регулировку, к примеру, паяльника от половины возможного напряжения до максимального. Если схему усовершенствовать и добавить диодный мост, то можно сделать регулировку от 0 до 100%.

Принцип сборки регулятора на симисторе очень похож на используемый в тиристорном устройстве. Этот метод применим для сборки любого прибора такого типа.

Сборка тиристорного регулятора на печатной плате выглядит следующим образом:

  1. Сначала необходимо подготовить монтажную схему. Для этого следует наметить на стартовой плате с помощью гвоздя или иголки саму схему. Она должна располагаться удобным образом. Если делать это сложно начинающему мастеру, то можно приобрести плату с готовой схемой.
  2. Подготовка всех требуемых материалов и инструментов. К ним нужно отнести печатную плату. Её можно сделать самостоятельно или купить. Также следует подготовить нож, кусачки, паяльник, припой, флюс провода и т. п.
  3. Дальше нужно вмонтировать все детали согласно заранее подготовленной схеме.
  4. Лишние концы всех деталей необходимо удалить с помощью кусачек.
  5. После этого идёт этап пропайки. Сперва все детали проделываются флюсом, потом пропаиваются в такой последовательности: конденсаторы с резисторами, транзисторы, тиристоры, диоды, динисторы.
  6. Следующий этап — подготовка корпуса для сборки.
  7. Зачистка, запайка контактов.
  8. Изоляция проводов.
  9. Проверка перед эксплуатацией.
  10. Финальная сборка.

В целях управления устройством устанавливается конденсатор с резистором. Он может быть применён к приборам, общая мощность которых не превышает 40 Ватт. Существует возможность регулировки мощности от минимума до максимума.

Datasheet Download — NXP Semiconductors

Номер произв BT134
Описание Triacs
Производители NXP Semiconductors
логотип  

1Page

No Preview Available !

DISCRETE SEMICONDUCTORS
DATA SHEET
BT134 series
Triacs

Product specification

August 1997

No Preview Available !

NXP Semiconductors

Triacs
Product specification
BT134 series
GENERAL DESCRIPTION
Glass passivated triacs in a plastic
envelope, intended for use in
applications
requiring
high
bidirectional transient and blocking
voltage capability and high thermal
cycling performance. Typical
applications include motor control,
industrial and domestic lighting,
heating and static switching.
QUICK REFERENCE DATA
SYMBOL PARAMETER
MAX. MAX. MAX. UNIT

VDRM

IT(RMS)

ITSM

BT134-
BT134-
BT134-
Repetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak on-state
current
500
500F
500G
500
4
25
600
600F
600G
600
4
25
800
800F
800G
800
4
25
V
A
A
PINNING — SOT82
PIN DESCRIPTION
1 main terminal 1
2 main terminal 2
3 gate
tab main terminal 2
PIN CONFIGURATION
1 23
SYMBOL
T2
T1
G
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER
CONDITIONS
MIN.

VDRM

IT(RMS)

ITSM

I2t

dIT/dt

IGM

VGM

PGM

PG(AV)

Tstg

Tj

Repetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak
on-state
current

I2t for fusing

Repetitive rate of rise of
on-state current after
triggering
Peak gate current
Peak gate voltage
Peak gate
power
Average gate power
Storage temperature
Operating junction
temperature

full sine wave; Tmb ≤ 107 ˚C

full sine wave; Tj = 25 ˚C prior to

surge
t = 20 ms
t = 16.7 ms
t = 10 ms

ITM = 6 A; IG = 0.2 A;

dIG/dt = 0.2 A/μs

T2+ G+
T2+ G-
T2- G-
T2- G+
over any 20 ms period













-40

-500

5001

MAX.
-600

6001

4
25
27
3.1
50
50
50
10
2
5
5
0.5
150
125
-800
800
UNIT
V
A
A
A

A2s

A/μs

A/μs

A/μs

A/μs

A
V
W
W
˚C
˚C

1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may

switch to the on-state. The rate of rise of current should not exceed 3 A/μs.

August 1997
1
Rev 1.200

No Preview Available !

NXP Semiconductors

Triacs
Product specification
BT134 series
THERMAL RESISTANCES
SYMBOL PARAMETER
CONDITIONS

Rth j-mb

Rth j-a

Thermal resistance
full cycle
junction to mounting base half cycle
Thermal resistance
in free air
junction to ambient
MIN.



TYP.


100
MAX.
3.0
3.7

UNIT
K/W
K/W
K/W
STATIC CHARACTERISTICS

Tj = 25 ˚C unless otherwise stated

SYMBOL PARAMETER
CONDITIONS
MIN. TYP.
MAX.
UNIT
BT134-
… …F …G

IGT

Gate trigger current

VD = 12 V; IT = 0.1 A

T2+ G+

5 35 25 50 mA
T2+ G-

8 35 25 50 mA
T2- G-
— 11 35 25 50 mA
T2- G+ — 30 70 70 100 mA

IL Latching current

VD = 12 V; IGT = 0.1 A

T2+ G+

7 20 20 30 mA
T2+ G- — 16 30 30 45 mA
T2- G- — 5 20 20 30 mA
T2- G+

7 30 30 45 mA

IH Holding current

VD = 12 V; IGT = 0.1 A

— 5 15 15 30 mA

VT On-state voltage

IT = 5 A

— 1.4

VGT

Gate trigger voltage

VD = 12 V; IT = 0.1 A

— 0.7

VD = 400 V; IT = 0.1 A;

0.25 0.4

Tj = 125 ˚C

ID Off-state leakage current VD = VDRM(max);

— 0.1

Tj = 125 ˚C

1.70
1.5

0.5
V
V
V
mA
DYNAMIC CHARACTERISTICS

Tj = 25 ˚C unless otherwise stated

SYMBOL PARAMETER
CONDITIONS
MIN.
TYP. MAX. UNIT
BT134- … …F …G

dVD/dt

Critical rate of rise of
off-state voltage

VDM =67% VDRM(max);

100 50 200 250

— V/μs

Tj = 125 ˚C; exponential

waveform; gate open
circuit

dVcom/dt

Critical rate of change of
commutating voltage

VDM = 400 V; Tj = 95 ˚C;

IT(RMS) = 4 A;

dIcom/dt = 1.8 A/ms; gate

open circuit

— 10 50 — V/μs

tgt

Gate controlled turn-on ITM = 6 A; VD = VDRM(max);




2

— μs

time IG = 0.1 A;

dIG/dt = 5 A/μs;

August 1997
2
Rev 1.200

Всего страниц 8 Pages
Скачать PDF

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Для схемы «РЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮ»

Бытовая электроникаРЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮИ.СЕМЕНОВ, 141980, Московская обл., г.Дубна, ул.Мира, 9/6 — 4, тел.(221)4-54-00.Часто нужно понизить частоту вращения электродрели или иного электроинструмента с коллекторным двигателем переменного тока. В большинстве случаев регуляторы мощности хорошо управляют активной нагрузкой, тогда как регулирование реактивной нагрузки имеет свои особенности. Обычно используют или число-импульсный, или фазо-импульсный принцип регулирования.Достаточно полно эти вопросы отражены в публикациях разных лет, например в .Предлагаемая схема обеспечивает регулирование с обратной связью по току коллекторного двигателя переменного тока, благодаря чему при увеличении нагрузки соответственно увеличивается крутящий момент на валу. Схема была реализована для привода швейной машины в производственных условиях. Для регулирования оборотов швейных машин применяют угольные (таблеточные) реостаты, которые весьма недолговечны. Электрическая схема трансивера Эфир-М Регулятор, приведенный на рисунке, состоит из силового ключа на тринисторе VS1, выпрямительных вентилей VD1, VD2 и переменного резистора R2 в цепи менеджмента. На выходе предусмотрен выпрямительный мост. Все элементы регулятора смонтированы на плате навесным монтажом и закрыты ударопрочным корпусом. Перегрева тринистора не наблюдалось, поэтому он установлен на монтажной стойке без теплоотвода.Некоторую трудность представляет механический узел, передающий усилие от педали на ось потенциометра, но это преодолимо, если применить зубчатый сектор и шестерню.Характерная черта работы регулятора — его обратная связь по нагрузке. При увеличении нагрузки увеличивается крутящий момент на валу двигателя. Благодаря этому машина легко проходит утолщения в виде швов, работает более плавно. Искрения на коллекторе не наблюдалось.При использован… Смотреть описание схемы …