Оглавление
- Какие достоинства и недостатки имеют реально работающие магнитные двигатели
- Принцип работы синхронного двигателя
- Запуск трехфазного электродвигателя
- Типы синхронных двигателей
- Принцип действия [ править | править код ]
- ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА
- Регулирование скорости синхронных двигателей
- Про реактивную мощность
- Области применения, особые свойства и преимущества
- Система трехфазного тока
- Принцип работы
- Скорость — синхронный двигатель
- Объяснение принципа работы синхронного электродвигателя для «чайников»
- Ротор — синхронная машина
Какие достоинства и недостатки имеют реально работающие магнитные двигатели
Среди преимуществ таких агрегатов, можно отметить следующие:
- Полная автономность с максимальной экономией топлива.
- Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
- Такой двигатель работает до полного эксплуатационного износа.
Пока что, не лишены такие двигатели и недостатков:
- Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
- Большое количество моделей не может эффективно работать в бытовых условиях.
- Есть небольшие сложности в подключении даже готового агрегата.
- Стоимость таких двигателей достаточно велика.
Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.
Принцип работы синхронного двигателя
В основу его функционирования положено взаимодействие вращающегося магнитного поля якоря и магнитных полей индукторных полюсов. Обычно якорь находится в статоре, а индуктор распологается в роторе. Для мощных моторов используются электрические магниты для полюсов, а для слабых — постоянные.
Принцип работы синхронного двигателя включает в себя (кратковременно) и асинхронный режим, который обычно применяют для разгона до необходимой (то есть номинальной) скорости вращения. В это время индукторные обмотки замыкаются накоротко или посредством реостата. После достижения необходимой скорости индуктор начинают питать постоянным током.
Запуск трехфазного электродвигателя
Специфика данного типа движка состоит в том, что от простого подсоединения к сети, действовать они не начнут. Поэтому, для запускания синхронного двигателя требуется не только импульс электротока, но и знания о довольно непростой схеме подключения.
Начало работы двигателя осуществляется аналогично синхронному. А вот для производства пускового элемента, кроме мотка возбуждения, на подвижной части устанавливают вспомогательную короткозамкнутую обмотку под названием «беличья клетка».
В силу того, что она увеличивает стойкость к резким перегрузкам, ее еще именуют демпфирующей.
Чтобы регулировать пусковой электроток у мощных двигателей, можно снизить напряжение на зажимах мотков неподвижной его части. Для этого используют автотрансформаторы либо другой пассивный элемент цепи, со значением электрического сопротивления.
К обмотке возбуждения подсоединяются резисторы. Желательно, чтобы их сопротивление было больше обмотки в 2-10 раз. Подсоединение нужно выполнять во время запуска механизма в асинхронном режиме.
Это необходимо для того, чтобы силовой поток, который образуется под влиянием токов, не тормозил разбег, и, чтобы не повредить обмотки из-за действующих электродвижущих сил.
Типы синхронных двигателей
В целом синхронные двигатели подразделяются на несколько категорий, в зависимости от их конструктивных особенностей.
Так, для получения потока возбуждения используют:
- обмотку на роторе – для обеспечения электромагнитного взаимодействия на обмотку подается питание от стороннего источника;
- магнитный ротор – вспомогательное магнитное поле ротора создается постоянными магнитами, установленными на нем;
- реактивный ротор – форма магнитопровода индуктора выполнена таким образом, что силовые линии якоря преломляются до получения синхронного вращения.
В зависимости от конструкции ротора, выделяют явнополюсный и неявнополюсный синхронный двигатель.
По режиму работы могут использоваться в качестве электродвигателя, генератора или синхронного компенсатора.
Принцип действия [ править | править код ]
В основу работы подавляющего числа электрических машин положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор асинхронного двигателя может быть:
- короткозамкнутым;
- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТН, которые повсеместно используются в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
Принцип действия трёхфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещённый в магнитное поле, действует отклоняющая сила), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.
Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.
Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные магниты или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.
Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трёхфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надёжнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно со вращающимся полем статора. Там, где нет трёхфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.
Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трёхфазного двигателя, пространственно смещённые на 120°, соединяются друг с другом звездой или треугольником.
На рисунке показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трёхфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.
Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f : n c = 60 f p =<60f>
>>
При частоте 50 Гц получаем для p = 1, 2, 3 (двух-, четырёх- и шести-полюсных машин) синхронные частоты вращения поля n c > = 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).
ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА
Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.
В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.
Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.
В зависимости от числа обмоток статора асинхронный двигатель может быть:
Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.
Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.
Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).
Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).
Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.
Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).
Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.
Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.
Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.
Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».
Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:
- при подаче напряжения на статор он работает как электродвигатель;
- при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.
Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.
Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.
Регулирование скорости синхронных двигателей
Дата добавления: 2014-10-07 ; просмотров: 3960 ; Нарушение авторских прав
Частота вращения ротора синхронного двигателя
где n – частота вращения ротора, об/мин;
f = 50Гц – стандартная частота переменного тока в странах СНГ;
р – число пар полюсов обмотки статора.
Как следует из ( 8.6 ), скорость синхронного двигателя можно регулировать двумя способами:
1. изменением частоты тока в обмотке статора;
2. изменением числа пар полюсов обмотки статора.
На упомянутом выше дизель-электроходе «Россия» для изменения частоты тока в
обмотке статора синхронного двигателя изменяли частоту тока генераторов путем измене
ния их скорости вращения ( за счет изменения подачи топлива дизелям ).
Все бы ничего, да только при параллельной работе генераторов приходилось син-
хронно изменять подачу топлива дизелям синхронным же перемещением реек топливных насосов дизелей.
По тем довоенным временам это было сложной инженерной задачей, но немецкие специалисты справились с ней.
В настоящее время для изменения частоты тока в обмотке статора используют ста-
тические тиристорные преобразователи частоты ( ТПЧ ).
Этот способ применяется для регулирования скорости в азиподных гребных уста-
Во втором случае каждую из трех фазной обмотки статора выполняют в виде двух одинаковых половин ( катушечных групп ), которые можно переключать с последователь
ного соединения на параллельное.
При таком переключении число полюсов обмотки статора уменьшается в 2 раза, а скорость ротора, наоборот, увеличивается в 2 раза ( см. формулу 8.6 ).
Как следует из принципа действия синхронной машины ( рис.8.11 ), число полюсов обмотки статора и полюсов ротора всегда должно быть одинаковым. Только при этом условии между электромагнитными полюсами статора и явно выраженными ( или неявно выраженными ) полюсами ротора возникает устойчивая связь.
Поэтому, во втором случае, одновременно с переключением катушечных групп в обмотке статора надо переключить катушки возбуждения на полюсах ротора с последова-
тельного их соединения на параллельное. При этом каждая параллельная ветвь будет со-
стоять из половины общего числа катушек.
Например, если ротор имеет 12 полюсов, то при последовательном соединении все 12 катушек образуют только одну ветвь. При переходе на параллельное соединение в каж-
дой параллельной ветви будет по 6 катушек.
Выше было сказано, что на судах синхронные двигатели применяются на электро-
ходах для привода гребных винтов.
На берегу эти двигатели применяются для привода мощных компрессоров на газо-
перекачивающих станциях ( Уренгой – Западная Европа ), а также в качестве синхронных компенсаторов реактивной мощности в энергосистемах, т.е. для повышения cosφ.
Про реактивную мощность
Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.
Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения
Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.
Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.
Области применения, особые свойства и преимущества
Использовать как синхронный конденсатор
V-образная кривая синхронной машины
Изменяя возбуждение синхронного двигателя, он может работать с запаздывающим, опережающим и единичным коэффициентами мощности. Возбуждение, при котором коэффициент мощности равен единице, называется нормальным напряжением возбуждения . Величина тока при таком возбуждении минимальна. Напряжение возбуждения, большее, чем нормальное возбуждение, называется избыточным напряжением возбуждения, напряжение возбуждения, меньшее, чем нормальное возбуждение, называется избыточным напряжением возбуждения. Когда двигатель чрезмерно возбужден, противо-ЭДС будет больше, чем напряжение на клеммах двигателя. Это вызывает эффект размагничивания из-за реакции якоря.
Кривая V синхронной машины показывает зависимость тока якоря от тока возбуждения. С увеличением тока возбуждения ток якоря сначала уменьшается, затем достигает минимума, затем увеличивается. Минимальная точка — это также точка, при которой коэффициент мощности равен единице.
Эта возможность выборочного управления коэффициентом мощности может использоваться для коррекции коэффициента мощности системы питания, к которой подключен двигатель. Поскольку большинство энергосистем любого значительного размера имеют чистый запаздывающий коэффициент мощности, присутствие перевозбужденных синхронных двигателей приближает коэффициент полезной мощности системы к единице, повышая эффективность. Такая коррекция коэффициента мощности обычно является побочным эффектом двигателей, уже присутствующих в системе, для обеспечения механической работы, хотя двигатели могут работать без механической нагрузки просто для обеспечения коррекции коэффициента мощности. На крупных промышленных предприятиях, таких как заводы, взаимодействие между синхронными двигателями и другими отстающими нагрузками может явным образом учитываться при проектировании электрических систем предприятия.
Предел устойчивости установившегося состояния
- Тзнак равноТМаксимумгрех(δ){\ Displaystyle \ mathbf {T} = \ mathbf {T} _ {\ text {max}} \ sin (\ delta)}
куда,
- Т{\ displaystyle \ mathbf {T}} крутящий момент
- δ{\ displaystyle \ delta} угол крутящего момента
- ТМаксимум{\ displaystyle \ mathbf {T} _ {\ text {max}}} максимальный крутящий момент
здесь,
- ТМаксимумзнак равно3VEИксsωs{\ displaystyle \ mathbf {T} _ {\ text {max}} = {\ frac {{\ mathbf {3}} {\ mathbf {V}} {\ mathbf {E}}} {{\ mathbf {X_ { s}}} {\ omega _ {s}}}}}
При приложении нагрузки угол крутящего момента увеличивается. При = 90 ° крутящий момент будет максимальным. Если нагрузка будет приложена и дальше, двигатель потеряет синхронизм, поскольку крутящий момент двигателя будет меньше момента нагрузки. Максимальный момент нагрузки, который может быть приложен к двигателю без потери его синхронизма, называется пределом устойчивости синхронного двигателя в установившемся режиме.
δ{\ displaystyle \ delta}δ{\ displaystyle \ delta}
Другой
Синхронные двигатели особенно полезны в приложениях, требующих точного управления скоростью или положением:
- Скорость не зависит от нагрузки во всем рабочем диапазоне двигателя.
- Скорость и положение можно точно контролировать с помощью элементов управления разомкнутым контуром (например, шаговых двигателей ).
- Приложения с низким энергопотреблением включают в себя позиционирующие машины, где требуется высокая точность, и приводы роботов .
- Они сохранят свое положение, когда постоянный ток подается как на статор, так и на обмотки ротора.
- Часы, приводимые в действие синхронным двигателем, в принципе так же точны, как частота сети его источника питания. (Хотя небольшие отклонения частоты будут происходить в течение любых заданных нескольких часов, операторы сети активно регулируют частоту сети в более поздние периоды для компенсации, тем самым поддерживая точность тактовых импульсов с приводом от двигателя; см. электросети .)
- Повышенная эффективность в низкоскоростных приложениях (например, в шаровых мельницах ).
Система трехфазного тока
Техническое значение имеет применение системы трехфазного переменного тока в качестве системы трехфазного тока, основной особенностью которой является то, что сумма всех напряжений и токов всегда равна нулю.
Электрические цепи называются фазами т. Совокупность электрических цепей, в которых напряжения одной частоты оказывают воздействие и имеют фазовый, сдвиг называются многофазными системами. Многофазная система состоит из ветвей обмотки. В многофазной системе может быть п = 3 симметричных систем (рис. «Симметричные системы» ). Во всех симметричных системах — за исключением нулевой системы — сумма всех векторов равна нулю. При количестве фаз т получаем п симметричных систем в зависимости от угла сдвига фаз а:
а = 2π n/m
Задача обмоток — создание вращающегося поля. Асинхронные двигатели имеют такую же конструкцию статора. В воздушном зазоре должно создаваться магнитное поле с постоянной амплитудой, вращающееся с постоянной угловой скоростью. Чтобы создать это поле, временные положения фаз токов должны совпадать с пространственными положениями соответствующих ветвей. У простой симметричной системы (п = 1) с т = 3 три ветви (обозначаемые как U, V и W) и, следовательно, обмотки должны быть равномерно распределены по окружности. На рис. «Обмотка двухполюсного двигателя с одной парой полюсов на каждую ветвь» показано расположение обмотки с тремя ветвями, с одной катушкой на каждую пару полюсов и ветвь. Схемы соединений фаз регламентируются стандартом DIN EN 60034, часть 8.
Создание вращающегося поля
п =т =
аеI = 360°·1/3 = 120°.
При одной катушке на каждую пару полюсов и ветвь создаваемое магнитное поле вращается против часовой стрелки, при этом «индикаторная полоска», смещающаяся вправо на рисунке а, «Создание вращающегося поля с одной катушкой на ветвь» (при а = 90°), показывает ток фазы в каждой из ветвей на рис. Ь, «Создание вращающегося поля с одной катушкой на ветвь» в направлении магнитного потока. Расположение образует пару полюсов. Соответствующие магнитные потоки проходят вертикально к плоскости ветвей обмотки (рис. Ь, «Создание вращающегося поля с одной катушкой на ветвь»).
Поток ФRes (рис. с, «Создание вращающегося поля с одной катушкой на ветвь»), получаемый из трех ветвей, а также его направление достигаются геометрическим сложением трех отдельных потоков ФU, ФV И ФW.
Продвижение индикаторной полоски на угол а = 180° приводит к реверсированию направления тока в ветви W и, следовательно, к дальнейшему повороту созданного поля ФRes вправо (рис. «Создание вращающегося поля с одной катушкой на ветвь 2»).
(рОбмотка с двумя парами полюсов на каждую ветвь
am = 360° · (1/mp) = 60°.
Электрически эффективный угол остается без изменения. В случае как двухполюсного, так и четырехполюсного расположения поле вращается против часовой стрелки (рис. «Создание вращающегося поля с двумя катушками на ветвь» ). Чаcтоту вращения поля:
nd = fn/p
можно вычислить на основании частоты в линии fn и количества пар полюсов р. При р = 1 частота вращения поля равна частоте в линии (табл. «Частота вращающихся полей» ).
Вместе с количеством пар полюсов можно вычислить межполюсное расстояние:
τp = dsi /2π
dsiaeiam.aei=p—am.aeiτp
РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:
Принцип работы
На основании п.53 ГОСТ 27471-87 понятие синхронного двигателя подразумевает бесконтактную машину, работающую на переменном токе. У которой в установившемся режиме отношение частоты вращения ротора к частоте тока в обмотках якоря не зависит от величины нагрузки при номинальной работе.
С практической стороны это выглядит следующим образом:
- на обмотки статора, также называемого якорем, подается трехфазное напряжение;
- по мере нарастания амплитуды синусоиды в одной фазе, будет пропорционально увеличиваться ток и электромагнитное поле, создаваемое вокруг обмотки;
- в виду того, что синусоида нарастает во всех трех фазах двигателя поочередно, пик максимального электромагнитного поля будет смещаться от одной обмотки к другой по часовой стрелке;
- магнитное поле ротора (индуктора) поочередно притягивается собственными полюсами к противоположному по знаку вектору поля статора.
В результате такого взаимодействия возникает поступательное вращение вала синхронного двигателя вокруг своей оси. Так как в индукторе постоянно присутствуют сформированные независимым источником силовые линии, частота его вращения полностью соответствует частоте напряжения, подаваемого в обмотки якоря. Возникает синхронизм в двигателе.
Скорость — синхронный двигатель
Скорость синхронного двигателя не зависит от величины напряжения питания.
Скорость синхронного двигателя не зависит от момента нагрузки.
Скорость синхронного двигателя может быть установлена на любом заданном уровне независимо от скорости вращения поля статора. Синхронный двигатель при таком регулировании возбуждения автоматически синхронизируется с напряжением питающей сети, я поэтому при пуске и остановке двигателя не требуется никаких синхронизирующих устройств. В принципе может быть получена любая нелинейная механическая характеристика синхронного двигателя.
В § 8 — 2 рассматривались колебания скорости синхронного двигателя , обусловленные наличием периодической составляющей момента нагрузки. Теперь будем считать, что колебания вызываются только несинусоидальным возбуждением обмоток ШД и Ау не равно нулю.
Существенным для электропривода является и то обстоятельство, что скорость синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.
Генераторы постоянного тока отличаются от электрических двигателей прокатного производства своими показателями, что связано с минимальным значением скорости, которая зависит от скорости синхронного двигателя . Обычно минимальная частота вращения синхронных двигателей равна 375 об / мин, поэтому генераторы постоянного тока, как правило, по мощности меньше двигателя, что связано с предельными свойствами электрической машины постоянного тока.
В этом случае скорость вращения двигателя, вращающего генератор постоянного тока, совсем не зависит от напряжения, а изменения частоты в сетях общего пользования, которые только и будут влиять на скорость синхронного двигателя , обычно незначительны.
Объясняется это тем, что для большинства кузнечно-прессовых машин мощность приводных двигателей не превышает 150 — 200 кет, а при этих мощностях стоимость синхронного двигателя выше стоимости асинхронного; кроме того, скорость синхронных двигателей не изменяется, поэтому они не пригодны для привода кузнечно-прессовых машин с маховиком, где необходимо обеспечить работу системы привода с требуемым скольжением.
При увеличении нагрузки уменьшается скорость вращения асинхронного двигате ля. Скорость синхронного двигателя от нагрузки не зависит.
Для качественной оценки работы системы электропривода в этом режиме были проведены расчеты переходных процессов. Определены зависимости скорости приводных электродвигателей, тока главных цепей генераторов — двигателей величины замедления судовозной камеры и скорости синхронных двигателей во время аварийного замедления.
При питании двигателя от сети с постоянным напряжением и неизменной частотой регулирование скорости возможно в принципе только путем устройства специальных обмоток с изменением ( переключением) числа полюсов. При питании двигателя — от генератора с переменной регулируемой частотой скорость синхронного двигателя можно регулировать путем изменения частоты питающего тока, но это устройство является дорогим и применяется лишь в особых случаях. Как правило, синхронный двигатель применяется для приводов с постоянной скоростью вращения ( насосы, компрессоры, мельницы, некоторые виды металлообрабатывающих станков и пр.
На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Ток возбуждения создает магнитный поток полюсов ротора. Вращающееся магнитное поле, созданное токами обмотки статора, увлекает за собою полюса ротора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.
На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Ток возбуждения создает магнитный поток полюсов. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.
На роторе двигателя помещена обмотка возбуждения, подключаемая к источнику постоянного тока. Ток возбуждения создает магнитный поток полюсов. Вращающееся магнитное поле, возбуждаемое токами обмотки статора, увлекает за собой полюсы ротора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.
Объяснение принципа работы синхронного электродвигателя для «чайников»
С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.
В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.
При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.
В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!
Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.
Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.
Ротор — синхронная машина
Модификация конструктивного исполнения электрических машин.| Индукторная машина с двумя роторами. |
Роторы синхронных машин, рассчитанных на частоту вращения 1500 и 3000 об / мин и выше, обычно выполняются неявнополюсными. При этом обмотка возбуждения укладывается в профрезерованные в роторе пазы.
Роторы синхронных машин бывают двух типов: явнополюсные и неявнополюсные.
Ротор синхронной машины по существу представляет электромагнит — неявнополюсный ( рис. 16 — 1) или явнополюсный ( рис. 16 — 2), обмотка которого питается постоянным током возбуждения. Последний поступает в ротор через контактные кольца и щетки от внешнего источника постоянного тока — возбудителя.
Ротор синхронной машины представляет электромагнит постоянного тока. Его обмотка питается постоянным током от постороннего источника. Она служит для создания постоянного магнитного поля ротора, и называют ее обмоткой возбуждения. Соединение обмотки ротора с источником постоянного тока осуществляется с помощью двух контактных колец на валу и неподвижных щеток. В качестве источника постоянного тока для питания обмотки возбуждения ротора применяется отдельный генератор постоянного или переменного тока. Последний подключается к обмотке возбуждения через управляемые выпрямители. Генератор, питающий обмотку возбуждения, называется возбудителем. Обычно он монтируется на одном валу с ротором генератора. Мощность, требуемая для питания обмотки возбуждения, невелика, соответственно мощность возбудителя составляет примерно 0 3 — 5 % номинальной мощности синхронной машины. Возможно также питание обмотки возбуждения от сети переменного тока, подключенной к статору, через выпрямители.
Ротор синхронной машины возбуждается постоянным током. Так как его полюса неподвижны по отношению к его обмотке, ротор должен вращаться синхронно с потоком якоря. Только при синхронной скорости полюса ротора неподвижны относительно поля якоря. При любой другой скорости вследствие относительного перемещения полей возбуждения и якоря ротор будет то ускоряться, то замедляться и средний электромагнитный момент будет равен нулю. Если нет среднего момента, машина не может ни поглощать ( как генератор), ни развивать ( как двигатель) механическую мощность.
Ротор невыраженными сами. |
Ротор синхронной машины, как было указано, служит для создания основного магнитного потока. По конструкции различают роторы с явновыражен-ными и неявновыраженными полюсами.
Ротор синхронной машины выполняется или с явно выраженными полюсами, или в виде цилиндрического ротора с неяано выраженными полюсами. Первый тип ротора применяется в тихоходных машинах с большим числом полюсов. Второй т п ротора используется в быстроходных машинах.
Ротор синхронной машины выполняется или с явно выраженными полюсами, или в виде цилиндрического ротора с неявно выраженными полюсами. Первый тип ротора применяется в тихоходных машинах с большим числом полюсов. Второй тип ротора используется в быстроходных машинах.
Ротор синхронной машины представляет собой электромагнит с сосредоточенной ( явнополюсный ротор) или распределенной ( неявнопо-люсный ротор) обмоткой, называемой обмоткой возбуждения, к которой через контактные кольца и щетки подведен постоянный ток возбуждения. Число пар полюсов ротора равно числу пар полюсов обмотки статора. Ротор и его магнитное поле с потоком Ф вращаются с частотой П По, равной частоте вращения магнитного поля статора.
Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника.
Роторы синхронных машин выполняются явнополюсными и-неявно Еолюсными.
Советуем изучить — Мощность трехфазной цепи при несимметричной нагрузке
Ротор синхронной машины имеет обмотку возбуждения, питаемую через два контактных кольца и щетки постоянным током от постороннего источника.
Ротор со стержневой обмоткой. |