Аналоги и замена зарубежных транзисторов

Оглавление

Графические данные

Рис.1 Зависимость коэффициента усиления по току hFE от величины тока коллектора IC при различных температурах (VCE – напряжение коллектор-эмиттер).

Рис.2 Зависимость напряжения насыщения коллектор-эмиттер VCE(sat) от тока коллектора (IB – ток перехода база-эмиттер).

Рис.3 Зависимость напряжения насыщения база-эмиттер VBE(sat) от тока коллектора (IB – ток перехода база-эмиттер).

Рис.4 Зависимость напряжения включения база-эмиттер VBE(ON) тока коллектора (VCE – напряжение коллектор-эмиттер).

Рис.5 Зависимость тока выключения ICBO транзистора от температуры окружающей среды Ta (VCB – напряжение коллектор-база).

Рис.6 Зависимость рассеиваемой транзистором мощности (PC) от температуры окружающей среды Ta.

Рис.7 Зависимость коэффициента усиления тока hfe от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).

Рис.8 Зависимость полной выходной проводимости hoe от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).

Рис.9 Зависимость величины входного импеданса от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).

Рис.10 Зависимость коэффициента обратной связи по напряжению hre от тока коллектора IC.

Рис.11 Зависимости емкостей переходов эмиттер-база (Cob) и коллектор-база (Cib) от величин напряжений обратного смещения переходов эмиттер-база (VEB) и коллектор-база (VCB).

Рис.12 Зависимость коэффициента шума транзистора (NF) от частоты передаваемого сигнала f (VCE – напряжение коллектор-эмиттер, IC – ток коллектора, RS – выходное сопротивление источника сигнала).

Рис.13 Зависимость коэффициента шума транзистора (NF) от величины внутреннего сопротивления источника сигнала (VCE – напряжение коллектор-эмиттер, IC – ток коллектора, f – частота входного сигнала, поступающего от внешнего источника).

Рис.14 Зависимости отрезков времени переключения (t) от величины тока коллектора (IC) (IB1, IB2 – значения тока базы при переключениях; td – время задержки переключения; tr – время нарастания выходного сигнала; tf – время спадания выходного сигнала; ts – время рассасывания объемного заряда (или — время сохранения tstg)).

Рис.15 Зависимости времени включения (ton) и выключения (toff) от величины коллекторного тока IC (VBE(OFF) – напряжение база-эмиттер при выключении; IB1, IB2 – значения тока базы при включении и выключении).

Рис.16 Диаграмма входного напряжения и схема измерений времени задержки (td) и времени нарастания (tr). Коэффициент заполнения импульсной последовательности 2%.

Рис.17 Диаграмма входного напряжения и схема измерений времени рассасывания (tstg) заряда коллекторного перехода и времени спадания (tf). Коэффициент заполнения импульсной последовательности 2%. CS – суммарная емкость монтажа и коннекторов.

Полевые транзисторы

Так же очень распространенные на сегодняшний день компоненты. Их применяют даже чаще, чем биполярные. К примеру, инверторы теперь в основном только с полевыми, то есть биполярные приборы они уже стеснили. И если у вас возникает вопрос, можно ли заменить полевой транзистор биполярным, то ответ будет положительным. Однако в полевом плюсов намного больше, чем в биполярном.

Полевые усилители поглощают энергии намного меньше, чем биполярные, так как полевые управление фокусируют на напряжении и электрическим полем заряда, в то время когда биполярные же держатся на токе базы. Поэтому их предпочитают больше. Полевые транзисторы даже переключаются в разы быстрее, чем биполярные. К тому же они имеют хорошую термоустойчивость. И для того, чтобы переключить направления электрического тока, полевые транзисторы вправе соединяться параллельно и без резисторов, просто нужен драйвер, подходящий для этого.

Если же говорить о замене полевых триодов, то и здесь есть способ поиска их аналогов. В принципе в поиске с биполярными не сильно отличается, можно сказать даже, что будет практически таким же. Но разница небольшая есть: нет той проблемы с передачей тока, как у биполярного транзистора. Нельзя забывать о сток-исток, нужно помнить о запасе.

К тому же у полевого есть такой параметр, как сопротивление открытого канала. Вот от него легко определить, что будет с мощностью, и как она будет рассеиваться

Ну и, конечно же, очень важно рассчитывать это сопротивление открытого канала, так как можно потерять много энергии и напряжении при переходе не будет слишком высоким

Чем можно заменить полевые транзисторы?

Крутизна S также очень важна при поиске аналога. Данный параметр будет показывать состояние тока стока при напряжении затвора. Это позволит определить, сколько понадобится напряжения для коммутации.

Помните, что выбирать важно и исходя от порогового напряжения затвора, если напряжение будет в разы меньше порогового, то нормального функционирования от вашего аналога ждать не придется. Цепь при получении напряжения не получит нужного и вся мощность, точнее ее рассеивание останется на приборе, а для него этого нежелательно, ведь может случиться перегрев

В даташите еще говорится, что мощность рассеяния обоих приборов одинакова: и зависит это от корпуса. Если корпус большой, то получение тепловой мощности будет безопаснее рассеиваться.

Емкость затвора так же очень важна в случае данного предмета

Очень важно, чтобы затвор не был крайне тяжелым, и необходимо помнить об этом при выборе. Будет очень хорошо, если он будет меньше в разы, так как это принесет удобство и легкость в использовании данного механизма

Однако если вам нет необходимости перепаивать, то спокойно можно выбрать размер, который идеально подойдет, схожий с оригиналом.

К примеру, сейчас довольно часто меняют IRFP460 на более новую и современную 20N50, так как у него затвор крайне легкий. Опять-таки даташит скажет то же самое, указав на массу схожести, несмотря на преимущество второго.

Биполярный транзистор 13005A — описание производителя. Основные параметры. Даташиты.

Наименование производителя: 13005A

Тип материала: Si

Полярность: NPN

Максимальная рассеиваемая мощность (Pc): 75
W

Макcимально допустимое напряжение коллектор-база (Ucb): 700
V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 400
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 9
V

Макcимальный постоянный ток коллектора (Ic): 4
A

Предельная температура PN-перехода (Tj): 150
°C

Граничная частота коэффициента передачи тока (ft): 5
MHz

Статический коэффициент передачи тока (hfe): 15

Корпус транзистора:

13005A
Datasheet (PDF)

0.1. mje13005a.pdf Size:273K _nell

RoHS MJE13005A(NPN)RoHS SEMICONDUCTORNell High Power ProductsSwitchmode Series NPN Silicon Power Transistors(4A / 400V / 75W)FEATURESVCEO(SUS) 400V @ lC = 10 mA, lB = 0 VCE(sat) = 1.0V (Max.) @ lC = 4 A, lB = 1 ASwitching time — tf = 0.9 s (Max.) @ lC = 2 A 700V blocking capability123TO-220AB(MJE13005A) DESCRIPTION These devices are designed for high-

0.2. 3dd13005a1.pdf Size:180K _crhj

NPN R 3DD13005 A1 3DD13005 A1 NPN VCEO 400 V IC 3 A Ptot Ta=25 0.8 W

 0.3. 3dd13005a7.pdf Size:145K _crhj

NPN R 3DD13005 A7 3DD13005 A7 NPN VCEO 400 V IC 3 A Ptot W TC=25 40

0.4. 3dd13005a3.pdf Size:143K _crhj

NPN R 3DD13005 A3 3DD13005 A3 NPN VCEO 400 V IC 3 A Ptot W TC=25 40

 0.5. s13005a.pdf Size:113K _jdsemi

RS13005A www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. Si NPN RoHS COMPLIANT 111APPLICATION 1Fluorescent LampElectronic Ballast Charger and Switch-mode power supplies 22

0.6. 13005adl.pdf Size:121K _jdsemi

R13005ADL www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. Si NPN RoHS COMPLIANT 111APPLICATION 1Mainly used for 110V power Fluorescent Lamp Electronic Ballastetc 222

0.7. h13005adl.pdf Size:120K _jdsemi

RH13005ADL www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. Si NPN RoHS COMPLIANT 111APPLICATION 1Mainly used for 110V power Fluorescent Lamp Electronic Ballastetc 222

0.8. 13005ad.pdf Size:121K _jdsemi

R13005AD www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. Si NPN RoHS COMPLIANT 111APPLICATION 1Fluorescent LampElectronic Ballast and Switch-mode power supplies 222

0.9. 13005a.pdf Size:113K _jdsemi

R13005A www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. Si NPN RoHS COMPLIANT 111APPLICATION 1Fluorescent LampElectronic Ballast Charger and Switch-mode power supplies 22

0.10. ksg13005ar.pdf Size:220K _semihow

KSG13005AR SEMIHOW REV.A0,Feb 2009KSG13005ARKSG13005ARSwitch Mode series NPN silicon Power Transistor- High voltage, high speed power switching- Suitable for switching regulator, inverters motor controls3 AmperesNPN Silicon Power Transistor Absolute Maximum Ratings TC=25 unless otherwise noted3.8 WattsTO-92LCHARACTERISTICS SYMBOL RATING UNIT1. Emitter2. Collec

0.11. ksu13005a.pdf Size:558K _semihow

KSD13005A KSU13005A SEMIHOW REV.A1,August 2013 KSD13005A_KSU13005AKSU13005A/KSU13005A Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25 unless otherwise noted 40 Watts TO-252 / TO-251 CHARA

0.12. ksd13005a.pdf Size:558K _semihow

KSD13005A KSU13005A SEMIHOW REV.A1,August 2013 KSD13005A_KSU13005AKSU13005A/KSU13005A Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25 unless otherwise noted 40 Watts TO-252 / TO-251 CHARA

0.13. ksh13005a.pdf Size:227K _semihow

KSH13005AKSH13005A SEMIHOW REV.A1,Oct 2007KSH130005AKSH13005ASwitch Mode series NPN silicon Power TransistorSwitch Mode series NPN silicon Power Transistor- High voltage, high speed power switching- Suitable for switching regulator, inverters motor controls4 AmperesNPN Silicon Power Transistor Absolute Maximum Ratings TC=25 unless otherwise noted75 WattsTO-220

0.14. ksh13005af.pdf Size:223K _semihow

KSH13005AFKSH13005AF SEMIHOW REV.A1,Oct 2007KSH130005AFKSH13005AFSwitch Mode series NPN silicon Power TransistorSwitch Mode series NPN silicon Power Transistor- High voltage, high speed power switching- Suitable for switching regulator, inverters motor controls4 AmperesNPN Silicon Power Transistor Absolute Maximum Ratings TC=25 unless otherwise noted75 WattsTO

Другие транзисторы… , , , 13001-0
, 13001-2
, 13001-A
, 13003AD
, 13003B
, S9012
, 13005AD
, 13005ADL
, 13005D
, 13005DL
, 13005ED
, 13005F
, 13005S
, 13005SD
.

Схема эквивалента варикапа

Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения.

Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис. 11), а также их полупроводниковые аналоги (рис. 12 [F 9/73-434], рис. 13 [ПТЭ 2/81-151]).

Рис. 11. Варикап.

Рис. 12. Схема аналога варикапа.

Рис. 13. Схема аналога варикапа на основе полевого транзистора.

Литература: Шустов М.А. Практическая схемотехника (Книга 1).

Электрические характеристики

Данные в таблицах действительны при температуре корпуса 25°C.

Предельные значения

Обозначение Параметр Условия измерений Мин. Тип. Макс. Ед. изм
BVDSS Напряжение пробоя сток-исток VGS = 0 V, ID = 250 µA 600 V
∆BVDSS/∆TJ Коэффициент напряжение пробоя/температура ID = 250 µA при 25°C 0,65 V/°C
IDSS Ток стока при нулевом напряжении затвора VDS = 600 V, VGS = 0 V 10 µA
VDS = 480 V, TC = 125°C 100 µA
IGSSF Прямой ток утечки затвор-корпус VGS = 30 V, VDS = 0 V 100 nA
IGSSR Обратный ток утечки затвор-корпус VGS = -30 V, VDS = 0 V -100 nA

Рабочие параметры

Обозначение Параметр Условия измерений Мин. Тип. Макс. Ед. изм.
VGS(th) Пороговое напряжение открытия транзистора VDS = VGS, ID = 250 µA 2 4 V
RDS(on) Сопротивление сток-исток в открытом состоянии VGS = 10 V, ID = 1.0 A 3.8 5
gFS Крутизна передаточной характеристики VDS = 40 V, ID = 1.0 A 2.05 S

Динамические параметры

Обозна-чение Параметр Условия измерений Мин. Тип. Макс. Ед. изм.
Ciss Входная емкость VDS = 25 V, VGS = 0 V, f = 1.0 MHz 380 490 pF
Coss Выходная емкость 35 46 pF
Crss Проходная емкость 7.6 9.9 pF

Управление полевым транзистором от микроконтроллера

При управлении полевыми МОП-транзисторами непосредственно с выхода микроконтроллера следует помнить о нескольких вещах: пороговое напряжение транзистора UGSth, входная емкость транзистора, уровень напряжения, если стоит P-канальный.

Резистор R2 (схема выше) удерживает транзистор закрытым при выключении микроконтроллера. Его сопротивление не критично, обычно его принимают в пределах 10 кОм — 100 кОм. С другой стороны, резистор R1 снижает ток потребляемый с выхода микроконтроллера, при изменении логического состояния. Точное значение определить сложно, поэтому оно может быть в диапазоне от 10 Ом до 100 Ом. Схема для MOSFET-P будет работать только тогда, когда напряжение питания микроконтроллера и схемы, управляемой транзистором, одинаковы.

Для полного открытия полевого МОП-транзистора требуется напряжение затвор-исток, в 2 — 3 раза превышающее пороговое напряжение. Если производитель указывает, что например у BUZ11, пороговое напряжение UGSth не более 4 В, то полное открытие произойдет при UGS = 8 — 12 В. Так что управление им с микроконтроллера на 5 В точно будет некорректным. Понадобится использовать транзистор с более низким пороговым напряжением, например IRLML0030, где максимальное UGSth = 2,3 В.

Входная емкость полевого МОП-транзистора составляет от нескольких сотен пикофарад до нескольких нанофарад. Выход микроконтроллера может проводить ток в несколько десятков миллиампер. Это означает, что время перезарядки затвора значительно. Например, току 20 мА требуется 1 мкс, чтобы перезарядить емкость 4 нФ на 5 В.

Так что если: транзистор с высоким пороговым напряжением UGSth должен быть активирован, напряжение питания микроконтроллера очень низкое (например 1,8 В), сигнал ШИМ имеет высокую частоту, или транзистор с каналом P подключен к гораздо более высокому напряжение (например, 24 В), тогда необходимо использовать драйвер MOSFET. На рынке есть множество таких типов микросхем. Они обеспечат соответствующую скорость переключения и регулируют уровни напряжения. Пример — TC4426. Он работает с напряжением до 18 В и хорошо поддерживает выходы микроконтроллеров даже от 3,3 В.

Основные технические характеристики

Обычно у транзисторов серии S8050 такие технические характеристики:

  • Тип проводимости транзистора NPN;
  • Тип корпуса ТО-92 или SOT-23;
  • Максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,7А или 700мА (mA), при температуре окружающей среды 25 градусов (С);
  • Максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) UКЭ макс (VCE) не более 20 В (V);
  • Максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage)UЭБ макс(VЕВО) не более 5 В (V);
  • Максимальная мощность, рассеиваемая на коллекторе(Maximum Collector Dissipation) PK макс (PC ) 1 Ватт (Watt);
  • Граничная частота передачи тока(Current Gain Bandwidth Product) fгр (ft)100 МГц (MHz)
  • Максимально допустимое обратное напряжении на коллекторном переходе (Collector-Base Voltage) U КБ макс .(VCBО ) не более 40 В (V);
  • Коэффициент усиления по току (Minimum & maximum DC Current Gain) от 85 до 300 hFE;
  • Максимальный обратный ток коллектора (Collector Cutoff Current) IКБО(ICBO) у транзистора S8050 не более 0,1 мкА (µA) при U КБ макс .(VCBО ) = 40В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0);
  • Максимальный обратный ток коллектора (Collector Cutoff Current) IКБО (ICBO) не более 0,1 мкА (µA) при U КБ макс .(VCBО ) = 40 В (V) и отключенном эммитере (IЭ (IE)=0);
  • Максимальная температура хранения и эксплуатации (Max Storage & Operating temperature Should be) от — 65 до +150 градусов (C).

Аналоги и описание

Комплементарной парой для него является S8550. Полные аналоги (не Российские) транзистора s8050 можно считать 9013, 9014 и 2N5551 их смело ставим взамен вышедшему из строя s8050.

Полезная информация:

  • Максимально допустимый коллекторный ток составляет 700 мА (mA), поэтому можно управлять только нагрузками, которые находятся в пределах 0,7 А.;
  • Максимальное напряжение, которое этот транзистор может пропустить через контакты коллектора и эмиттера, составляет 20 В (V), поэтому вы можете использовать его только в цепях, которые работают под напряжением 20 В(V);
  • Нормальное значение коэффициента усиления по току транзистора равно 110 hFE, а максимальное значение 400 hFE;
  • Максимальное значение усиления показывает максимальное усиление сигнала, которое Вы можете получить от транзистора в электронной схеме.

Применение

Транзисторы S8050 чаще всего применяются в качестве усилителя сигналов (обычно в усилителях класса B), двуконтактных схемах с комплементарным транзистором S8550, в качестве электронного ключа для небольших нагрузок, например:

  • Реле;
  • Светодиоды;
  • Лампочками и т.д.

Где и как мы можем использовать ? Транзистор S8050 это идеальный компонент для выполнения небольших и общих задач в электронных схемах. Вы можете использовать его в качестве переключателя в электронных цепях для включения нагрузок до 700 Ма (mA). 700 мА (mA) достаточно для работы с различными незначительными нагрузками. Его также используют в качестве усилителя на малых ступенях усиления или в качестве отдельного усилителя на малых сигналах.

Эквивалент инжекционно-полевого транзистора

Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.

Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.

Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.

Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.

Электрические характеристики

Характеристика Обозначение Параметры при измерениях Значения
Пробивное напряжение коллектор-база, В U(BR)CBO IC = 1,0 мА, IE = 0 ˃ 500
Пробивное напряжение коллектор-эмиттер, В U(BR)CEO IC = 5,0 мА, RBE = ∞ ˃ 400
Пробивное напряжение эмиттер-база, В U(BR)EBO IE = 1,0 мА, IC = 0 ˃ 7,0
Выдерживаемое напряжение коллектор-эмиттер, В UCEX(sus) IC = 3 А, IB1 = 0,3 А, IB2 = -1,2 А, ˃ 400
L = 1 мГн, с введенными ограничениями
Ток коллектора выключения, мкА ICBO UCB = 400 В, IE = 0 ˂ 10
Ток эмиттера выключения, мкА IEBO UEB = 5,0 В, IC = 0 ˂ 10
Напряжение насыщения коллектор-эмиттер, В UCE(sat) IC = 4,0 А, IB = 0,8 А ˂ 0,8
Напряжение насыщения база-эмиттер, В UBE(sat) IC = 4,0 А, IB = 0,8 А ˂ 1,5
Статический коэффициент усиления по току hFE (1) ٭ UCE = 5,0 В, IC = 0,8 А 15…50
hFE (2) UCE = 5,0 В, IC = 4,0 А ≥ 10
hFE (3) UCE = 5,0 В, IC = 10,0 мА ≥ 10
Частотная полоса передачи (частота среза), МГц fT UCE = 10,0 В, IC = 0,8 А 20
Выходная емкость коллекторного перехода, пФ Cob UCB = 10 В, f = 1 МГц 80
Время переключения, мкс Время нарастания ton IC = 5 А, IB1 = 1,0 А, IB2 = -2 А, RL = 40 Ом, UCC = 200 В См. схему измерений на Рис. 1. ˂ 0,5
Время сохранения ts ˂ 2,5
Время спадания tf ˂ 0,3

٭ — весь диапазон изменения значений статического коэффициента усиления разделен на три группы в соответствии с таблицей:

Обозначение группы L M N
Диапазон значений hFE 15…30 20…40 30…50

Примечание: данные в таблицах действительны при температуре среды Ta=25°C.

Особенности элемента

Преимуществом МЭСО является то, что напряжение, необходимое для его переключения, в пять раз ниже напряжения при переключении КМОП. Проведенные эксперименты показали, что для переключения достаточно 500 мВ, но ученые подсчитали, что это значение можно довести до 100 мВ.

В результате процессоры на МЭСО будут потреблять в 10-30 раз меньше энергии по сравнению с чипами на транзисторах, плюс будут сверхэкономными в спящем режиме. В перспективе можно говорить о повышении энергоэффективности в 10-100 раз по сравнению с тем, чего в будущем можно добиться от КМОП.

МЭСО изготавливаются из так называемого мультиферроика — соединения висмута, железа и кислорода (BiFeO3)

Ученые сообщают, что МЭСО может вместить в пять раз больше логических операций на том же пространстве по сравнению с КМОП.

Аналоги

Для замены могут подойти транзисторы кремниевые, со структурой NPN, эпитаксиально-планарные, предназначены для применения в оконечных каскадах усилителей звуковой частоты, стабилизаторах напряжения и преобразователях напряжения в аппаратуре общего назначения.

Отечественное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SD1047 100 160 140 6 12 150 15 210 60 TO-247
КТ892А/Б 175 350 350 5 15 150 300 TO-3
КТ897Б 125 200 200 5 20 10 400 TO-3
КТ898А/Б 125 350 5 20 200 10 400 TO-218
КТ8101А/Б 150 200 6 16 150 10 1000 20 TO-218
КТ8107А 100 1500 700 5 8 150 7 2…8 TO-3
КТ8114А/Б 125 1500 5 8 150 8 TO-3
КТ8117А 100 700 600 5 10 150 4 10 TO-3
КТ8150А 115 70 60 7 15 150 4 20 TO-3
КТ8158Б 125 100 100 5 12 150 4 1000 TO-3

Зарубежное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SD1047 100 160 140 6 12 150 15 210 60 TO-247
2SC5669 140 250 230 6 15 150 15 200 60 TO-3PN
2SD1975A 150 200 200 5 15 150 20 200 60 TO-3PL
2SD2489 130 200 200 5 15 150 70 120 5000 TO-3PN
BU941B 155 350 5 15 175 300 TO-3P
MJL3281A 200 200 200 7 15 150 30 600 75 TO-3PBL, TO-264
MJL4281A 230 350 350 5 15 150 35 600 80 TO-3PBL, TO-264
NJW0302 150 250 250 5 15 150 30 400 60 TO-3P
NJW1302 200 200 250 5 15 150 30 600 60 TO-3P
2SC4059 130 600 450 7 15 175 20 60 TO-247
2SC4108N 100 500 400 7 12 150 20 160 TO-247
ET359 100 300 200 80 175 80 TO-247
IDD1314 150 450 15 150 100 TO-247

Примечание: данные таблиц получены из даташит компаний-производителей.

Графические иллюстрации характеристик

Рис. 2. Внешние характеристики транзистора. Зависимость тока коллектора IC от напряжения коллектор-эмиттер UCE при различных значениях тока базы (указаны на поле рисунка).

Характеристика для схемы с общим эмиттером.

Рис. 3. Передаточная характеристика транзистора. Зависимость тока коллектора IC от напряжения база-эмиттер UBE.

Характеристика снята при напряжении коллектор-эмиттер UCE = 5 В при нескольких значениях температуры внешней среды.

Характеристика для схемы с общим эмиттером.

Рис. 4. Зависимость статического коэффициента усиления транзистора hFE от величины коллекторной нагрузки IC.

Характеристики сняты при нескольких значениях температуры внешней среды и напряжении коллектор-эмиттер UCE = 5 В.

Рис. 5. Зависимость напряжения насыщения коллектор-эмиттер UCE(sat) от величины коллекторной нагрузки IC.

Зависимость снята при соотношении токов коллектора и базы IC/IB = 5 и при нескольких значениях температуры внешней среды.

Рис. 6. Зависимость напряжения насыщения база-эмиттер UBE(sat) от величины коллекторной нагрузки IC.

Зависимость снята при соотношении токов коллектора и базы IC/IB = 5 и при нескольких значениях температуры внешней среды.

Рис. 7. Графики изменений временных параметров ton, ts, tf при изменении коллекторной нагрузки IC.

Характеристики сняты (пояснения на поле рисунка) при резистивной нагрузке, напряжении питания UCC = 200 В и соотношении токов: IC = 5IB1 = -2,5IB2, (tstg = ts).

Рис. 8. Область безопасной работы транзистора для случая резистивной нагрузки, температуре корпуса Tc = 25°C. Ограничения:

— по току коллектора для постоянного тока — IC (режим DC OPERATION), для однократного импульса — ICP разных длительностей: ≤ 50 мкс, 100 мкс, 1 мс,10 мс;

— по напряжению UCEO = 400 В;

— режим ограничений рассеиваемой мощности по условиям вторичного пробоя: S/B Limited (пояснения на поле рисунка).

Рис. 9. Расширенная область безопасной работы. Транзистор включен при обратном смещении и введены ограничения по напряжению коллектор-эмиттер UCE(sus) = 500 В.

Характеристика снята при температуре корпуса Tc = 25°C. Величина постоянного тока смещения базы IB2 = -1,2 А. Величина индуктивности нагрузки L = 100 мкГн (пояснения на поле рисунка).

Рис. 10. Ограничения по величине рассеиваемой мощности, возникающие при увеличении температуры внешней среды Ta.

Нижняя характеристика снята при отсутствии охладителя транзистора (пояснение на поле рисунка — No heat sink).

Особенности и применение транзистора

Анализ технических характеристик позволяет сделать вывод, что данный радиокомпонент является высокочастотным транзистором общего применения средней мощности. В первую очередь, об этом свидетельствуют высокие значения коллекторного тока – до 0,5А и характерной для корпуса ТО-92 рассеиваемой мощностью – 0,63Вт

Особое внимание стоит уделить коэффициенту усиления hFE. Его характеристика обладает хорошей линейностью, а предельная частота составляет 140МГц

Сочетание этих параметров в одном компоненте позволяет использовать его в выходных каскадах радиостанций небольшой мощности, до 1Вт. Вместе с тем, S9013 достаточно широко применяется в дискретных схемах и переключающих устройствах соответствующей мощности.

Свойства транзистора и его надежность хорошо известны профессионалам и радиолюбителя. Он широко применяется в электротехнической промышленности и радиолюбительской практике.

Электрические параметры (при Ta = 25°C)

Характеристика Обозначение Параметры при измерениях Значения
Ток коллектора выключения, мкА ICBO UCB = 60 В, IE = 0 ≤ 0,1
Ток базы выключения, мкА IEBO UEB = 5 В, IC =0 ≤ 0,1
Статический коэффициент усиления по току ٭ hFE(1) UCE = 6 В, IC = 0,002 А 40…250
hFE(2) UCE = 6 В, IC = 0,15 А ≥ 25
Напряжение насыщения коллектор-эмиттер, В UCE(sat) IC = 100мА, IB = 10 мА 0,1…0,25
Напряжение насыщения база-эмиттер, В UBE(sat) IC = 100мА, IB = 10 мА ≤ 0,1
Частота среза, МГц fT UCE = 10 В, IC = 1 мА ≥ 80
Выходная емкость, pF Cob UCB = 10 В, IE = 0, f = 1 МГц ≤ 3
Внутреннее сопротивление базового перехода, Ом rbb’ UCB = 10 В, IE = 1 мА, f = 30 МГц 50
Коэффициент шума (типовое значение), dB 2SC3198A NF UCE = 6 В, IC = 0,1 мА, f = 1 кГц, Rg = 10 кОм 1
2SC3198L NF 0,2

٭ — транзисторы классифицируются по группам в зависимости от величины коэффициента усиления по току:

Обозначение транзистора в группе 2SC3198 O 2SC3198 Y 2SC3198 GR 2SC3198 BL
Диапазон величины hFE 70…140 120…240 200…400 350…700

«Квантовые материалы комнатной температуры»

Кроме того, МЭСО может использоваться одновременно и для обработки, и для хранения данных — в каждый элемент можно записать по крайней мере 1 бит информации. Дело в том, что МЭСО изготавливаются из так называемого мультиферроика — соединения висмута, железа и кислорода (BiFeO3). Этот материал был впервые создан в 2001 г. Рамаморти Рамешем (Ramamoorthy Ramesh), профессором математики и инженерии Калифорнийского университета в Беркли и главным автором статьи в Nature.

Мультиферроик имеет два состояния — магнитное и ферроэлектрическое — которые связаны друг с другом. Меняя электрическое поле, можно изменить магнитное состояние. Таким образом, в качестве 0 и 1 здесь выступает восходящее и нисходящее направление намагниченности, которая меняется за счет манипуляций с полем.

Главным прорывом в создании МЭСО стало появление топологических материалов со спин-орбитальным эффектом, который позволяет эффективно считывать состояние мультиферроика. В МЭСО электрическое поле изменяет дипольное электрическое поле по всему материалу, что в свою очередь изменяет электронные спины, которые генерируют магнитное поле. Эта способность исходит из спин-орбитальной связи, квантового эффекта в материалах, который вырабатывает ток, определяемый направлением вращения электрона.

«МЭСО — это элемент, сделанный из квантовых материалов комнатной температуры», — поясняет Сасикант Манипатруни (Sasikanth Manipatruni), старший научный сотрудник и директор Научно-технологического центра Intel по интеграции и производству функциональной электроники.

Архивы статей

Архивы статейВыберите месяц Сентябрь 2021  (1) Август 2021  (4) Июль 2021  (5) Июнь 2021  (4) Май 2021  (5) Апрель 2021  (5) Март 2021  (4) Февраль 2021  (5) Январь 2021  (5) Декабрь 2020  (6) Ноябрь 2020  (5) Октябрь 2020  (6) Сентябрь 2020  (6) Август 2020  (5) Июль 2020  (4) Июнь 2020  (5) Май 2020  (5) Апрель 2020  (7) Март 2020  (5) Февраль 2020  (5) Январь 2020  (6) Декабрь 2019  (5) Ноябрь 2019  (6) Октябрь 2019  (5) Сентябрь 2019  (4) Август 2019  (5) Июль 2019  (5) Июнь 2019  (5) Май 2019  (6) Апрель 2019  (7) Март 2019  (8) Февраль 2019  (6) Январь 2019  (7) Декабрь 2018  (8) Ноябрь 2018  (5) Октябрь 2018  (7) Сентябрь 2018  (7) Август 2018  (7) Июль 2018  (7) Июнь 2018  (6) Май 2018  (7) Апрель 2018  (7) Март 2018  (7) Февраль 2018  (7) Январь 2018  (8) Декабрь 2017  (9) Ноябрь 2017  (8) Октябрь 2017  (9) Сентябрь 2017  (9) Август 2017  (7) Июль 2017  (8) Июнь 2017  (7) Май 2017  (10) Апрель 2017  (8) Март 2017  (8) Февраль 2017  (7) Январь 2017  (6) Декабрь 2016  (10) Ноябрь 2016  (7) Октябрь 2016  (5) Сентябрь 2016  (7) Август 2016  (9) Июль 2016  (8) Июнь 2016  (8) Май 2016  (7) Апрель 2016  (7) Март 2016  (7) Февраль 2016  (6) Январь 2016  (8) Декабрь 2015  (7) Ноябрь 2015  (8) Октябрь 2015  (8) Сентябрь 2015  (8) Август 2015  (5) Июль 2015  (6) Июнь 2015  (10) Май 2015  (6) Апрель 2015  (10) Март 2015  (8) Февраль 2015  (9) Январь 2015  (11) Декабрь 2014  (10) Ноябрь 2014  (9) Октябрь 2014  (8) Сентябрь 2014  (13) Август 2014  (10) Июль 2014  (8) Июнь 2014  (6) Май 2014  (7) Апрель 2014  (8) Март 2014  (21) Февраль 2014  (13) Январь 2014  (14) Декабрь 2013  (11) Ноябрь 2013  (16) Октябрь 2013  (12) Сентябрь 2013  (13) Август 2013  (11) Июль 2013  (10) Июнь 2013  (11) Май 2013  (14) Апрель 2013  (10) Март 2013  (11) Февраль 2013  (11) Январь 2013  (18) Декабрь 2012  (23) Ноябрь 2012  (25) Октябрь 2012  (31) Сентябрь 2012  (32) Август 2012  (33) Июль 2012  (16) Июнь 2012  (15) Май 2012  (32) Апрель 2012  (44) Март 2012  (49) Февраль 2012  (44) Январь 2012  (34) Декабрь 2011  (5)

Графические иллюстрации характеристик

Рис. 1. Зависимость статического коэффициента усиления hFE транзистора в схеме с общим эмиттером от величины коллекторной нагрузки IC.

Зависимость снята при трех значениях температуры кристалла и при напряжении коллектор-эмиттер UCE = 10 В.

Рис. 2. Зависимость напряжения насыщения UCE(sat) коллектор-эмиттер от величины коллекторной нагрузки IC.

Зависимость снята при трех значениях температуры кристалла и при соотношении тока коллектора к току базы IC/IB = 5.

Рис. 3. Зависимость напряжения насыщения UBE(sat) база-эмиттер от величины коллекторной нагрузки IC.

Зависимость снята при трех значениях температуры кристалла и при соотношении тока коллектора к току базы IC/IB = 5.

Рис. 4. Ограничение мощности рассеивания PC при увеличении температуры внешней среды Ta.

Рис. 5. Область безопасной работы транзистора.

Ограничительные кривые определены при в импульсном режиме при длительностях импульсов: 1 мс, 100 мс, 1с.

Характеристики (предельные значения)

Параметр Обозначение Максимальное значение
Напряжение коллектор-база VCBO 40В
Напряжение коллектор-эмиттер VCEO 20В
Напряжение эмиттер-база VEBO
Ток коллектор IC 0,5А
Постоянная рассеиваемая мощность PС 0,63Вт
Температурный диапазон Tmin-max от −55 до 150 град. Цельсия
Напряжение пробоя коллектор-база BVCBO 40В
Напряжение пробоя коллектор-эмиттер BVCEO 20В
Напряжение пробоя эмиттер-база BVEBO
Обратный ток коллектора ICBO 100нА
Обратный ток эмиттера IEBO 100нА
Коэффициент усиления по постоянному току (VCE =1В, IC =50мА) hFE1 от 64 до 202, тип. 120
Коэффициент усиления по постоянному току (VCE =1В, IC =500мА) hFE2 120
Напряжение насыщения коллектор-эмиттер VCE (нас) 0,6В
Напряжение насыщения база-эмиттер VBE (нас) 1,2В
Напряжение база-эмиттер VBE (on) 0,7В