Как подключить инфракрасный сенсор к arduino

API-функции

Подробное и полное описание API-функций и их параметров можно найти в скомпилированном HTML-файле, который находится в папке «Documentation».

Описание примера

Готовый пример для P-NUCLEO-WB55 и X-NUCLEO-IKS01A3 можно найти в папке «Projects», при этом пользователю предлагаются готовые проекты для нескольких IDE. Для отображения процесса инициализации можно использовать обычный терминал. Параметры настройки последовательного канала UART, такие как порт, скорость передачи, разрядность данных, наличие и тип бита четности, количество стоп-битов, представлены на рисунке 3.

Рис. 3. Настройка терминала

После нажатия кнопки сброса, расположенной на плате P-NUCLEO-WB55, микроконтроллер выполняет следующие действия:

  • инициализирует коммуникационные интерфейсы UART и I²C;
  • проверяет, все ли датчики присутствуют и работают;
  • генерирует случайный MAC-адрес BLE;
  • инициализирует датчики и аппаратную часть BLE;
  • инициализирует BLE SW и библиотеки MotionFX, MotionAR, MotionCP, MotionGR и MotionID;
  • инициализирует консоль, добавляя характеристики Stdin/Stdout и Stderr;
  • инициализирует службу конфигурации BLE, передающую/сбрасывающую статус калибровки.

Программа микроконтроллера может генерировать прерывания, сигнализирующие о различных событиях: свободном падении, наклоне, пробуждении, одиночном касании, двойном касании, определенном положении устройства в пространстве или о заданных показаниях шагомера. Эти прерывания передаются по Bluetooth на подключенное Android/iOS-устройство.

Микроконтроллер также передает Android/iOS-устройству:

  • три кватерниона каждые 30 мс;
  • данные о температуре, влажности и давлении каждые 500 мс;
  • показания трехосевого акселерометра, гироскопа и магнитометра каждые 50 мс.

Программа микроконтроллера считывает значения акселерометра, магнитометра и гироскопа с частотой 100 Гц.

Библиотека MotionFX (iNEMOEngine PRO) использует функции слияния данных инерционных сенсоров (Sensor Data Fusion), рассчитывает 100 кватернионов в секунду и передает их клиенту, подключенному по BLE.

Библиотека MotionAR (iNEMOEngine PRO) может распознавать следующие виды активности:

  • неподвижное состояние;
  • ходьба;
  • быстрая ходьба;
  • бег трусцой;
  • езда на велосипеде;
  • езда на автомобиле.

Библиотека MotionCP (iNEMOEngine PRO) в режиме реального времени распознает положение устройства:

  • на столе;
  • в руке;
  • возле головы;

и определяет, каким образом его переносит пользователь:

  • в кармане рубашки;
  • в кармане брюк;
  • в раскачивающейся руке.

Библиотека MotionGR (iNEMOEngine PRO) может распознавать жесты, например:

  • устройство взяли в руку;
  • устройство повернули для просмотра экрана;
  • устройство встряхнули для пробуждения.

Библиотека MotionPM (iNEMOEngine PRO) подсчитывает количество шагов и вычисляет их частоту.

Библиотека MotionID (INEMOEngine PRO) может распознавать уровни интенсивности движения устройства или его пользователя:

  • неподвижное лежание на столе;
  • лежание на кровати или диване;
  • легкое движение;
  • движение на велосипеде;
  • набор текста;
  • медленная ходьба;
  • ходьба;
  • быстрая ходьба;
  • бег трусцой;
  • быстрый бег;
  • спринт.

Примеры работы

Простой датчик движения

Инфракрасный датчик может работать даже без микроконтроллера. Соберите простой детектор движения объекта.


При появлении объекта в зоне видимости датчика, лампочка загорится.

Используйте инфракрасный датчик движения как одно из зёрен в своём умном доме. Тут уже не обойтись без Arduino, Raspberry Pi или Iskra JS.

Пример для Arduino

Подключим датчик движения к Arduino Uno через Troyka Shield к цифровому пину.

Код программы

Выведем в Serial-порт текущее состояние датчика с обновлением каждые 100 миллисекунд.

motionState.ino
// пин инфракрасного датчика движения 
#define MOTION_PIN  4
 
void setup()
{
  // открываем монитор Serial-порта
  Serial.begin(9600);
  // настраиваем пин в режим входа
  pinMode(MOTION_PIN, INPUT);
}
 
void loop()
{
  // считываем состояние пина
  int motionState = digitalRead(MOTION_PIN);
  // выводим в Serial-порт
  Serial.println(motionState);
  delay(100);
}

После прошивки платы, вы увидите бегущие нули. А как только появится живой объект на горизонте — нули сменятся на единицы.

Пример для Iskra JS

Скоммутируем PIR-сенсор к Iskra JS через Troyka Shield к цифровому пину.

Код программы

Зафиксируем движение объекта с помощью Espruino и языка JavaScript.

motionDetect.js
// наблюдаем за датчиком движения
setWatch(function() {
  // если датчик зафиксировал движение
  // печатаем об этом в консоль
  print("Movement detected");
}, P4, {
  // функция вызывается многократно
  repeat true,
  // фиксация восходящего фронта
  edge "rising"
});

В результате вы увидите сообщение в консоле, при обнаружении живого объекта в зоне видимости сенсора.

Пример для Raspberry Pi

Поймаем живой объект одноплатником Raspberry Pi, например, Raspberry Pi 4. Подключите сенсор движения к пину Raspberry. Для избежания макеток и проводов используйте плату расширения Troyka Cap.

Код программы

motionState.py
# библиотека для работы с методами языка Wiring (Arduino)
import wiringpi as wp
# инициализация WiringPi 
wp.wiringPiSetup()
# пин 4 в режим входа
wp.pinMode(4, )
 
while (True):
    # считываем состояние с датчика движения
    motionState = wp.digitalRead(4)
    # печатаем результат в консоль
    print(motionState);
    # ждём 100 мс
    wp.delay(100)   

После запуска скрипта вы увидите текущие показатели сенсора. Пока движения нет — в консоли выводятся нули, при обнаружении живого объекта — единицы.

Особенности конструкции инфракрасного PIR датчика

Инфракрасный датчик движения (PIR-датчик) предназначен для регистрации теплового (инфракрасного) излучения предметов, находящихся в рабочей зоне устройства. Основная особенность его конструкции заключается в отсутствии самостоятельного излучения. Датчик движения Arduino лишь реагирует на внешнее излучение, анализируя полученные величины и подавая сигналы на управляющее устройство. Примечательно, что это устройство может выполнять и другие задачи, работая как датчик расстояния или детектор температуры. Существует масса вариантов конструкции, выпускаются различные модели подобных датчиков. Однако, несмотря на внешние различия, все они действуют на едином принципе.

Конструкция

Основным элементом датчика являются высокочувствительные пироэлектрические элементы (сенсоры, пироприемники, пиродетекторы). Они принимают инфракрасное излучение, которое фокусируется с помощью линзы Френеля. В наиболее эффективных моделях датчиков используется два подобных элемента. Если в помещении нет движущихся излучающих объектов, сигналы с обоих сенсоров будут одинаковыми. При любых изменениях появится разница сигналов, так как объект в любом случае сначала будет регистрироваться одним элементом, затем вторым. Если показания обоих пироприемников начинают отличаться друг от друга, значит, в рабочей зоне датчика возникло движение.

Использование двух первичных датчиков позволяет увеличить чувствительность устройства, регистрировать перемещения объектов с разной температурой. Регистрируется совсем незначительная разница показаний обоих сенсоров, что позволяет управлять сложными и тонкими процессами.

Кроме сенсоров, конструкцию датчика составляет фокусирующая линза, детали (микросхема) электронной развязки и контактная группа. На нее подается питание, здесь же имеется управляющий и сигнальный электроды.

Особенности фокусирующей линзы

Конструкция пироэлектрического элемента не позволяет ему принимать инфракрасное излучение с достаточной эффективностью. Для концентрации потока тепловых лучей используется специальная линза. Существует два варианта конструкции:

Линза ФренеляОт обычных линз она отличается более плоской, компактной формой. Поверхность такой линзы разделена на участки, обеспечивающие фокусировку лучей в заданной точке. Эффективность линзы Френеля не уступает традиционным видам, но габариты значительно меньше

Это важно для датчиков, использующихся в технологических линиях, или предназначенных для скрытого монтажа.
Сферическая выпуклая линза.Вся поверхность этой линзы разделена на отдельные сегменты, являющиеся самостоятельными линзами. Такая конструкция увеличивает угол охвата датчика, позволяя с одинаковой эффективностью принимать ИК поток с разных направлений.

Большей популярностью пользуются ПИР-датчики со сферическими линзами, например, модуль HC-SR501. Они способны охватить наибольшее пространство, обеспечить максимальный сектор обзора. Однако, модели с плоскими линзами также пользуются спросом.

Где используется

Инфракрасные ПИР-датчики активно используются в разных сферах деятельности:

  • технологические линии или установки;
  • охранные системы;
  • бытовые комплексы, системы умного дома и тому подобное.

ИК датчик подобного типа не создает никакого излучения. Он не может ставить помехи другой чувствительной аппаратуре или оказывать вредное воздействие живым организмам. Благодаря этому, его применение постоянно расширяется. Работа в связке с микропроцессором Ардуино значительно расширяет область применения датчиков, далеко выводя их из привычных рабочих рамок. Появляется возможность увеличения функционала путем подключения фоторезисторов, термисторов и других дополнений. При этом, сами датчики являются вполне самостоятельными устройствами и могут подключаться не только на Ардуино. Существует масса альтернативных вариантов, использующихся в различных областях техники, системах наблюдения и управления. Однако, особенности и преимущества Ардуино делают его наиболее предпочтительным образцом управляющего устройства.

Как выглядит и где используется

Рабочая пластина датчика состоит из кристаллических веществ, которые имеют свойство при попадании света на них поляризоваться. И от того насколько изменится интенсивность излучения зависит изменение и поляризации, а как следствие это вызывает изменение напряжения в электрическом поле кристаллического элемента. Следовательно, если измерить разность потенциалов на разных точках кристаллической пластины можно узнать и величину излучения.

Это основной физический принцип, по которому работают датчики присутствия, с центральным пироэлектрическим элементом. Он помещается в герметичный или пластиковый корпус.

Такие детекторы движения с успехом применяются:

  • в промышленных системах охранной сигнализации;
  • управление освещением в квартирах или офисных помещениях. Часто эти детекторы помогают автоматизировать процесс освещения;
  • в системах «Умный дом».

Прибор может зафиксировать движение — электрическая цепь замкнется и включится освещение. Также он сработает и в обратную сторону — если людей в помещении уже нет, то нет и движения, соответственно цепь размыкается и свет гаснет.

Описание датчика движения ардуино

PIR-sensor конструктивно разделен на две половины

Это обусловлено тем, что для устройства сигнализации важно именно наличие движения в зоне чувствительности, а не сам уровень излучения. Поэтому части установлены таким способом, что при улавливании одной большего уровня излучения, на выход будет подаваться сигнал со значением high или low

Основными техническими характеристиками датчика движения Ардуино являются:

  • Зона обнаружения движущихся объектов составляет от 0 до 7 метров;
  • Диапазон угла слежения – 110°;
  • Напряжение питания – 4.5-6 В;
  • Рабочий ток – до 0.05 мА;
  • Температурный режим – от -20° до +50°С;
  • Регулируемое время задержки от 0.3 до 18 с.

Модуль, на котором установлен инфракрасный датчик движения включает дополнительную электрическую обвязку с предохранителями, резисторами и конденсаторами.

Принцип работы датчика движения на Arduino следующий:

  • Когда устройство установлено в пустой комнате, доза излучения, получаемая каждым элементом постоянна, как и напряжение;
  • При появлении в комнате человека, он первым делом попадает в зону обозрения первого элемента, на котором появляется положительный электрический импульс;
  • Когда человек перемещается по комнате, вместе с ним перемещается и тепловое излучение, которое попадает уже на второй сенсор. Этот PIR-элемент генерирует уже отрицательный импульс;
  • Разнонаправленные импульсы регистрируются электронной схемой датчика, которая делает вывод, что в поле зрения Pir-sensor Arduino находится человек.

Подключение датчика препятствия к Arduino

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • датчик препятствия KY-032;
  • беспаечная макетная плата;
  • светодиод и резистор;
  • провода «папа-мама», «папа-папа».


Схема подключения датчика препятствия к Ардуино

Для подключения датчика обнаружения препятствий к Arduino имеется три или четыре контакта. Два контакта на модуле KY-032 служат для питания от 5V (схему подключения датчика смотри на картинке выше). Еще два контакта формируют импульсы для платы Arduino Mega или Arduino Uno. Для примера работы рассмотрим скетч, который будет включать светодиод при появлении препятствия.

Счетч для датчика препятствий (KY-032)

#define  avoidPin  A1 // задаем имя для порта с датчиком
#define  ledPin  13     // задаем имя для порта со светодиодом

int  avoid;

void setup() {
   Serial.begin(9600);  // инициализация монитора порта

   pinMode(avoidPin, INPUT);
   pinMode(ledPin, OUTPUT);
}

void loop() {

   avoid = digitalRead(avoidPin);  // получаем данные с датчика препятствий

   Serial.print("Avoid Sensor - ");  // выводим данные с датчика на монитор
   Serial.println(avoid);

   if (avoid == HIGH)
      digitalWrite(ledPin, HIGH);
   else
      digitalWrite(ledPin, LOW);
}

Пояснения к коду:

  1. для приема сигнала с датчика KY-032 используется порт A1, который можно поменять в программе на любой порт общего назначения;
  2. датчик отправляет сигнал «логическая единица» при появлении препятствия.

Для создания шагающего робота или автономной машинки на Ардуино сенсор KY-032 отлично подойдет начинающему программисту. Датчик препятствия более прост в настройке и подключении к микроконтроллеру, в отличии от УЗ дальномера HC-SR04. При этом сенсор хорошо справляется с распознаванием объектов перед ним и может использоваться в машинках для объезда препятствий или езде по лабиринту.

KY-013, аналоговый термодатчик

Модуль аналогового термодатчика

 Такой же терморезистор стоит от 3 р, в составе модуля- от 50 р
 За таким красивым названием кроется обыкновенный терморезистор! Опять же практически любые датчики изначально являются АНАЛОГЫВЫМИ. Только после соответствующей обработки сигнала они уже становятся ЦИФРОВЫМИ. Но в нашем случае изначально аналоговый датчик. Поэтому подключать его нужно к АНАЛОГОВЫМ входам ARDUINO. Диапазон рабочей температуры датчика -55…125 °C, т.е. на 1 бит 10 битного преобразования приходится (125+55)/1024= 0,17578125 градуса Цельсия ,что позволяет довольно точно измерять температуру. Кроме того датчик имеет малые размеры что позволяет снизить инерционность при измерении. Т.е. чем меньше датчик тем меньше нужно времени для достижения им температуры окружающей среды. Применяется, как и понятно из описания, для измерения температуры.

Общие сведения

Любой человек или животное с температурой выше нуля испускает тепловую энергию в виде излучения. Это излучение не видно человеческому глазу, потому что оно излучается на инфракрасных волн, ниже спектра, который люди могут видеть. Измерение этой энергии, не то же самое, что измерять температуру. Так как температура зависит от теплопроводности, поэтому, когда человек входит в комнату, он не может мгновенно изменить температуру в помещении. Однако есть уникальная инфракрасное излучение из-за температуры тела и которую ищет PIR датчик.
Принцип работы инфракрасного датчика движения HC-SR501 прост, при включении, датчик настраивается на «Нормальную» инфракрасное излучение в пределах своей зоны обнаружения. Затем он ищет изменения, например человек прошел или переместился в пределах контролируемой зоны. Для определения инфракрасного излечение детектор использует пироэлектрический датчик. Это устройство, которое генерирует электрический ток в ответ на прием инфракрасного излучения. Поскольку датчик не излучает сигнал (например, ранее упомянутый ультразвуковой датчик), его наказывают «пассивным». Когда обнаружено изменение, датчик HC-SR501 изменяет выходной сигнал.

Для повышения чувствительности и эффективности датчика HC-SR501 используется метод фокусировки инфракрасного излечения на устройство, достигается, это с помощью «Линзы Френеля». Линза выполнен из пластика и выполнена в виде купола и фактически состоит из нескольких небольших линз Френеля. Хоть пластик и полупрозрачен для человека, но на самом деле полностью прозрачен для инфракрасного света, поэтому он также служит в качестве фильтра.

HC-SR501 — недорогой датчик PIR, который полностью автономный, способный работать сам по себе или в сопряжении с микроконтроллером. Датчик имеет регулировку чувствительности, которая позволяет определять движение от 3 до 7 метров, а его выход можно настроить так, чтобы он оставался высоким в течение времени от 3 секунд до 5 минут. Так же, датчике имеет встроенный стабилизатор напряжения, поэтому он может питаться от постоянного напряжения от 4,5 до 20 вольт и потребляет небольшое количество тока. HC-SR501 имеет 3-контактный разъем, назначение следующие:

Назначение выводов► VCC — положительное напряжение постоянного тока от 4,5 до 20 В постоянного тока.
► OUTPUT — логический выход на 3,3 вольта. LOW не указывает на обнаружение, HIGH означает, что кто-то был обнаружен.
GND — заземление.

На плате также установлены два потенциометра для настройки нескольких параметров:►  SENSITIVITY — устанавливает максимальное и минимальное расстояние (от 3 метров до 7 метров).►  TIME (ВРЕМЯ) — время, в течение которого выход будет оставаться HIGH после обнаружения. Как минимум, 3 секунды, максимум 300 секунд или 5 минут.

Назначение перемычек:►  H — это настройка Hold или Repeat. В этом положении HC-SR501 будет продолжать выдавать сигнал HIGH, пока он продолжает обнаруживать движение.►  — Это параметр прерывания или без повтора. В этом положении выход будет оставаться HIGH в течение периода, установленного настройкой потенциометра TIME.

На плате HC-SR501 имеются дополнительные отверстия для двух компонентов, рядом расположена маркировка, посмотреть на нее можно сняв линзу Френеля.

Назначение дополнительных отверстий:►  RT — это предназначено для термистора или чувствительного к температуре резистора. Добавление этого позволяет использовать HC-SR501 в экстремальных температурах, а также в некоторой степени повышает точность работы детектора.►  RL — это соединение для светозависимого резистора или фоторезистора. Добавляя компонент, HC-SR501 будет работать только в темноте, что является общим приложением для чувствительных к движению систем освещения.

Так что же это такое Датчик движения Ардуино?

Это PIR датчик. PIR(Passive Infrared) ,что значит «пассивный инфракрасный» датчик. Пассивный — это потому что датчик  не излучает, а только принимают излучение. Поэтому такие датчики очень экономичны. Потребления всего 50µА. Работают датчики на основании изменения температур. Любой предмет излучает инфракрасные волны которые не видны человеческому глазу. Человек или животное(даже маленькая кошка) ни кто не пройдёт мимо датчика. Охотникам за приведениями этот датчик не подойдёт -(.

Характеристики датчика движения HC-SR501

Рабочее напряжение: 5V до 20V(может работать и от 4,5V)
Потребляемая мощность в работающем состоянии:50mA 
В режиме ожидания

Линза Френеля выполнена из пластика в виде полушария состоящим из множества ячеек и если на какой-нибудь из них изменилось состояние, то это вызовет срабатывание датчика движения.

Бесконтактный датчик движения hc sr501 может работать отдельно, сам по себе, но лучше всего его использовать в связке с любой из плат Ардуино , с  радиомодулем nRF24L01+ или WiFi модуль ESP8266 ESP07. Тогда можно достичь значительно больших результатов. Подробнее смотрите в  Подключении и на странице видео.
При первом включении(подаче напряжения) датчик движения начнёт калиброваться. Приблизительное время 60сек(1мин). После этого датчик готов к работе. Между срабатыванием существует задержка приблизительно 5 секунд, в это время датчик не среагирует на движение, но запомнит его и как только пройдёт время задержки, то он включится даже если и не будет никакого движения. Если для вас это неприемлемо, то можно установить 2 датчика движения и настроить их на разное время срабатывания, например один на 20 сек, а второй на 30 сек.

                                    Вид сверху                                                                                             Вид снизу                                        

                                

Со снятой линзой Френеля

 С установленным фоторезистором                                     Регулировка чувствительности и времени

                          

Инфракрасный датчик движения hc sr501 схема подключения

У датчика есть 3 вывода:
VCC  + положительный контакт источника питания от 4,5V до 20V
OUT  S выходной сигнал с датчика движения есть движение +3,3V(HIGH), нет движения 0V(LOW)
GND  — отрицательный контакт источника питания

Расширить сферу применения датчика движения hc sr501 можно добавив всего 1 деталь, Фоторезистор GL5506. Если припаять его на датчик движения, для этого там есть отверстия, то теперь датчик будет срабатывать только если будет темно***.

Датчик движения можно использовать вместо выключателя света. Это очень удобно, особенно ночью или когда заняты руки.

В режиме ожидания  на выходе датчика движения будет 0V(логический ноль). Как только датчик среагирует на какое-нибудь движение то на выходе станет 3,3V(логическая единица). В зависимость от установленного режима H или L режим работы будет разный. Устанавливается перемычкой.
если:
Н — повторяющийся. Датчик не отключится пока есть движение. Когда движение прекратится, то он выключится когда закончится установленное время работы.
L — не повторяющийся. Когда закончится установленное время работы датчик отключится, перейдёт в 0V, даже если будет движение. Затем если датчик «увидит» движение то он снова включится. 

Схему подключения датчика движения на 5 вольт можно посмотреть здесь, а на 12 вольт здесь.
Чтобы включать нагрузку на 220 вольт  с  hc sr501 нужно взять реле. Теперь мы сможем управлять светом, включать вентилятор, включить прожектор на даче или свет на фонарном столбе.

Очень удобно использовать датчик hc sr501 для ночника.

Вот некоторые отзывы о датчике.

  • Датчик надёжный, простой в использовании. Работает уже примерно год. Ложных срабатываний не было. Илья.
  • Чувствительный. Срабатывает даже на кошку. Пётр.
  • Дешёвый, надёжный, незаметный. Установил в подъезде. Работал всю зиму. Евгений.
  • было ещё много отзывов. 

PS
Датчики движения hc sr501 имеют высокую чувствительность, устойчивость к различным помехам,  очень надежны, практически отсутствуют ложные срабатывания. И самое главное они НЕДОРОГИЕ. Позволяют сэкономить ваши деньги. 

* Время работы  от батарейки в ждущем режиме примерно год. Это в тепличных условиях, на самом деле зависит от многих факторов.**Линза Френеля — представляет собой оптическую деталь со сложной ступенчатой поверхностью. *** Нет возможности настроить срабатывание датчика от степени освещённость. Если есть такая необходимость, то надо применять совместно с Ардуино.

[video:https://www.youtube.com/watch?v=ESuqam50-CI]
[video:https://www.youtube.com/watch?v=q8EshE8bCTU]

Пироэлектрический эффект

Ещё в далёком XIX веке немецкий физик Вильгельм Рентген занимался изучением пироэлектрического эффекта. Пироэлектрический эффект – это генерация электрических зарядов в кристалле под действием теплового (инфракрасного) излучения.Современные технологии позволили искусственно синтезировать чувствительные пироэлектрические кристаллы. В отличие от природных кристаллов (турмалин, кварц) в которых пироэлектрический эффект проявляется слабо, искусственные пироэлектрические кристаллы обладают повышенной чувствительностью.

На основе пироэлектрических кристаллов были созданы пироэлектрические инфракрасные датчики. В настоящее время такие датчики применяют практически повсеместно.

Вот наиболее распространённые сферы применения :

Системы охранной сигнализации. Инфракрасные датчики движения обнаруживают движение человека в охраняемой зоне. Каждый человек излучает в окружающую среду тепло. Это и используется для обнаружения человека в охраняемом пространстве.

Автоматически открывающиеся входные двери в крупных супермаркетах, залах, студиях, магазинах и т.п. В таких системах также используются пироэлектрические датчики движения.

В последнее время в продаже появились автоматические выключатели освещения. Применение таких приборов в быту довольно оправдано, это сокращает затраты на электроэнергию.

Автоматические системы противопожарной сигнализации. Пироэлектрический датчик служит своеобразным электронным термометром и сигнализирует о превышении допустимой температуры в помещении.

Кроме всего прочего пироэлектрические датчики служат для дистанционного измерения температуры.

Наиболее продвинувшейся в производстве пироэлектрических датчиков является фирма Murata Manufacturing Co (Япония).

Устройство простейшего пироэлектрического датчика

Пироэлектрический датчик состоит из пластины пироэлектрика (кристалла) по бокам которого нанесены металлические обкладки, которые образуют своеобразный конденсатор. На одну из обкладок нанесено вещество, принимающее электромагнитное тепловое излучение.

Излучение вызывает пироэлектрический эффект и напряжение между обкладками растёт, причём строго определённой полярности. Полученное напряжение приложено к участку затвор – исток полевого транзистора, встроенного в датчик.

В результате сопротивление канала транзистора VT1 изменяется. Транзистор VT1 нагружен на внешний нагрузочный резистор (не показан на рисунке), с которого и снимается сигнал.

Резистор R1 служит для разрядки обкладок конденсатора пироэлектрического датчика.

Датчики некоторых серий снабжают несколькими чувствительными элементами, соединёнными последовательно с чередующейся полярностью. Это позволяет сделать приборы нечувствительными к равномерному фоновому облучению.

Пироэлектрический кристалл – довольно инерционный чувствительный элемент.

Для различных электронных систем применяются пироэлектрические датчики с разной спектральной чувствительностью. Спектральная чувствительность датчика формируется за счёт поглощающей способности материала, которым покрыты пластины пироэлектрика.

Для противопожарных систем используются пироэлектрические датчики со спектральной характеристикой под номером 1.

На графике видно, что датчики с данной характеристикой чувствительны к излучению с длиной электромагнитной волны 4 – 5 мкм (микрометров).

Для охранных систем, а также систем автоматики используются пироэлектрические датчики с характеристикой 2 и 3. Пироэлектрики с такой спектральной характеристикой более подходит для фиксации движения человека.

Пироэлектрические датчики со спектральной характеристикой под номером 4 наиболее подходят для дистанционных измерителей температуры. Видно, что характеристика под номером 4 более равномерна, следовательно, показания датчика с такой характеристикой будут наиболее точны.

Пироэлектрические датчики нашли широкое применение в системах “умный дом”.

Нравится

Главная &raquo Технологии &raquo Текущая страница

Также Вам будет интересно узнать:

Возможные варианты проектов с применением датчика

Пир-датчики незаменимы в тех проектах, где главной функцией сигнализации является определение нахождения или отсутствия в пределах определенного рабочего пространства человека. Например, в таких местах или ситуациях, как:

  • Включение света в подъезде или перед входной дверью автоматически, при появлении  в нем человека;
  • Включение освещения в ванной комнате, туалете, коридоре;
  • Срабатывание сигнализации при появлении человека, как в помещении, так и на придомовой территории;
  • Автоматическое подключение камер слежения, которыми часто оснащаются охранные системы.

Пир-сенсоры просты в эксплуатации и не вызывают сложностей при подключении, имеют большую зону чувствительности и также могут быть с успехом интегрированы в любой из программных проектов на Ардуино. Но следует учитывать, что они не имеют технической возможности предоставить информацию о том, сколько объектов находится в зоне действия, и как близко они расположены к датчику, а также могут срабатывать на домашних питомцев.

Тема сегодняшнего урока — датчик движения на основе пироэлектрического эффекта (PIR, passive infrared motion sensor). Такие датчики часто используются в охранных системах и в быту для обнаружения движения в помещении. Например, на принципе детектирования движения основано автоматическое включение света в подъезде или в ванной. Пироэлектрические датчики достаточно простого устроены, недороги и неприхотливы в установке и обслуживании. Кстати сказать, существуют и другие способы детектирования движения. Сегодня всё чаще используют системы компьютерного зрения для распознавания объектов и траектории их перемещения. В тех же охранных системах применяются лазерные детекторы, которые дают тревожный сигнал при пересечении луча. Также используются тепловизионные датчики, способные определить движение только живых существ.

Ниши применения

Применение датчика расстояния весьма широко. В бытовой жизни его используют в парктрониках или высотомерах дронов. Встречается он в качестве своеобразных «глаз» робота-пылесоса, как и любого другого подвижного автомата. Последнее касается не только конструкций, от которых мало зависит жизнь человека, но и таких средств обеспечения его безопасности, как системы, уменьшающие шанс аварийного столкновения автомобилей или автобусов. В настоящих случаях, определив близкое препятствие при помощи звукового дальномера, связанный микроконтроллер включит аварийные тормоза.

Пригодится «высокоинтеллектуальный» дальномер и инвалидам или плохо видящим людям, в качестве дистанционного измерителя расстояния до различных препятствий. Последний можно изготовить в виде направленного датчика, закрепляемого на грудь или голову и подающего звуковой сигнал в зависимости от наличия предметов перед ним. Или же классически — закрепив чувствительный элемент на трость. В последнем случае ей даже не понадобиться дотрагиваться до поверхности, чтобы сообщить плохо видящему о наличии препоны на его пути.

Дополнительно, используя сонар, можно строить условную карту местности, с приблизительным расстоянием до предметов. Последнее сильно выручит в средах не совместимых с жизнью человека. Похожая технология, к примеру, используется в морском деле — с ее помощью строится карта дна и определяется высота структур на нем находящихся.

Ультразвуковой датчик Ардуино не единственный детектор определяющий дальность до предмета. Используются и варианты, основанные на других излучениях. К примеру, для настоящего микроконтроллера разработан инфракрасный датчик расстояния и лазерный дальномер. Каждый из видов сенсоров обладает определенными плюсами и минусами, дающими им преимущество в конкретных сферах. К примеру, лазер дает слишком узкий сектор обзора, а у инфракрасного дальномера малое расстояние определения препятствий и зависимость точности от их температуры. Плюсом в первом случае служит точность расстояний, во втором независимость от звукового фона.