Снятие векторной диаграммы (к пункту 4 «цель работы»)

Построение векторной диаграммы напряжений и токов

Последовательное и параллельное соединение аккумуляторов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Lucidchart.com

Это онлайн-сервис создания диаграмм, который позволяет визуализировать данные вместе с командой. Интерфейс понятный, поэтому создать диаграмму можно за несколько минут — можно выбрать среди множества готовых шаблонов, или же начать с чистого листа. Имея бесплатный тариф, вы получаете доступ к основным фигурам, стрелкам и текстовым полям. Готовые диаграммы можно сохранять форматах JPEG, PDF, PNG, SVG и Visio (VDX). Если используете бесплатную учетную запись, то получаете 25 МБ хранилища и возможность создать до 5 диаграмм.

Особенности Lucidchart:

  • Интуитивно понятный пользовательский интерфейс.
  • Интеграция с Google Apps, Confluence, JIRA, Office 365.
  • Сотрудничество с коллегами в режиме реального времени с помощью общего доступа.
  • Сохранение документов в форматах PDF, JPG, PNG.
  • Десятки типов диаграмм и шаблонов для их создания.

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

Советуем изучить Самодельная телевизионная антенна: для dvb и аналогового сигнала

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Im = Im1 + Im2

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Векторные диаграммы трансформатора

ü Построение диаграммы следует начинать с вектора максимального значения основного магнитного потока: Фmax=Е1/(4,44·f·W1). Вектор I0 опережает по фазе вектор потока Фmax на угол δ, а ЭДС Е1 и Е2/ отстают от этого вектора на угол 900.

ü Далее строим вектор I2/ . Для определения угла сдвига фаз между E2/ и I2/ следует знать характер нагрузки. Предположим, что нагрузка трансформатора активно-индуктивная. Тогда вектор I2/ отстает по фазе от E2/ на угол

ü Для построения вектора вторичного напряжения U2/ необходимо из вектора ЭДС E2/ вычесть векторы падений напряжения jI2/ x2/ и I2/ r2/. С этой целью из конца вектора E2/ опускаем перпендикуляр на направление вектора тока I2/ и откладываем на нем вектор — jI2/ x2/. Затем проводим прямую, параллельную I2/ , и на ней откладываем вектор — I2/ r2/. Построив вектор I2/ Z2/, получим треугольник внутренних падений напряжения во вторичной цепи.

ü Затем из точки О проводим вектор U2/= E2/-I2/·Z2/, который опережает по фазе ток I2/ на угол φ2=arctg (хн/ /rн’).

ü Вектор первичного тока строим как векторную сумму: I1=I0+(-I2/). Вектор — I2/ проводим из конца вектора I0 противоположно вектору I2/.

ü Построим вектор U1= (-E1)+ jI1·х1+ I1·r1, для чего к вектору -E1, опережающему по фазе вектор потока Фmax на 90°, прибавляем векторы внутренних падений напряжения первичной обмотки: вектор I1·r1, параллельный току I1, и вектор jI1·х1, опережающий вектор тока I1 на угол 90°. Соединив точку О с концом вектора I1·Z1, получим вектор U1, который опережает по фазе вектор тока I1, на угол φ1.

v При значительной емкостной составляющей нагрузки падение напряжения в емкостной составляющей сопротивления нагрузки и индуктивное падение напряжения рассеяния во вторичной обмотке частично компенсируют друг друга, в результате чего вторичное напряжение может оказаться больше чем ЭДС

Измерение вторичного напряжения трансформатора при увеличении нагрузки от х.х. до номинальной является важнейшей характеристикой трансформатора и определяется упрощенным выражением, которое можно получить из схемы замещения трансформатора при определенных допущениях:

где uka , ukp – это активная и реактивная составляющие напряжения короткого замыкания.

ϕ2 – угол сдвига между напряжением и тока вторичной обмотки.

где β — коэффициент нагрузки, представляющий собой относительное значение тока нагрузки b=I2/I2ном

v из выражения следует, что изменение вторичного напряжения ΔU зависит не только от величины нагрузки трансформатора (b), но и от характера этой нагрузки (j2).

v Зависимость вторичного напряжения U2/ трансформатора от нагрузки называют ______________________________.

Лекция №3

Схемы и группы соединения обмоток трансформатора в звезду, треугольник, зигзаг. Соотношение линейных и фазных величин в трансформаторе при различных схемах соединения.

Схемы соединений обмоток трансформатора:

______________ ________________ ________________

Возможные схемы соединения обмоток трехфазного трансформатора: Y/Y, Y/Δ, Δ/Y, Δ/Δ, Y/Z, Δ/Z.

Файл-архив ›› Векторные диаграммы в релейной защите и автоматике. Шацков Ю. Л., Каргин С. В Библиотека электротехника

Изложены основные понятия и принципы снятия векторных диаграмм. Приведены примеры практического использования векторных диаграмм для проверки правильности подключения устройств РЗА, а также рассмотрены особенности снятия и использования векторных диаграмм при анализе работы МП РЗА. Для специалистов, занимающихся эксплуатацией, монтажом и наладкой устройств РЗА.Книга из серии Библиотечка электротехника. 120 выпуск 

СодержаниеПредисловиеГЛАВА ПЕРВ АЯ. Построение векторных диаграмм . . . .1.1. Основные понятия и определения1.2. Общие вопросы построения векторных диаграмм.1.3. Построение вектора первичного тока1.4. Построение вектора вторичного тока1.5. Построение вектора вторичного напряжения1.6. Снятие векторных диаграмм.ГЛАВА ВТОРАЯ. Примеры практического использования векторных диаграмм2.1. Проверка правильности включения реле мощности нулевой последовательности.2.2. Проверка правильности включения реле мощности обратной последовательности (РМОП).2.3. Проверка правильности подключения приборов учета электрической энергии (счетчиков).2.4. Проверка правильности схемы соединений трансформаторов тока по фазам и по их полярности дифференциальной защиты трансформатора.2.5. Реле мощности в схеме автоматики, действующей при повышении напряжения2.6. Проверка направленности реле сопротивления дистанционной защиты типа ЭПЗ-1636 2.7. Проверка направленности защит типа ШДЭ 2801(2802) ГЛАВА ТРЕТЬЯ. Современные микропроцессорные(цифровые) устройства РЗА3.1. Некоторые особенности применениямикропроцессорных устройств РЗА (МП РЗА).3.2. Использование векторных диаграммпри проверке рабочим током и напряжением.3.3. Применение векторных диаграммдля анализа работы защиты при возникновениивозмущений в электрических сетях.3.4. Векторные диаграммы в регистраторахаварийных событий (РАС)

Как сделать лучевую векторную диаграмму связей в Excel

Сначала взглянем на то, что мы пытаемся построить и визуально оценим объем работы. Выглядит интересно? Тогда читайте дальше, чтобы узнать, как это создать.

Чтобы создать лучевую диаграмму в Excel для визуального анализа взаимоотношений в сети, нам нужно сначала понять ее различные составляющие.

Как видите, диаграмма содержит следующие части:

  1. Набор точек, каждая из которых представляет одну заинтересованную сторону – участники сети.
  2. Набор сероватых толстых сплошных и тонких пунктирных линий, представляющих все отношения между людьми. Сплошные – сильные связи (например, друзья), пунктирные – слабые связи (знакомые).
  3. Набор зеленых толстых и синих пунктирных линий, представляющих отношения для выбранного конкретного участника сетевой группы.
  4. Срез для выбора анализа участника – как панель управления лучевой диаграммой.
  5. Табличка со сводной статистикой выбранного человека.

4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ

При выборе трансформаторов для электроснабжения производственного предприятия
часто возникает дилемма: либо установить один мощный трансформатор,
либо применить их несколько, в сумме обеспечивающих требуемую мощность.
Второй вариант будет всегда предпочтительней, т.к. режим работы предприятия
в течение суток неравномерный и потребляемая мощность будет различной.
Например, в ночное время нагрузка будет минимальной, т.к. потребляемая
мощность складывается лишь из охранного освещения и нескольких дежурных
объектов. Днем, когда работают основные потребители электроэнергии,
потребляемая мощность будет максимальной. Какой-то промежуточный режим
будет в вечернее время суток. Короче говоря, в работе могут находиться
один, два или сразу три трансформатора.
Параллельная работа нескольких трансформаторов связана с тем, что их
вторичные обмотки питают общую нагрузку.
Однако не все трансформаторы способны работать параллельно.
Определим условия, при которых возможно включение трансформаторов на
параллельную работу. Во-первых, это одинаковые первичные и вторичные
напряжения на обмотках. Во-вторых, должны быть одинаковые схемы и группы
соединения. Помимо этого, регламентируются напряжения короткого замыкания,
указанные в паспорте трансформатора. И, конечно, порядок чередования
фаз у параллельно работающих трансформаторов должен быть одинаковым.
В качестве примера приведем схему параллельно включенных пяти сварочных
трансформаторов, обеспечивающих работу 14 сварочных постов (рис. 4.11.1).

Обработка данных для построения лучевой диаграммы

На следующем листе с именем «Обработка» создаем сначала 2 таблицы: одна обычная, вторая умная. Обычная таблица заполнена формулами и значениями так как показано на рисунке:

Обратит внимание!!!:

  1. В ячейках B9 и B10 используются формулы массива поэтому при их вводе следует использовать комбинацию клавиш CTRL+SHIFT+Enter.
  2. Умная таблица должна быть расположена не выше 45-ой строки текущего листа Excel. Для данной таблице будет регулярно применятся фильтр, который будет скрывать часть строк листа. Нельзя допустить чтобы в эти строки попадали другие значения.

Рядом создаем еще одну таблицу для вычисления координат на основе данных первой таблицы. Для этого используется 2 формулы для значений X и Y:

Следующая таблица создана для построения координат линий – отношений на уровне знакомых. Таблица содержит 40 строк и 40 столбцов. Каждая пара столбов – это входящие данные для радов диаграммы. Все ячейки заполнены одной сложной формулой:

Рядом же сразу создаем аналогичным образом таблиц с координатами построения линий – отношений на уровне друзей. Все ее ячейки заполнены формулой:

Эти две таблицы будут использованы для построения серых линий. А теперь создадим еще одну таблицу для построения синих и зеленых линий для выделенного участника:

В каждом столбце этой таблицы используются разные формулы:

Столбец листа CM (X-синяя):

CN (Y- синяя):

CO (X- зеленая):

CP (X- зеленая):

Все с обработкой закончили! У нас есть все координаты для точек и линий. Осталось только построить лучевую диаграмму визуализировав таким образом входящие значения на листе «Данные».

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Oпределение: Трансформатором называется статический электромагнитный
аппарат, предназначенный для преобразования системы переменного тока
одних параметров в систему переменного тока с другими параметрами.

Известно, что передача электроэнергии на дальние расстояния осуществляется
на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно
уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно,
поэтому в начале линии электропередачи устанавливают повышающие
трансформаторы,
а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя
подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и
специальные. Силовые трансформаторы используются в линиях электропередачи
и распределения электроэнергии.К специальным трансформаторам относятся: печные, выпрямительные,
сварочные, автотрансформаторы, измерительные, трансформаторы
для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные, из которых
наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют
по две обмотки) или многообмоточными (если они имеют более двух обмоток).
В зависимости от способа охлаждения трансформаторы разделяются на
масляные и сухие.

Пример построения векторной диаграммы трехфазной цепи

Векторная диаграмма трехфазной цепи

Из диаграммы можно сделать несколько выводов:

  1. В фазе А присутствует активная и индуктивная нагрузка. Это следует из того, что угол сдвига по фазе не равен 90 град., но фи = 30 градусов и при вращении против часовой стрелки двух векторов Ua и Ia вектор напряжения фазы А будет идти впереди вектора тока.
  2. В фазе В ток (Ib) и напряжения (Ub) совпадают по фазе. угол фи между векторами равен 0, а cos фи равен 1.
  3. В фазе С наличествует активная и емкостная нагрузка. Мы видим, что угол фи между векторами Uc и Ic меньше 90 градусов и при вращении против часовой стрелки двух векторов Ua и Ia вектор тока фазы С будет идти впереди вектора напряжения.

Диаграмма недостроена. Нужно еще сложить вектора токов и получить значение тока в нулевом проводе.

Векторная диаграмма и ее схема

Векторная диаграмма

Векторная иллюстрация Представляя синусоидальные токи, напряжения и ЭДС в комплексных числах, они могут быть представлены на комплексной плоскости в виде векторов и в виде соответствующей векторной диаграммы, для процесса расчета схемы, для этих чисел Может быть отображено.

Это один из основных инструментов для анализа электрических цепей, они четко иллюстрируют процесс решения проблемы, качественно контролируют и легко устанавливают квадрант, в котором находится нужный вектор.

Диаграмма вектора тока и напряжения 1 Для удобства при построении диаграммы статический вектор анализируется в определенный момент времени. Это выбрано так, чтобы диаграмма была в легко понятном формате.

Ось OX соответствует реальному значению, а ось OY соответствует мнимой оси (мнимая единица). Синусоида указывает, что конечная точка проекции перемещается к оси OY.

Каждое напряжение и ток соответствуют собственному вектору на полярной плоскости. Его длина отображает текущее значение амплитуды, а угол равен фазе. Вектор, изображенный на такой диаграмме, характеризуется равной угловой частотой ω. Во время вращения их относительные положения не меняются.

Таким образом, векторная диаграмма дает четкое представление о различных электрических выводах или наконечниках. В основном, векторные диаграммы представляют фактические значения, а не амплитуды. Вектор действительных значений количественно отличается от значения амплитуды.

Решение задач Лекции
Расчёт найти определения Учебник методические указания

Векторная графика — хороший способ правильно отобразить переменные, которые определяют функции беспроводного устройства. Это означает соответствующее изменение основных параметров сигнала в соответствии со стандартной синусоидальной (косинусоидальной) кривой. В визуальном представлении процесса гармонические колебания представлены в виде векторных проекций на оси координат.

  • Вы можете легко рассчитать длину по стандартной формуле. Это равно амплитуде в определенный момент времени.
  • Угол наклона указывает на фазу.
  • Общий эффект и соответствующее изменение вектора следуют нормальным правилам геометрии.
  • Различают графики высокого качества и точные графики.

Первый используется для объяснения взаимосвязей. Они полезны для проведения предварительных оценок и используются для полной замены расчетов. Другие создаются с учетом результатов, полученных для определения размера и ориентации отдельных векторов.

Решение задач по электротехнике тоэ

Комплексные сопротивление и проводимость Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Мощность в цепи синусоидального тока Расчет цепей с взаимными индуктивностями

OmniGraffle

Это программа для построения диаграмм и создания графического дизайна, которая подходит для всего: от создания каркасов, рабочих процессов и прототипов до генеалогических деревьев, ментальных карт и отображения диаграммы классов. Она позволяет передавать сложные технические концепции в привлекательном визуальном формате.

Программа интуитивно понятна в использовании, поэтому человек без технических знаний легко сможет разобраться и создать свою диаграмму процессов. Примечательно то, что OmniGraffle изначально создана для пользователей Apple, поэтому предлагает даже приложение для iPad.

  • Доступная библиотека изображений.
  • Работа с несколькими открытыми окнами редактирования.
  • Возможность одновременно рисовать несколько версий диаграмм на разных холстах.
  • Большой выбор шаблонов для работы.
  • Подходит для работы на iMac, MacBook, iPad.

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.


Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.


Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Обоснование векторной диаграммы

Предположим, что ток задан уравнением

i = Imsin(ωt +Ψ)

Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:

Im = Im/Mi

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе Ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени: i0 = ImsinΨ.

Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом ωt +Ψ ,

Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.

Следующая статья сложение и вычитания векторов векторной диаграммы.

Например, для t = t1

i1 = Imsin(ωt1 +Ψ)

в общем случае

i = Imsin(ωt +Ψ)

Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж в начальном положении.

Grapholite.com

Простой редактор диаграмм для настольных компьютеров и планшетов, в котором можно создать блок-схемы, UML диаграммы, циклические диаграммы, планы помещений и этажей, BPMN диаграммы, диаграммы Венна, схемы компьютерных сетей, макеты интерфейсов программ и так далее. На фоне конкурентов выделяется возможность работы через планшет с помощью сенсорного управления. В редактор встроен интеллектуальный алгоритм построения фигур, который автоматически связывает элементы диаграммы.

Особенности Grapholite:

  • Доступно для платформах iOS, Android и Windows 10.
  • Интерфейс адаптирован для работы в планшете.
  • Большой выбор объектов, стилей, фигур, размещенных на панели инструментов
  • Экспорт работ в форматах PNG, JPG, PDF или в векторное изображение SVG.
  • Десятки видов схем для работы.

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ — Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте — Контрольная работа №1
  • — Контрольная работа №2

Электротехника и основы электроники

  • — Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил — Контрольная работа № 1 Электрические цепи

— Контрольная работа № 2 Трансформаторы и электрические машины
— Контрольная работа № 3 Основы электроники
Теоретические основы электротехники ТОЭ

  • — Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009

— Переходные процессы Переходные процессы в электрических цепях
— Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов — Задание 1 Линейные электрические цепи постоянного и синусоидального тока — Задача 1.1 Линейные электрические цепи постоянного тока
— Задача 1.2 Линейные электрические цепи синусоидального тока
— Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками
— Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010
— Трехфазные цепи. Расчет трехфазных цепей
— УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ
— Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока

Советуем изучить Основные химические источники электроэнергии

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ. УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в
магнито-проводе трансформатора, сцепляется с витками обмоток и наводит
в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование,
получим:

где

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от
потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Фmах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения
называется коэффициентом трансформации.

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного
потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1).
Каждый из этих потоков сцепляется только с витками собственной обмотки
и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих
ЭДС прямо пропорциональны возбуждающим их токам:

где x1 и x2 — индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение
напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому
она направлена против первичного напряжения u1. В связи с этим уравнение
ЭДС для первичной обмотки имеет вид:

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной
обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому,
с некоторым приближением, можно считать, что подведенное к трансформатору
напряжение u1 уравновешивается ЭДС Е1:

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому
уравнение ЭДС для вторичной обмотки имеет вид:

где j I2 x2 и I2 r2 — падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение
u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая
сила первичной обмотки I10 w1, созданная током I10, которая наводит
в магнитопроводе трансформатора основной магнитный поток:

где Rм — магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток
I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и
I2 w2.

Из выражения

видно, что основной поток Ф0 не зависит от нагрузки трансформатора,
при неизменом напряжении u1. Этот вывод дает право приравнять: