Как затормозить двигатель постоянного тока

Оглавление

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором. Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения. Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение. На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.

Вариант остановки простым реверсивным переключением — реверс поля вращения, образованного обмотками статора

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

Видео настройки преобразователя частоты на торможение

Ниже представлен видеоролик, демонстрирующий наличие дефектов и ошибки частотного преобразователя в момент функции торможения двигателя. Здесь же отмечается — как устранить нарушение работы электродвигателя и, соответственно, ошибку ПЧ:

По материалам: Schneider-electric

Электрические схемы

Режим работы – прямой пуск электродвигателя, реверсивный (1 фидер).

Шкаф управления асинхронным двигателем предназначен для местного, дистанционного или автоматического управления одним электродвигателем (пуск электродвигателя, реверс и отключение вращающегося электродвигателя), работающим в продолжительном, кратковременном или повторно-кратковременном режимах.Реверс – это изменение направления вращения ротора.

Для реверса необходимо изменить направление вращения магнитного поля статора, что в трехфазных асинхронных двигателях достигается переменой мест двух любых проводов на клеммах трехфазной сети.Ящик имеет местную индикацию состояния работы и возможность для подключения дистанционного управления и дистанционной индикации состояния работы фидера.

№НаименованиеКодКол-во

1SAM250000R1011 1
2 Боковые доп. контакты 1НО+1НЗ HK1-11 для автоматов типа MS116 1SAM201902R1001 1
3 Контактор AF16-30-10-13 с универсальной катушкой управления 100-250BAC/DC 1SBL177001R1310 2
4 Клемма M4/6 винт 4мм.кв. серая 1SNA115116R0700 6
5 Клемма M4/6.N винт 4мм.кв. , синяя 1SNA125116R0100 1
6 Клемма M4/6.P винт 4мм.кв. Земля 1SNA165113R1600 2
7 Блокировка электромеханическая VEM4 для контакторов AF09…AF38 1SBN030111R1000 1
8 Контактный блок CA5-10 1НО фронтальный для A9.. A110 1SBN010010R1010 4
9 Контактный блок CA5-01 1Н3 фронтальный для A9.. A110 1SBN010010R1001 4
10 Лампа CL-523G зеленый со встроенным светодиодом 230В AC 1SFA619402R5232 2
11 Кнопка CP1-30R-01 красная без фиксации 1HЗ 1SFA619100R3041 1
12 Кнопка CP1-30G-10 зеленая без фиксации 1HO 1SFA619100R3012 2
13 Переключатель ONU2PBR 3-х поз.(1-0-2) (двухуровневый) 1SCA113972R1001 1
14 Клемма MA2,5/5 винт 2,5мм.кв. оранжевая 1SNA105075R2000 15
15 Клемма MA2,5/5.N винт 2,5мм.кв. синяя 1SNA125486R0500 2
16 Изолятор FEM6 Торц. для MA2,5-M10 серый 1SNA118368R1600 1
17 Фиксатор BAM3 Торц. для рейки DIN3, универсальный 1SNK900001R0000 2
18 SR2 Корпус шкафа с монт.платой 400х300х150мм ВхШхГ SRN4315K 1
19 Автомат.выкл-ль 1-полюсной S201 C6 2CDS251001R0064 1
20 Провод, маркировка, расходные материалы 1

Описание и свойства прямого пуска асинхронного электродвигателя

При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на однолинейной электрической схеме. При включении контактора в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

максимальны. По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Значение пускового момента находится при s = 1:

Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места.

В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

График изменения тока и момента при пуске асинхронного двигателя с короткозамкнутым ротором.

Параметры режима работы тяговой сети переменного тока при рекуперации электроэнергии

Инвертор, преобразующий электроэнергию рекуперации постоянного тока тяговых двигателей в переменный ток СТЭ, располагается на ЭПС и относится к категории ведомых сетью.

При рекуперации электроэнергии на переменном токе 25 кВ активная энергия рекуперации генерируется ЭПС в СТЭ, а реактивная энергия потребляется из сети внешнего электроснабжения так же как в режиме тяги. Это увеличивает реактивное электропотребление электровозами в межподстанционной зоне.

————-> P ¦ Режим

————-> Q ¦ тяги

—————————————————

<�————- Р ¦ Режим

————-> Q ¦ рекуперации

Рис. Направления электроэнергии в режимах тяги и рекуперации ЭПС.

Угловые сдвиги между током и напряжением ЭПС в режиме тяги составляют для диодных ЭПС φЭ = 370эл, для тиристорных ЭПС φЭ = 420эл. Коэффициент реактивной мощности для режима тяги tg φЭ = Q/P диодных ЭПС составляет tg 370 = 0,754, тиристорных ЭПС — tg 420 = 0,9. Следовательно реактивное электропотребление ЭПС в режиме тяги QТ = (0,75÷ 0,9)P. Реактивное электропотребление в режиме тяги составляет (75÷ 90) % от активного.

Угловые сдвиги между током и напряжением ЭПС в режиме рекуперации составляют φЭ = 60 эл. гр. Коэффициент реактивной мощности для режима рекуперации tg φЭ = Q/P составляет tg 600 = 1,73. Следовательно, реактивное электропотребление ЭПС в режиме рекуперации QР = 1,73P. Реактивное электропотребление в режиме рекуперации составляет 170 % от активного.

При совместной работе в межподстанционной зоне ЭПС в режимах тяги и рекуперации значительно увеличивается реактивное электропотребление. Оптимальный режим в межподстанционной зоне соответствует равенству активного электропотребления ЭПС в режимах тяги Рт и активной генерации в режимах рекуперации Рр (Рт = Рр). При этом реактивная мощность на тягу Qт = 0,9Р, реактивная мощность на рекуперацию равна Qр = 1,73Рт и суммарное реактивное электропотребление Q∑ = (0,9 + 1,73)Рт = 2,63Рт. Соотношение К = 2,63/0,9 = 2,92. Следовательно, реактивное электропотребление в межподстанционной зоне в оптимальном режиме рекуперации увеличивается в 3 раза. Так как соотношения активного электропотребления ЭПС в режимах тяги и генерации меняется, то следует считать, что реактивное электропотребление увеличивается в диапазоне 1, 7 ÷ 3 раза по сравнению с режимом тяги.

Рассмотрим линейные и векторные диаграммы тока и напряжения тяговой сети в режимах тяги и рекуперации при одностороннем питании контактной сети.

Режим тяги.

Рис. Линейная диаграмма тока и напряжения ЭПС в режиме тяги: E1, U1 – кривая ЭДС и напряжения трансформатора ЭПС; i1t – кривая тока, i1(1) – кривая тока первой гармоники.

Потеря напряжения в режиме тяги

∆ Uтс = Iт RТС cos φТ + Iт Хтс sin φТ = Iат RТС + IрХТС.

Напряжение у источника

U1 = Uэпс + ∆ Uтс.

Режим рекуперации.

Рис. Линейная диаграмма тока и напряжения ЭПС в режиме рекуперации: E1, U1 – кривая ЭДС и напряжения трансформатора ЭПС; i1Р – кривая тока, i1(1) – кривая тока первой гармоники.

Рис. Векторная диаграмма тока и напряжения в режиме рекуперации: Iэ –полное значение тока; Iра, Iрр – активная и реактивная составляющие тока ЭПС; φр – угловой сдвиг между током и напряжением.

Рекуперация на электрокарах и гибридных модификациях

Для лучшего понимания сути дела, нам придётся немного углубиться в теорию. Любой электрический силовой агрегат постоянного тока, при подаче на него электроэнергии начинает функционировать как собственно двигатель. Однако, если начать механически вращать его вал, то на клеммах будет вырабатываться ток. Из этого проистекает логический вывод: электромотор способен работать как в роли двигателя, потребителя энергии, так и в роли генератора. Этим и воспользовались инженеры, которые массово начали внедрять в электрический и гибридный транспорт системы рекуперации.

Работают такие схемы по достаточно простому принципу:

  1. При воздействии на акселератор машина набирает ход, а электромотор при этом получает энергию от накопителя и передаёт тягу на колёса машины посредством трансмиссии.
  2. А вот когда транспортное средство начинает замедляться, электроника переводит силовой агрегат в режим генератора.
  3. Естественно, чтобы раскрутить электродвигатель, нужно прилагать определённое усилие и именно за счёт этого противодействия автомобиль станет замедляться. Конечно, без помощи обычных тормозов не обходится.
  4. В этот самый момент, вырабатываемая мотором, как генератором, электроэнергия, посредством специального контроллера будет подзаряжать накопитель. Таким образом, некоторую долю энергии удаётся вернуть для её последующего применения.

Нюанс

Конечно, при экстренном торможении система регенерации энергии не в состоянии мгновенно остановить транспортное средство. Поэтому здесь никак не обойтись без традиционных тормозов. Вычислительная аппаратура принимает соответствующее решение в зависимости от того, с каким усилием водитель воздействует на орган управления тормозной системой, и задействует помимо рекуперации тормоза.

Преимущества электрической рекуперации

Разработка внедрённая в полностью электрический автомобиль, позволяет увеличить дальность хода на одном заряде, а вот гибридным модификациям регенерация сулит довольно приятное сокращение расхода топлива. Да и тормозные механизмы проходят дольше, ведь часть нагрузки с них будет сниматься.

Недостатки электрической рекуперации

Самый главный недостаток системы регенерации — это её высокая себестоимость! Приобретая электромашину оснащённую такой чудодейственной системой, рассчитывайте на прибавку к ценнику в 30-50%, по сравнению с традиционными автомобилями в распоряжении которых старый добрый ДВС. Так что, если вы ездите в основном по идеальным прямым трассам, на которых торможение является скорее исключением чем правилом, вы вряд ли окупите своё высокотехнологичное и дорогостоящее приобретение в ближайшее время.

Плюс к этому, такое оснащение усложняет конструкцию транспортного средства, поэтому в случае поломки, могут возникнуть определённые сложности с ремонтом. Проблема в том, что за подобные ремонтные манёвры возьмутся не в каждом сервисе, да и мастер который будет осуществлять обслуживание, должен иметь высокую квалификацию. Поэтому перед приобретением такой совершенной конструкции, первым делом нужно решить вопрос по её дальнейшему обслуживанию и ремонту, найдя поблизости достойную мастерскую с высококвалифицированным персоналом.

Применение рекуперации в транспорте

Принцип работы электродвигателя

Этот метод торможения используется много лет. В зависимости от вида транспорта, его применение имеет свои особенности.

В электромобилях и электровелосипедах

При движении по дороге, а тем более, по бездорожью электропривод почти всё время работает в тяговом режиме, а перед остановкой или перекрёстком – «накатом». Остановка производится, используя механические тормоза из-за того, что рекуперация при малых скоростях неэффективна.

Кроме того, КПД аккумуляторов в цикле «заряд-разряд» далёк от 100%. Поэтому, хотя такие системы и устанавливаются на электромобили, большую экономию заряда они не обеспечивают.


Схема рекуперации в автомобиле

На железной дороге

Рекуперация в электровозах осуществляется тяговыми электродвигателями. При этом они включаются в режиме генератора, преобразующего кинетическую энергию поезда в электроэнергию. Эта энергия отдаётся обратно в сеть, в отличие от реостатного торможения, вызывающего нагрев реостатов.

Рекуперация используется также при длительном спуске по склону для поддержания постоянной скорости. Этот метод позволяет экономить электроэнергию, которая отдается обратно в сеть и используется другими поездами.

Раньше этой системой оборудовались только локомотивы, работающие от сети постоянного тока. В аппаратах, работающих от сети переменного тока, есть сложность с синхронизацией частоты отданной энергии с частотой сети. Сейчас эта проблема решается при помощи тиристорных преобразователей.


Режим рекуперации поезда

В метро

В метрополитене во время движения поездов происходит постоянный разгон и торможение вагонов. Поэтому рекуперация энергии даёт большой экономический эффект. Он достигает максимума, если это происходит одновременно в разных поездах на одной станции. Это учитывается при составлении расписания.

В городском общественном транспорте

В городском электротранспорте эта система устанавливается практически во всех моделях. Она используется в качестве основной до скорости 1-2 км/ч, после чего становится неэффективной, и вместо неё включается стояночный тормоз.

В Формуле-1

Начиная с 2009 года, в некоторых машинах устанавливается система рекуперации. В этом году такие устройства ещё не давали ощутимого превосходства.

В 2010 году такие системы не использовались. Их установка с ограничением на мощность и объём рекуперированной энергии возобновилась в 2011 году.

Динамическое торможение асинхронного двигателя

Динамическое торможение АД (торможение постоянным током) осуществляется путем подключения к двум любым обмоткам статора источника постоянного тока. При этом с помощью группы контактов К1 асинхронный двигатель сначала отключают от питания трехфазным переменным током, и только после этого, замыкают группу контактов К2 и подают постоянный ток. Величину постоянного тока регулируют сопротивлением rт (рисунок 1).

Рисунок 1 — Схема динамического торможения асинхронного двигателя

Само динамическое торможение асинхронного двигателя сопровождается следующими процессами и изменениями:

При отключении переменного тока, вращающееся магнитное поле перестает существовать. Далее подключают источник постоянного тока, который создает постоянное магнитное поле. Ротор по инерции продолжает крутиться теперь уже в постоянном магнитном поле, в обмотке ротора наводится ЭДС, ее частота прямо пропорциональна скорости вращения вала. Появление тока в обмотке ротора вызвано наличием вышеупомянутой ЭДС. Ток создает магнитный поток, который неподвижнен относительно статора. Взаимодействие результирующего магнитного поля АД и тока ротора создает тормозной момент. При этом асинхронный двигатель становится генератором; преобразовует кинетическую энергию вращающегося вала в электрическую, которая на обмотке ротора рассеивается в виде тепловой энергии. При переходе в режим динамического торможения частота и угловая скорость равны: f=0 w=0. Кривая динамического торможения должна проходить через начало координат и торможение происходит до полной остановки (рисунок 2).

Эффективность динамического торможения зависит от параметров:

— Величина постоянного тока, который протекает по статорной обмотке двигателя (чем больше ток, тем больше тормозной эффект);

— Величина сопротивления, введенного в цепь ротора. Эффективность торможения повышается путем комбинирования динамического торможения и торможения с введением сопротивлений в обмотку ротора (рисунок 2):

Рисунок 2 – Механическая характеристика динамического торможения асинхронного двигателя

Чем больше сопротивление введено в цепь ротора, тем выше эффективность торможения, то есть на кривой а1 изображена самая быстрая остановка двигателя при наибольшем сопротивлении — R1>R2>R3.

— Схема соединения обмоток статора.

Величина магнитодвижущей силы (F) напрямую связана с понятием эффективность торможения, чем больше значение силы – тем эффективней происходит торможение,

F=I·W.

На рисунках, которые изображены ниже, стрелками показаны направления протекания постоянного тока по обмоткам, IW– ампер витки (так как количество витков в обмотках одинаково, то зависит значение только от величины тока). Векторные диаграммы иллюстрируют направления магнитодвижущих сил (F), сложив по правилам суммирования векторы, мы получим результирующий вектор, который обозначен жирной стрелкой.

Обмотка статора может быть соединена:

а) Схема соединения обмотки статора в звезду:

б) Схема соединения статорной обмотки в треугольник:

в) Соединение обмотки статора в звезду с закороченными двумя фазами:

г) Подключение звезда с разорванным нулем:

д) Подключение треугольник с закороченными фазами:

Схемы соединения а) и б) имеют наибольшее распространение, потому что не требуют переключения при торможении самих обмоток.

Необходимо подметить, что напряжение (U) источника постоянного тока должно быть малой величиной, потому что сопротивление обмотки статора мало. Ток выбирается из условия необходимого начального тормозного момента, обычно выбирают ~2Mном.

Преимущества режима динамического торможения:

— Относительная простота осуществления способа;

— Возможность торможения до полной остановки вала ротора;

— Высокая эффективность торможения, особенно при использовании комбинированного метода.

Основным недостатком является необходимость наличия источника постоянного тока.

Расчет величины тормозного сопротивления:

RT = 2·rф.ст + rт,

rт=RT — 2rф.ст,

где RT — полное сопротивление цепи источника постоянного тока,

rф.ст — сопротивление фазы статора.

Вышеприведенные формулы являются частным случаем (для понимания отношений величин сопротивления), когда постоянный ток протекает только по двум обмоткам статора, если же ток будет протекать по трем обмоткам, то коэффициент (количество фаз) перед сопротивлением фазы статора нужно соответственно изменить.

Советую вам прочесть статью про торможение противовключением, в которой подробно расписан данный вид остановки двигателя.

Недостаточно прав для комментирования

Электрические схемы электровозов

  • Предисловие
  • Устройства питания цепей управления и заряда аккумуляторных батарей
  • Принцип действия электронных блоков агрегатов панелей управления
  • Включение аккумуляторной батареи
  • Включение вспомогательного компрессора
  • Электрические цепи от кнопки “Сигнализация”
  • Включение автоматических выключателей В20 и ВЗО в цепях управления тяговыми электродвигателями
  • Управление токоприемниками
  • Переключения в схеме для вывода электровоза из депо под низким напряжением
  • Управление быстродействующим выключателем
  • Силовая цепь после включения быстродействующего выключателя
  • Управление мотор-компрессорами
  • Управление мотор-вентиляторами
  • Действие агрегата панели управления
  • Цепи управления электровозов ВЛ11 при СП соединении тяговых электродвигателей
  • Силовая цепь электровозов ВЛ11 при СП соединении тяговых электродвигателей
  • Цепи управления электровозов ВЛ11 при с соединении тяговых электродвигателей
  • Силовая цепь электровозов ВЛ11 при С соединении тяговых электродвигателей
  • Цепи управления электровозов ВЛ11М
  • Силовая цепь электровозов ВЛ11М
  • Назначение промежуточных реле РП27, РП28, РП26 и РП23
  • Назначение блокировок аппаратов, включенных в цепь катушек вентилей линейных контакторов К1, К18 и К19
  • Цепи на электровозах ВЛ11 по № 489
  • Цепи на электровозах ВЛ11М
  • Переход с СП на П соединение и цепи на П соединении электровозов ВЛ11
  • Переход с С на СП соединение и цепи на СП соединении трехсекционных электровозов ВЛ11М
  • Переход с СП на П соединение и цепи на П соединении электровозов ВЛ11М
  • Ослабление возбуждения на электровозах ВЛ11
  • Ослабление возбуждения на электровозах ВЛ11М
  • Неисправность быстродействующего выключателя
  • Отключение тяговых электродвигателей
  • Защита от токов короткого замыкания
  • Буферная защита тяговых электродвигателей от токов перегрузки
  • Защита от боксования
  • Сигнализация о пониженном напряжении на тяговых электродвигателях
  • Общие сведения о рекуперативном торможении
  • 1-Включение преобразователей и реле моторного тока РТ37
  • 1-Рекуперативное торможение на параллельном соединении тяговых электродвигателей
  • Рекуперативное торможение на последовательно-параллельном и последовательном соединениях тяговых электродвигателей
  • 1-Защита и ее сигнализация
  • Общие сведения о системе автоматического управления рекуперативным торможением и принцип ее работы ВЛ11М
  • Включение преобразователей и реле моторного тока РТ37
  • Рекуперативное торможение на параллельном соединении тяговых электродвигателей
  • Защита и ее сигнализация
  • Перечень аппаратов и электрических машин и их назначение
  • Основные изменения в схеме электровозов ВЛ11
  • Автоматические выключатели и предохранители цепей управления на электровозах ВЛ11
  • Уставки срабатывания аппаратов защиты и контроля на электровозах ВЛ11 и ВЛ11М
  • Назначение диодов на электровозах ВЛ11
  • Назначение диодов на электровозах ВЛ11М
  • Литература
  • Электрические схемы электровозов ВЛ11 и ВЛ11М

Преобразователи частоты – Рекуперация электроэнергии

Современная преобразовательная техника позволяет получать экономию электроэнергии не только от оптимизации управления электродвигателями, но и имеет возможность давать дополнительную экономию за счет рекуперации электроэнергии.

Рекупера́ция(от лат. recuperatio «обратное получение»)возвращение части материалов или энергии для повторного использования в том же технологическом процессе.

Вместе с преобразователями частоты, могут быть применены модули рекуперации. Они применяются при управлении кинематическими системами, накапливающими при разгоне и торможении большое количество энергии.

Применение модулей рекуперации позволяет в процессе торможения вернуть в сеть механическую энергию с вала двигателя.

Модуль рекуперации подключается входом к звену постоянного тока, а выходом непосредственно, к питающей частотный преобразователь сети. Если к звену постоянного тока подключено несколько преобразователей, то достаточно одного модуля рекуперации.

Существуют преобразователи частоты, которые представляет собой инвертор со встроенной функцией возврата запасенной энергии от двигателя в сеть.

Идея возврата энергии в сеть, позволяет отказаться от громоздких тормозных резисторов и значительно увеличить скорость торможения двигателя.

При этом преобразователь частоты обеспечивает работу в режимах управления двигателем или рекуперации энергии без применения дополнительного оборудования, что в свою очередь обеспечивает:

1. Сохранение рабочего пространства – не требуется дополнительного оборудования (тормозной модуль, тормозные резисторы) для эффективного торможения двигателя

2. Сохранение энергии и расходов – рекуперируемая преобразователем частоты энергия возвращается обратно в питающую сеть

3. Нет выделения тепла, так как тормозные резисторы не применяются.

Преобразователи частоты с рекуперацией электроэнергии в сеть, чаще всего используют для решения задач, связанных с циклически чередующимися процессами ускорения и замедления.

Рекуперация: и дать, и взять

16 февраля 2011 годаЕще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге.

Еще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге.

Термин «рекуперация» произошел от латинского recuperatio (обратное получение) и означает возвращение некоего количества вещества или энергии для последующего использования в том же технологическом процессе.

Например, существует рекуперация тепла в системах вентиляции, когда удаляемый из помещения воздух подогревает поток, нагнетаемый внутрь. Или рекуперация драгоценных камней или металлов, которые извлекают из отработавших ресурс инструментов, восстанавливают и вновь пускают в производство. В транспортных же машинах, в том числе в автомобилях, часто встречается рекуперация электрической энергии.

Как оно работает

Самый простой пример конструкции, позволяющей возвращать энергию, — умный генератор. При интенсивном разгоне он отключается, чтобы разгрузить двигатель, — следовательно, уменьшается расход топлива и количество вредных выбросов. Потребители электричества в это время вытягивают энергию из аккумулятора.

Водитель убирает ногу с педали газа — генератор вновь подключается и пополняет заряд батареи, а автомобиль экономит до 3% горючего.

Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.

Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.

Еще больше пользы приносит рекуперация в гибридных и электрических моделях. Тут электромотор выполняет две функции — движущей силы и генератора.

Разгоняя автомобиль, он потребляет электричество, а при замедлении преобразует механическую энергию в электрическую. Стоит отпустить педаль акселератора, как электроны начинают двигаться в обратную сторону — и батарея заряжается.

При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.

У таких машин тормозная система, как и силовая установка, — гибридная.

Важно

Бессменная гидравлика, приводящая в действие колесные механизмы, работает обычно при интенсивном замедлении, а при плавном (до 0,2–0,3g) используется так называемое рекуперативное торможение.

Электродвигатель переходит в режим генератора, обмотки статора отдают ток в аккумуляторную батарею, что создает тормозной момент, заставляющий автомобиль останавливаться. Чем сильнее водитель давит на тормоз, тем выше противодействующий момент — и тем интенсивнее автомобиль замедляется, а электромотор заряжает батареи.

Таким образом, рекуперация позволяет не только экономить топливо (примерно 5–10%), но и в полтора-два раза реже менять тормозные колодки.

Повышенная энергоотдача в батарею происходит и в случае, если селектор режимов движения переведен в положение B (Brake). При этом автомобиль лучше тормозит двигателем, поэтому на горной дороге быстрее пополнится запас электричества в аккумуляторах, а тормозные диски и колодки не перегреются.

Использование

Принцип рекуперации пытаются использовать в автомобилях Формулы 1: редкий случай, когда технологию опробовали на серийных машинах, а потом предложили королеве автоспорта. Правда, конструкции так называемого KERS (Kinetic Energy Recovery System — система возврата кинетической энергии) здесь более изощренные. Большинство команд используют электрическую рекуперацию. У «Вильямса» в коробку встроен сверхкомпактный маховик, который раскручивается при торможении, накапливая механическую энергию, чтобы потом отдать ее обратно на колеса:

Обкатав KERS на формулах, Ferrari примерила систему рекуперации на дорожный автомобиль.

На базе купе 599 GTB Fiorano появился первый в истории Ferrari гибрид 599 GTB HY-KERS. Шестилитровому бензиновому двигателю на разгоне помогает 74-киловаттный электромотор, вырабатывающий энергию при торможении и позволяющий проехать на электротяге до 5 км. Рекуперация: и дать, и взятьРекуперация: и дать, и взятьОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter