Оглавление
- ТЭС на угле
- Послесловие
- Повышение надежности и качества теплоснабжения
- Юго-Западная, Санкт-Петербург
- Типы тепловых электростанций
- Что такое ТЭС?
- Исполнения мини-тэц
- Газотурбинные электростанции
- Чем ТЭС отличается от ТЭЦ
- Схема работы
- Что такое АЭС?
- Принцип работы
- Самые мощные ТЭС
- Уголь, как топливо ТЭС.
- История тепловой энергетики и перспективы развития
ТЭС на угле
Уголь уже давно стал одним из основных источников энергии в повседневной жизни и производственной деятельности людей. Широкое распространение данного вида топлива стало возможным благодаря его доступности. Во многих месторождениях он расположен в нескольких метрах от поверхности земли и может добываться более дешевым открытым способом. Кроме того, уголь не требует каких-то особых условий хранения и складируется в обычные кучи неподалеку от объекта.
Промышленное использование угля началось в конце 18-го века. В дальнейшем, когда появился железнодорожный транспорт, уголь стал источником движущей силы для паровозов. Позднее он стал применяться на первых тепловых электростанциях, построенных в конце 19-го века. Многие ТЭС и в настоящее время работают на угле.
На самых первых электростанциях сжигание угля осуществлялось путем его укладки на колосниковые решетки. Загрузка топлива и удаление шлака выполнялось вручную. Постепенно эти процессы были механизированы и уголь попадал на решетки из верхнего бункера. Решетка приводилась в движение и отработанный шлак ссыпался в специальный приемник.
Современные тепловые электростанции уже давно не пользуются кусковым углем. Вместо него в котлы загружается угольная пыль, получаемая в дробилках или мельницах. Подача топлива к горелкам производится сжатым воздухом. Попадая в топку, угольная пыль вперемешку с воздухом начинает гореть, выделяя большое количество тепла.
Послесловие
Несмотря на то, что теплоэлектростанции работающие по циклу Ренкина уступают по КПД ГТУ и ПГУ, они все еще являются важнейшей составляющей энергетической системы России и мира. Из-за этого и плохой экологической составляющей идет процесс замены электростанций работающих на паре, однако процесс этот будет долгим: тепло требуется потребителям, а на массовую замену всего парка не хватит никаких средств. В сети можно видеть разные прогнозы, в основном сходящиеся на том, что у данных агрегатов есть еще около 50-ти лет лидерства в генерации тепла и электричества. Я же не буду гадать на кофейной гуще и последую примеру специалистов атомной отрасли:
”В течение последних лет специалисты были очень осторожны в своих оценках тенденций развития ядерной энергетики, т.к. реальность упорно отказывалась следовать их прогнозам”
Н.Л. Чар и Б.Дж. Шик «Развитие ядерной энергетики: история и перспективы»
Есть как минимум один фактор, который может повлиять на изменение данной тенденции: Россия обладает огромными запасами углей, в том числе и хорошего качества. Более того, угли эти достаточно неглубокого залегания, ввиду чего цена добычи довольно невысока. Поэтому с некоторой долей вероятности можно сказать, что процесс замены парка будет медленным. Не исключено, что мы затянем вплоть до повальных аварий угрожающих работе всей энергосистемы. Работа в сторону увеличения энергетических, экологических и экономических показателей, а также увеличения срока службы паротурбинных установок будет вестись и дальше.
Что касается перспективы российской теплоэнергетики: ГТУ и ПГУ, решительно не ясно, как именно сложится ситуация на рынке. Из-за достаточно высоких капитальных затрат парогазовые установки достаточно медленно занимают место паротурбинных. Газовые же двигаются очень и очень уверенно.
При этом, для энергетики важен не только и не столько КПД. Он лишь отображает эффективность использования топлива. Доля топливной составляющей может быть разной, а, значит, и на цену электроэнергии для потребителя улучшение энергетической эффективности будет влиять по-разному. Чем большая доля затрат за время жизни уходит на закупку и транспортировку топлива (а также на выбросы в атмосферу), тем выгоднее повышать КПД теплоэлектростанции.
К примеру, в соседней отрасли – атомной энергетике – топливная составляющая при использовании открытого ядерного топливного цикла очень мала. В сумме со спецификой конструкций реакторов это определяет достаточно малый КПД ПТУ на водо-водяных реакторах (хотя иногда ведутся исследования по повышению начальных параметров).
- Отчет о функционировании ЕЭС России в 2019 году // Системный оператор Единой Энергетической Системы России
- Сухарева Е.В. Методы распределения затрат при формировании себестоимости энерги на ТЭЦ // ТДР. 2015. №2.
- Б.В. Сазанов Тепловые электрические станции // “Энергия”, Москва, 1974
- В.А. Кирилиллин, В.В. Сычев, А.Е. Шейндлин «Техническая термодинамика» // М.: Издательство МЭИ, 2008 г.
- П.А. Кругликов Технико-экономические основы проектирования ТЭС и АЭС // Северо-западный заочный государственный технический университет. Санкт-Петербург. 2003 г.
- В.В. САХИН УСТРОЙСТВО И ДЕЙСТВИЕ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК. Книга 1. ПОРШНЕВЫЕ МАШИНЫ. ПАРОВЫЕ ТУРБИНЫ Учебное пособие // Министерство образования и науки Российской Федерации Балтийский государственный технический университет «Военмех» Санкт-Петербург 2015
- В.В.Шапошников Лекции по предмету «Турбины ТЭС и АЭС». Паротурбинные установки // Кубанский государственный технологический университет
- В.А. Кириллин, В.В. Сычев, А.Е. Шейндлин»Техническая термодинамика» // М.: Издательство МЭИ, 2008 г.
- М.М. Ковалевский Стационарные ГТУ открытого цикла // Москва. «Машиностроение». 1979 г.
242
Повышение надежности и качества теплоснабжения
Крупные ТЭЦ были построены «с запасом»: они устойчивы к переменным нагрузкам и обладают резервными схемами теплоснабжения (например, водогрейными котлами). «Генерация тепла на ТЭЦ, подключенных к централизованной системе теплоснабжения, гораздо надежнее теплоснабжения от единственной котельной в своей выделенной зоне теплоснабжения», — говорит Николай Шарапов.
Это преимущество «большой энергетики» подчеркивают все генераторы. Так, с осени этого года теплоснабжение района Затон в Уфе, а это более 200 зданий, было переведено на новую парогазовую Затонскую ТЭЦ, запущенную в марте (ее тепловая мощность – 290 Гкал в час). По данным Башкирской генерирующей компании («дочка» госхолдинга «Интер РАО»), из трех малых муниципальных котельных, до этого работавших в этом микрорайоне, одна выведена в резерв, а две другие теперь будут эксплуатироваться в режиме центрального теплового пункта. «Теплоснабжение микрорайона от крупной ТЭЦ по сравнению с малыми котельными имеет ряд преимуществ. Главное – это надежность и качество. На ТЭЦ всегда находится в полной готовности к эксплуатации резервное оборудования – водогрейные котлы. Также имеется запас аварийного топлива, на случай перебоев в газоснабжении», — рассказали «Кислород.ЛАЙФ» в БГК.
Юго-Западная, Санкт-Петербург
В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:
- Компенсация сильного дефицита тепловой энергии, который мешал интенсификации программы жилищного строительства.
- Повышение надежности и энергетической эффективности городской системы в целом, так как именно с этим аспектом имел проблемы Санкт-Петербург. ТЭЦ позволила частично решить эту проблему.
Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.
Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.
Типы тепловых электростанций
Типы тепловых электростанций — важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником энергетики окажутся альтернативные виды, но пока их применение остается нецелесообразным.
- Конденсационные (КЭС);
- Теплоэлектроцентрали (ТЭЦ);
- Государственные районные электростанции (ГРЭС).
Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.
Конденсационные (КЭС)
Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.
Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.
Теплоэлектроцентрали (ТЭЦ)
ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.
Государственные районные электростанции
Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.
Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.
Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Что такое ТЭС?
Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.
Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.
На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.
Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, экологическая угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.
Исполнения мини-тэц
Контейнерное и цеховое исполнение — два основных вида монтажа мини-тэц
За исключением некоторых специальных ситуаций, считается что контейнерное исполнение мини-тэц более экономично и оправдано, если мини-тэц состоит из одной или двух газопоршневых установок. При монтаже контейнерной (или блок-модульной) мини-тэц на строительную площадку приезжает уже практически полностью готовое решение, где все кабеля уже проложены, трубы опрессованны, а системы газоснабжения, вентиляции и пожаротушения смонтированы и имеют соответствующие сертификаты. Не смотря на то, что контейнерная мини-тэц приезжает в частично разобранном состоянии, где с крыши контейнеры для удобства транспортировки сняты все внешние элементы, окончательный монтаж достаточно прост. Кроме того, контейнерная экспликация оборудования удобна и оправдана, когда производится поэтапный ввод мощностей в работу, по мере роста потребностей предприятия, или же когда место работы оборудования удалено от инфраструктуры (месторождения, перекачивающие станции). Следует заметить, что по своим габаритам, стоимости и наполненности контейнера для одной и той же ГПУ могут отличаться в несколько раз, от простого и бюджетного исполнения из сэндвич-панель, до полноценных энергомодулей с цельносварными конструкциями (на фото). Одно из дополнительны преимуществ контейнерного вида является тот факт, что весь энергомодуль является законченным единым изделием, для которого уже не требуется проектирование внутренних элементов.
Цеховое исполнение, когда все элементы мини-тэц поставляются и размещаются отдельно в специальном здании, так же востребовано. Во-первых, газопоршневые электростанции часто размещают в существующих зданиях котельной, в рамках реконструкции заменяя устаревшие котлы (к примеру, ДКВР-ы или ПТВМ-ы) на современную когенерационную установку. Во-вторых, при более чем трёх устанавливаемых ГПУ отдельное здание более практично как с точки зрения экономии средств, так и с точки зрения удобства обслуживания ГПУ. В третьих, если на предприятии одновременно строится и котельная, и тепловой узел, и когенерационная установка, их часто располагают вместе, в едином энергоблоке.
Контейнерное исполнение
- Имеет наивысшую степень готовности
- Просто проектировать, просто монтировать.
- Дешевле, когда устанавливается одна или две ГПУ
- Сложнее обслуживать
Цеховое исполнение, в здании
- Все элементы проектируются и монтируются отдельно
- Быстрее срок поставки, дольше срок монтажа
- Дешевле, когда устанавливается более трёх ГПУ
- Легче обслуживать
При правильном выборе мини-тэц , его типа, мощности, исполнения и режима работы с сетью ЗАО «Автономный Энергосервис» обеспечивает эффективную работа с выработкой электроэнергии в 2-3 раза дешевле сетевых тарифов. При этом дополнительный эффект достигается за счет утилизации бесплатного тепла.
Газопоршневые электростанцииПример расчета окупаемости мини-ТЭСЗавершенные проекты
Газотурбинные электростанции
Основу современных газотурбинных электростанций составляют газовые турбины мощностью 25-100 МВт. Упрощенная принципиальная схема энергоблока газотурбинной электростанции представлена на рис.12.
Рис.12. Принципиальная технологическая схема электростанции с газовыми турбинами
КС — камера сгорания; КП — компрессор; ГТ — газовая турбина;
G — генератор; Т — трансформатор; М — пусковой двигатель
Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1-2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Основная часть теплоты, получаемая в камере сгорания ГТУ, выбрасывается в атмосферу, поэтому общий КПД таких электростанций составляет 25-30%.
Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ), В них топливо сжигается в топке парогенератора, пар из которого направляется в паровую турбину. Продукты сгорания из парогенератора, после того как они охладятся до необходимой температуры, направляются в газовую турбину. Таким образом, ПГУ имеет два электрических генератора, приводимых во вращение: один — газовой турбиной, другой — паровой турбиной.
Чем ТЭС отличается от ТЭЦ
Сначала надо разобраться с формулировками. Многие не понимаю, чем ТЭС отличается от ТЭЦ, и почему часто один и то же объект называют обеими этими аббревиатурами.
На самом деле это действительно примерно одно и то же. Теплоэлектроцентраль (ТЭЦ) является разновидностью теплоэлектростанции (ТЭС). В отличии от второй, первая вырабатывает не только электричество, а еще и тепло для отопления близлежащих домов.
ТЭЦ более универсальны, но когда с отоплением в домах все нормально, строятся простые ТЭС, но часто они могут быть преобразованы в ТЭЦ строительством пары дополнительных блоков и прокладкой инфраструктуры в виде труб.
Схема работы
Принцип работы ТЭС построен следующим образом.
Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла.
В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф.
Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль.
Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле.
В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину.
Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.
Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.
Что такое АЭС?
Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.
Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.
Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.
В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.
Принцип работы
Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.
Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.
Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.
Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО2, которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.
Самые мощные ТЭС
В настоящее время лидером тепловой энергетики по праву считается тепловая электростанция Туокетуо, находящаяся в Китае в провинции Внутренняя Монголия. До недавних пор она являлась лишь третьей в мире, уступая по мощности ТЭС, расположенным в Тайчжуне и Сургуте. В результате проведенной реконструкции в 2017 году добавились два энергоблока по 660 Мвт каждый, после чего общая мощность станции достигла 6720 мегаватт. После этого Сургутская ГРЭС стала занимать 3-е место в мире и 1-е – в России.
В российской Энергосистеме доля тепловых электростанций составляет около 70%, а общее количество в натуральных цифрах – 358 единиц. Самые крупные ТЭС расположены возле крупных месторождений полезных ископаемых, используемых в качестве топлива. Установки, применяющие мазут, привязаны к крупным нефтеперерабатывающим предприятиям.
Крупнейшей российской ТЭС является Сургутская, производительность которой составляет 5600 МВт. На карте географическое положение объекта определяется на примерно одинаковом расстоянии от Нефтеюганска и Ханты-Мансийска.
Строительство объекта началось в 1979 году, а в 1985 году был введен в эксплуатацию 1-й энергоблок. Далее за 3 года в строй вступили все оставшиеся энергоблоки, производительностью 800 МВт. Работа станции осуществляется на попутном газе, образованном в местах разрабатываемых газовых месторождений. Такой газ должен утилизироваться, однако он превратился в энергетический ресурс. К настоящему времени построены еще 2 энергоблока по 400 МВт, что позволило вывести станцию на проектную мощность.
Следует отметить еще одну крупную российскую ГРЭС – Рефтинскую. Она работает на каменном угле, а производительность составляет 3800 мегаватт. Объект расположен примерно в 100 км от Екатеринбурга. Строительство велось с 1963 по 1980 годы, в течение всего периода энергоблоки вводились в строй поэтапно.
Газотурбинная электростанция (ГТЭС)
Геотермальные электростанции (ГТЭС)
Электростанции России (ТЭС, ГЭС, ГАЭС, АЭС)
Волновая электростанция (ВЭС)
Виды электростанций
Ветряные электростанции
Уголь, как топливо ТЭС.
Пожалуй, начнём с угля. Уголь известен человечеству с давних времён. Им люди отапливают свои жилища очень давно. Это связано, прежде всего с доступностью самого топлива — некоторые залежи угля становятся доступны буквально сняв 2-3 метра верхнего слоя земли. Также давнее применение угля в качестве топлива связано ещё с тем, что его легко можно хранить. Не нужно каких-то хитрых приспособлений и построек, достаточно сложить его в кучу.
В промышленности уголь активно начали использовать с конца 18 века. Со становлением железнодорожного транспорта уголь начали использовать и там
На любом производстве важно иметь балкон, с которого будет обзор на предприятие. Балкон под ключ
Первые электростанции, работающие на угле, начали строить с конца 19 века и до сих пор уголь на ТЭС активно используется.
На первых ТЭС уголь сжигался в котлах на колосниковых решетках. Сначала кочегары лопатами закидывали уголь в топку, шлак удаляли тоже вручную. Затем появились механизированные колосниковые решетки. На них уголь ссыпался с верху из бункера, решетка двигалась и шлак падал с другого конца в приемник шлака. Это значительно облегчило труд кочегаров.
В настоящее время в электростанций не жгут уголь в виде комков. Сейчас сжигают угольную пыль. Угольная пыль получается после размола кусков угля в дробилках и различных мельницах (барабанные, молотковые, мельницы-вентиляторы и др.). Затем, угольная пыль транспортируется воздухом к горелкам, установленных в котле. На выходе из горелок в топке, угольная пыль перемешиваясь с воздухом горит.
Вы можете более подробно прочитать про .
История тепловой энергетики и перспективы развития
Первую теплоэлектростанцию построил немецкий инженер Зигмунд Шуккерт в Баварии в 1878 году. С ее помощью освещался грот в саду замка Линдерхоф. В 1882 году были введены в эксплуатацию электростанция в Лондоне, которая использовалась для электрического освещения, и в Нью-Йорке (500 кВт). На них применялись поршневые паровые двигатели.
Изобретение паровой турбины позволило строить более крупные и эффективные установки, и с 1905 года тепловые электростанции стали возводиться только с турбинами.
В России первая тепловая электростанция общего пользования мощностью 35 кВт была построена в 1883 году в Санкт-Петербурге. Она предназначалась для подачи электроэнергии на освещение Невского проспекта. Московская ГЭС-1 (городская электростанция) появилась в 1897 году. Ее мощность составляла 3,7 мВт.
Структура тепловых электростанций в России на сегодняшний день:
- с паровыми турбинами – 79% от общей мощности;
- с парогазовыми агрегатами – 15,5%;
- с газотурбинными агрегатами – 4,8%;
- с дизельными и газопоршневыми установками – 0,7%.
Переход к выработке электроэнергии от возобновляемых источников не так прост, хотя это желаемое направление развития электроэнергетики для человечества. В ближайшее время отказаться от тепловой энергетики будет невозможно, и она сохранит свою доминирующую роль.
Главным направлением развития этой отрасли является разработка прогрессивных технологий, которые позволят снизить количество вредных выбросов в атмосферу, а также повысить эффективность работы теплоэлектростанций.