Домашние роботы

Оглавление

А если мне понравится и я захочу сделать это своей профессией? Куда податься?

Самое очевидное решение — в программисты. Причем не обязательно туда, где работают непосредственно с «железом»: навыки, полученные во время занятий робототехникой, пригодятся в любой сфере — от промышленного до веб-программирования.

Если возникнет желание связать свою дальнейшую судьбу именно с роботами, придется получить соответствующее высшее образование. Специальность «Робототехника и мехатроника» уже появилась во многих технических вузах — в Москве это МГТУ имени Баумана, МИФИ, МЭИ, МИРЭА. Подойдет и факультет радиотехники: большинство нынешних специалистов по робототехнике получали именно такое образование.

Специальный проект Фонда «Вольное дело» Дерипаски и Журнала «Нож»

Робот, как в рекламе

Наверно, многим знаком рекламный ролик браузера, в котором главным героем является небольшой робот, крутящийся и рисующий фломастерами фигуры на бумаге. Как сделать робота в домашних условиях из этой рекламы? Да очень просто. Для создания такой автоматизированной милой игрушки необходимо запастись:

  • тремя фломастерами;
  • плотным картоном или пластиком;
  • моторчиком;
  • круглой батарейкой;
  • фольгой или изолентой;
  • клеем.

Затем вставляем по очереди фломастеры в проделанные отверстия. К моторчику необходимо прикрепить батарейку. Сделать это можно с помощью клея и фольги или изоленты. Для того чтобы моторчик крепко держался на роботе, необходимо зафиксировать его небольшим количеством клея.

Робот будет двигаться лишь после присоединения второго проводка к закрепленной батарейке.

Роботы для нейронауки

Как может использовать роботов нейронаука? Когда мы изготовляем модель биологической системы, мы начинаем лучше понимать, по каким принципам она работает. Поэтому создание механических и компьютерных моделей управления движениями нервной системой человека приближает нас к пониманию нервных функций и биомеханики.

А наиболее перспективное направление использования роботов в современной нейронауке — это проектирование нейроинтерфейсов, систем для управления внешними устройствами с помощью сигналов мозга. Нейроинтерфейсы необходимы для разработки нейропротезов (например, искуственной руки для людей, лишившихся конечности) и экзоскелетов — внешних каркасов тела человека для увеличения его силы или восстановления утраченной двигательной способности.

Один из первых полноценных нейропротезов конечностей, созданный в Лаборатории прикладной физики Джонса Хопкинса, управляется при помощи электрических импульсов мозга

(Фото: youtube.com)

Робот может взаимодействовать с нервной системой через интерфейс в двух направлениях: нервная система может подавать командный сигнал роботу, в робот от своих сенсоров может подавать человеку сенсорную информацию, вызывая реальные ощущения — за счет стимуляции нервов, нервных окончаний кожи, или самой сенсорной коры мозга. Такие механизмы обратной связи позволяют восстановить чувствительность конечности, если она была утрачена. Они также необходимы для более точных движений роботизированной конечностью, так как именно на основе сенсорной информации от рук и ног мы корректируем движения.

Фото: Dan Hixson / University of Utah College of Engineering

Здесь возникает интересный вопрос — следует ли нам управлять через нейроинтерфейс всеми степенями свободы робота, то есть насколько конкретные команды мы должны ему посылать. Например, можно «приказать» роботизированной руке взять бутылку воды, а конкретные операции — опустить руку, повернуть ее, разжать и сжать пальцы — она совершит сама. Этот подход называется совмещенным контролем — через нейроинтерфейс мы даем простые команды, а специальный контроллер внутри робота выбирает наилучшую стратегию для реализации. Либо можно создать такой механизм, который не поймет команды «взять бутылку»: ему нужно посылать информацию о конкретных, детализированных движениях.

Робот конструктор

Роботы конструкторы — это набор деталей, микросхем и датчиков, которые собирают в интерактивные игрушки. Они движутся, издают звуки, реагируют на внешний мир, выполняют команды владельца и программируются. Например, один из вариантов сборки ULTIMATE V2.0 ROBOT KIT самостоятельно наливает лимонад в стакан из бутылки!

Возможно, Вы бы хотели читать нас чаще, тогда вот наш Telegram

Один из «предков» современных роботов конструкторов — набор Fischertechnik с 1980-х, который подключался к домашнему компьютеру.

Развивающие наборы покупают детям от 3 (под присмотром родителей) и до 16 лет. Эти игрушки — наглядное подтверждение пользы логики, математики, механики и электроники.

Робот конструктор — игра интересная и детям, и родителям. Скорее всего, мама или папа незаметно для себя увлекутся собиранием модели и проведут вместе с ребенком много времени за изучением, моделированием и программирования конструктора.

Makeblock — популярный производитель роботов конструкторов. Конструкция деталей совместима с LEGO. Электроника работает на платформе Arduino (подмножество C/C++). Роботы питаются от пальчиковых батареек АА (хотя для сохранения среды лучше приобрести аккумулятор). Модели Makeblock мощностью 2,4 Гц используют в школах, кружках моделирования, программирования и робототехники.

Отдельного внимания заслуживает MAKEBLOCK XY-PLOTTER ROBOT KIT V2.0 — это плоттер, который «рисует» обычной ручкой (лайнером, карандашом) на бумаге. Плоттер может перенести любые контурные рисунки с компьютера при помощи программы mDraw или Benbox.

Руководят моделями голосом или движениями, пультом через инфракрасный порт или смартфоном через Bluetooth. Большинство моделей Makeblock оснащены ультразвуковым датчиком и датчиком прохождения по линии. Также бывают наборы с датчиками звука, света или температуры, гироскопами и потенциометрами.

Для смартфонов есть официальные приложения Makeblock. Они научат ребенка последовательности действий и алгоритмам, помогут усвоить базовый программный код. Есть и более функциональное приложение, но уже для персонального компьютера. Роботов программируют на базе графической программы SCRATCH. Производитель встроил в приложение понятные детям пошаговые уроки с постепенным повышением уровня сложности.

SCRATCH позволяет:

  • создавать программы из простых графических блоков;
  • создавать интерактивные проекты, в которых робот самостоятельно взаимодействует с миром;
  • тестировать, сохранять и улучшать собственные проекты;
  • перейти от графических блоков к коду, постепенно изучая полную версию ARDUINO, и подготовиться к программированию на C/C++.

Бытовые роботы

Роботы становятся полезными для повседневной жизни, сохраняя время. Они не только выполняют рутинные дела, но и решают творческие задачи: от автоматического мытья окон до праздничной сервировки стола.

Машина может почистить бассейн, выпечь блинчики, покормить ребёнка с ложечки или погладить бельё.

Пылесосы

В качестве примера можно привести LG Hom-Bot Square – робота, который убирается даже вдоль стен и в углах. Никаких лишних покупок не требуется: все насадки уже в комплекте. Такой помощник работает беззвучно, тщательно всасывает пыль, обходит препятствия и делает влажную чистку.

Газонокосильщик

Пример – RoboMower, который выпускается почти 25 лет компанией Friendly Robotics. Находка для владельцев загородного участка. Вы экономите время, а ещё не беспокоитесь о шуме обычной косилки.

Машина сама подзаряжает аккумулятор, легко объезжает территорию, удобряя почву срезанной травой. Это сокращает отходы и улучшает экологию.

Автоматизированный туалет для котов Litter Robot

Нестандартный бытовой робот. Компания Automated Pet Care Products предлагает его тем, кому надо оставить животное на несколько суток. Когда питомец закончил свои дела в лотке, машина убирает содержимое в нижний поддон, обновляя наполнитель. Litter Robot безопасен и обходится хозяевам примерно в $1 000.

9 Как дела у Asimo?

Одним из первых гуманоидных роботов, представленных миру, стал ASIMO от японской компании Honda. Его разработка велась с 80-х годов, а первый ASIMO был продемонстрирован в 2000-м.
В то время он хоть и производил впечатление, но было видно, что до роботов из фантастических романов ему еще очень далеко.

За прошедшие полтора десятилетия ASIMO неплохо продвинулся — достаточно сказать, что теперь он способен бегать и играть в футбол. Но самым важным является то, что уже сегодня он способен выполнять задачу, для которой задумывался — помогать людям с ограниченными возможностями в повседневной жизни.

Можно ли собрать робота самостоятельно?

Сейчас сложно кого-то удивить игрушкой-роботом. Современная технологическая и компьютерная индустрия шагнула далеко вперед. Но все же вас может удивить информация о том, как сделать простого робота в домашних условиях. Бесспорно, сложно понять принцип работы различных микросхем, электроники, программ и конструкций. Сложно обойтись в данном случае без базовых знаний в области физики, программирования и электроники. Даже несмотря на это, каждому человеку по силам собрать робота самостоятельно.

Роботом называется автоматизированная машина, которая способна выполнять различные действия. В случае с самодельным роботом достаточно и того, что машина просто передвигается.

Облегчить сборку помогут подручные средства: телефонная трубка, пластиковая бутылка или тарелка, зубная щетка, старый фотоаппарат или компьютерная мышь.

Как устроены роботы

В основе большинства роботов лежат три технологии: сенсоры, приводы и искусственный интеллект.

Для начала поговорим о сенсорах. Роботы, работающие в доставке еды, могут перемещаться по улицам во многом благодаря гонке беспилотных автомобилей Darpa Grand Challenge 2004. Как и автомобили, такие роботы используют технологию лидаров, которая выстраивает 3D-карту окружения с помощью лазеров. Частные компании стараются обогнать друг друга в разработке беспилотных автомобилей, из-за чего стоимость такой технологии упала до такого уровня, что сейчас создание робота, умеющего ориентироваться в пространстве, требует относительно мало затрат.

Технология лидаров часто используется вместе с машинным зрением, которое обеспечивается за счет 2D и 3D-камер. Вспомните, как Facebook автоматически распознает лица пользователей на фотографии. Точно так же работает и машинное зрение у роботов. Сложные алгоритмы позволяют им распознавать определенные объекты и не врезаться в людей.

Марсоходы катаются по Марсу с 1997 года. Разумеется, с тех пор они стали более продвинутыми. Сейчас, например, марсоход Curiosity (справа на фото) может раскалывать камни лазером. Фото: NASA

Внутри каждого робота есть еще один секретный ингредиент — привод. Этим словом называют комбинацию электрического мотора и коробки передач. От привода зависят силы робота и плавность его движений. Он есть как в маленьких роботах-уборщиках Roomba, так и в мощных роборуках и беспилотных автомобилях.

В некоторых роботах — а именно в мягких — привод работает совсем иначе. Мягкие роботы двигаются благодаря перемещениям накачанного в них воздуха или масла. Такая технология создает более плавные и естественные движения.

Фото: Roomba

Говоря о роботах, нельзя не упомянуть работы стартапа Boston Dynamics. Одной из их работ был робот-гуманоид Atlas, разработанный в рамках конкурса Darpa Robotics Challenge в 2013 году. Сначала ученые смогли научить его выполнять только совсем примитивные задачи, например, поворачивать вентили или открывать двери. Спустя годы, Atlas превратился в настоящее чудо инженерии, которое умеет делать сальто лучше обычного человека. Boston Dynamics также работает над роботом SpotMini, который пугающе ловко может вставать на четыре лапы после того, как его пнул человек. А все благодаря хорошему приводу.

Роботы начинают не только увереннее держаться на ногах, но и становятся умнее. Интеллект важен для роботов так же, как и для людей. Если вы видите яблоко и не можете определить, настоящее оно или искусственное, пока не сунете его себе в рот, то значит, что вы не очень умны. Робототехники стремятся научить роботов осязанию, например, компания SynTouch разработала механические пальцы, которые умеют определять самые разные тактильные ощущения — от температуры до шероховатости.

Сенсоры становятся дешевле, как и процессоры необходимые для работы ИИ. Благодаря развитию игровой индустрии и VR графические процессоры помогают роботам выполнять сложные вычисления не в облаке, а локально. Благодаря им роботы вроде Kuri могут использовать машинное зрение и узнавать вас в лицо. Разумеется, чтобы вам помочь, а не выследить.

3 Роботизированный ресторан

Ресторан в городе Куншан в КНР может похвастаться не только вкусной едой, но и очень оригинальным персоналом: вместо привычных официантов еду посетителям в нем разносят роботы. Кроме того, некоторые блюда также приготовлены роботами-поварами.

Владелец ресторана Сон Юган рассказывает, что занялся разработкой роботов по просьбе дочери, которая попросила его сделать робота-помощника по дому. По его словам, стоимость каждого робота составляет около 40 000 юаней, что не превышает годовую оплату обычного сотрудника. В то же время роботы — отличный способ привлечения в ресторан посетителей.

Признаки робота — автоматичность и движение

Ключевые признаки роботов:

  1. Запрограммированная модель выполняет прямые команды человека или самостоятельно решает определенные задачи.
  2. Модель передвигается в пространстве или перемещает реальные предметы.

Например, металлический манипулятор на автоконвеере — робот. Марсоход, который анализирует почву и питает себя солнечными батареями — робот. Уменьшенная копия популярного дроида «Звездных войн» SPHERO R2-D2 WHITE — тоже робот. Даже квадрокоптер — частный случай робота, потому что он автоматически стабилизируется в воздухе и переносит видеокамеру.

Как вы думаете, домашний компьютер можно считать роботом?

Краткая история роботизации

За последние 100 лет роботы не просто эволюционировали, они стали частью нашей повседневной жизни. Слово «робот» вошло в обиход после того, как в 1920 году свет увидела пьеса Карла Чапека об искусственных людях. И это очень символично, так как «ревущие» двадцатые — период экономического подъема и новых открытий в науке и технике. 

В течение последующих десятилетий произошли выдающиеся открытия в самых различных дисциплинах — кибернетика, мехатроника, информатика, электроника, механика, а именно на них и опирается робототехника. Примерно к 30-м годам XX века появились первые андроиды, которые могли двигаться и произносить простейшие фразы. 

Первые программируемые механизмы с манипуляторами были сконструированы в 1930-х годах в США. Толчком послужили работы Генри Форда по созданию автоматизированной производственной линии. На рубеже 1930-40-х годов в СССР появились автоматические линии для обработки деталей подшипников, а в конце 1940-х годов было впервые в мире создано комплексное производство поршней для тракторных двигателей с автоматизацией всех процессов — от загрузки сырья до упаковки готовой продукции. 

В 1950 году Тьюринг в работе «Computing Machinery and Intelligence» описал способ, позволяющий определить, является ли машина мыслящей (тест Тьюринга). В 1950-х годах появились первые механические манипуляторы, которые копировали движения рук оператора и могли работать с радиоактивными материалами. В 1956 году американские инженеры Джозеф Девол и Джозеф Энгельберг организовали первую в мире компанию «Юнимейшн» (англ. Unimation, сокращенный термин от Universal Automation, универсальная автоматика), и в начале 1960-х первый в мире промышленный робот начал работать на производственной линии завода General Motors. 

Робот Unimate, которого отправили на фабрику General Motors

В 1960-х годах в университетах появились лаборатории искусственного интеллекта, а 1970-х были создали микропроцессорные системы управления, которые заменили специализированные блоки управления роботов на программируемые контроллеры. Это сократило стоимость роботов примерно в три раза, так что они стали всё чаще применяться в разных отраслях промышленности. В 1982 году в IBM разработали официальный язык для программирования робототехнических систем, а спустя два года компания Adept представила первый робот Scara с электроприводом. В 1986 году роботы были впервые применены в Чернобыле для очистки радиоактивных отходов. 

Двадцать первый век принёс невиданные успехи в развитии робототехники. В 2000 годы, по данным ООН, в мире использовалось уже 742 500 промышленных роботов. Невозможно перечислить все новые модели и открытия в сфере робототехники за последние 20 лет. Вот лишь некоторые из них. 

В начале 2000-х многие компании представили новых гуманоидных роботов — например, Asimo от Honda и SDR-3X от Sony. Канадский космический манипулятор Canadarm2 использовался для завершения сборки МКС, а в мюнхенском Институте биохимии имени Макса Планка был создан первый в мире нейрочип. Появились первые серийно выпускаемые бытовые роботы-пылесосы (Electrolux) и первая киберсобака (Sanyo Electric). Компания Bandai представила прототип робота с возможностью распознавания человеческих лиц и голосов, ученые из Стэнфордского университета — робота STAIR (Stanford Artificial Intelligence Robot), наделенного интеллектом и способного принимать нестандартные решения, руководствуясь заложенными в него знаниями об окружающем мире. Военный робот смог распознавать и преодолевать препятствия — в NASA взяли на вооружение экзоскелет X1 Robotic Exoskeleton. Роботы стали активно использоваться в медицине при проведении хирургических операций. 

Что такое робот-пылесос и кому он нужен?

Робот-пылесос — относительно небольшое устройство, которое использует умные технологии, чтобы самостоятельно перемещаться по квартире и убирать пыль и грязь. Он экономит время и позволяет реже заказывать клининг. Пылесос может пробраться в дальние углы, перешагнуть через небольшие порожки и убраться под низкой мебелью, куда вы сами редко заглядываете. Причем запускать его можно хоть каждый день, а значит, в помещении будет накапливаться гораздо меньше пыли и грязи. Это особенно актуально для аллергиков и владельцев домашних животных — больше не нужно постоянно собирать шерсть за своим питомцем. Сам же робот-пылесос почти не требует ухода, достаточно лишь иногда чистить контейнер для мусора. Конечно, он не избавит вас от уборки полностью, но точно позволит делать ее гораздо реже.

Мой робот сможет защитить меня от врагов? Ну или хотя бы тапочки принести?

Самый первый — вряд ли. Точнее, нет ничего невозможного, но для начала лучше поставить перед собой цель попроще. Например, на базе того же Arduino можно собрать самых разных движущихся роботов: они могут ездить просто вперед-назад, по сложной заданной траектории или по нарисованной линии. Робот, который самостоятельно объезжает препятствия или как-то еще меняет свое поведение при приближении к разным объектам, тоже посильная задача. Еще первый робот вполне сможет включать и выключать что-нибудь, ориентируясь на уровень освещенности, совершать какие-то действия в определенный момент, заданный таймером, или по нажатию кнопки.

Терминатора не будет

С гуманоидными роботами, способными стать полноценными партнерами человека, придется подождать. Для начала надо создать систему искусственного интеллекта, по мощности и быстродействию аналогичную человеческому мозгу, и уместить ее в голову робота. Ведь даже простое хождение на двух ногах и ориентирование в пространстве требует колоссальных вычислительных способностей.

Сегодня подобная система может занять несколько комнат, и нет никакой гарантии, что по возможностям она приблизится к человеку — нам остаются только аналоги тараканов и лягушек. Принципиально новый подход надо искать и при создании опорно-двигательного аппарата робота. Пока что робототехники используют моторы и приводы, которые не могут обеспечить необходимую гибкость и свободу движений, свойственные человеку. Решить эту проблему можно только с помощью искусственных мышц, над разработкой которых бьются ведущие инженерные центры мира.

Однако благодаря узкой специализации роботы достигли высоких результатов в военной и космической отраслях. А современный заводской конвейер по сути представляет собой одного гигантского робота, который собирает автомобили или современную электронику.

Сегодня домашние роботы еще очень примитивны. Малейшее вмешательство в алгоритм их поведения приводит к ошибкам в работе. Они подобны черепахам, перевернутым на спину. Однако можно с уверенностью сказать, что пройдет еще 5—10 лет, и робот станет для нас таким же обычным явлением, как автомобиль.

Луноход — типичный автономный робот.

Роботов на земной орбите пока больше, чем людей.

Боевые роботы

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п.

Беспилотник

Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли).

В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

В Технологическом институте Джорджии под руководством профессора Хенрика Кристенсена разработаны напоминающие муравьёв инсектоморфные роботы, способные обследовать здание на предмет наличия там врагов и мин-ловушек (доставляются к зданию «главным роботом» — мобильным роботом на гусеничном ходу).

Получили распространение в войсках и летающие роботы. На начало 2012 года военными во всём мире использовались около 10 тысяч наземных и 5 тысяч летающих роботов; 45 стран мира разрабатывало или закупало военных роботов.

Что мне потребуется?

В первую очередь — микроконтроллер. Он станет мозгом будущего робота. Можно сказать, что микроконтроллер — это крошечный компьютер, размещенный на одной микросхеме. У него есть процессор, оперативная и постоянная память и даже периферийные устройства: интерфейсы ввода и вывода данных, различные таймеры, передатчики, приспособления, которые инициируют работу двигателей. Набор устройств зависит от конкретной модели. Именно микроконтроллер будет получать информацию от внешнего мира через датчики движения, фотокамеры и прочие приспособления, анализировать ее и побуждать робота совершать в ответ какие-то действия.

Микроконтроллер нужно будет установить на печатную плату, запитать его, подсоединить все необходимые устройства (датчики, лампочки, двигатели), а еще собрать из подручных материалов корпус робота. Все детали, которые для этого нужны, можно купить в любом магазине радиотехники.

Роботы оставят людей без работы?

В ближайшем будущем роботы принципиально не изменят жизнь человека, но если посмотреть на вопрос в далекой перспективе, то тенденции на общую роботизацию очевидны. Вот направления, которые в ближайшие годы повлияют сильнее всего на развитие робототехники в мире и в России в том числе.

  1. Необходимы новые технологии в области энергообеспечения роботов, совершенствование современных аккумуляторов и создание новых элементов питания. Если будет реализована идея дистанционной подзарядки робота от источников энергии, встроенных в пол или стены, то это тоже значительно способствует развитию отрасли.
  1. Сейчас активно развиваются технологии, позволяющие роботам взаимодействовать не только с людьми, но и друг с другом, — например, системы управления беспилотным трафиком. Транспортные роботы должны связываться друг с другом, чтобы избежать аварий и несчастных случаев.

Free Creative Stuff / Pexels

Важное направление — навигация в экстремальных условиях. Роботы должны четко понимать, куда они двигаются при низкой или нулевой видимости, в том числе в тех местах, куда человеку попасть не получится — на морском дне или в горах

Также у робота должен быть алгоритм действий на тот случай, если он останется совсем без связи — например, если спутник выйдет из строя. Полностью автономные системы навигации для беспилотных устройств сейчас разрабатывают как в России, так и за рубежом.

  1. В будущем больше внимания будут уделять не жесткому программированию, а обучению роботов алгоритмическим процедурам. Машина сможет сама получать новые навыки и обрабатывать их с помощью искусственного интеллекта. С развитием ИИ появится больше действительно «умных» роботов. Взаимодействие человека с ними станет развиваться по нескольким основным направлениям:
  • роботы, повторяющие возможности человека (протезы, экзоскелеты);
  • роботы, расширяющие возможности человека;
  • роботы, дистанционно управляемые человеком (для использования в труднодоступных местах);
  • роботы, которые общаются с человеком голосом (чат-боты и голосовые помощники).

Владимир Смирнов из ДГТУ также считает, что роботы не оставят людей без работы:

Специальный проект Фонда «Вольное дело» Дерипаски и Журнала «Нож»

Новости про роботов России

Но не западом и единым жива робототехника. В России эта отрасль тоже активно финансируется и развивается. Несмотря на устоявшееся мнение, наши ученые достигли в отрасли значительных успехов. В статье мы расскажем самые популярные новости про роботов для детей и других заметных экземплярах последних лет.

Вот, например, первый в мире робот-учитель «Ева», разработана в России. Андроид выглядит как известный и любимый многими персонаж из мультфильма «Валли». Ева даже уже успела провести свой первый урок в IT-лицее Казанского федерального университета. Андроид умеет передвигаться со скоростью ходьбы обычного человека, 5 км/ч. А наблюдает за поведением учащихся в классе она с помощью видеокамеры, которая вмонтирована в «лицо» Евы.

Из последних крупных российских проектов стоит еще отметить робота AnyWalker. Шарообразный гигант способен передвигаться по лестницам, открывать двери и преодолевать незначительные препятствия на поверхности.

Новости высоких технологий науки и техники

Последние новости мира роботов мы рассказали. Но и IT-индустрия тоже не спит. Новых и актуальных новостей высоких IT технологий тоже хватает. Поведаем вкратце о самых нашумевших.

Так, прошлой осенью Apple представила публике свой вариант говорящего зеркальца из сказки о мертвой царевне. Правда назвала она его iHome. Внешне новинка выглядит как обычное зеркальце. Правда внутри его установлен сверхчувствительный микрофон с отличным шумоподавлением. Это дает возможность наладить контакт с голосовой помощницей Siri, которая также предустановлена в устройство.

Главный конкурент яблочных, Гугл, тоже не отстает. Совсем недавно она выпустила новую платформу, которая называется Android Things 1.0. Она была представлена ранее для ряда компаний, которые занимаются производством гаджетов из мира интернет-вещей. Что же это такое? Это своеобразный аналог обычного и знакомого нам ОС андроид. Только вот предназначена эта технология для работы на умных колонках, термостатах, мониторах качества воздуха и прочих гаджетах, где есть небольшой экран, но полноценной ОС телефона не требуется.

Новости высоких технологий России тоже не стоят на месте. Тут лямку тянет за всех одна компания Яндекс. Не так давно она анонсировала поступающую летом в продажу устройство под названием Яндекс.Станция. Устройство управляется голосом, умеет воспроизводить музыку. Его можно подключить к телевизору и управлять воспроизведением видео из интернета с помощью голоса. На борту колонка имеет голосового ассистента Алиса. В повседневном быту такая колонка будет отличным помощником.

Вот такие новости из мира роботов и высоких технологий попали в наш список. В ближайшем будущем они полноценно проникнут в нашу жизнь и станут ее неотъемлемой частью.

Роботы подразделяются

Классификация роботов по типу управления:

  1. Автономные — совершающие целевую работу или задачу без вмешательства человека. Такие роботы получают и обрабатывают информацию из окружающей среды самостоятельно с помощью технологии искусственного интеллекта. Они более совершенны с технической точки зрения. Самое примечательное что человечество не смогло создать разумного робота, способного к критическому мышлению. Зачастую такие машины ошибаются там, где человек без труда выходит из ситуации. К таким ботам можно отнести комбайны с технологией беспилотной работы, беспилотные автомобили и дроны курьеры.                        
  2. Полуавтономные — выполняющие задачу без вмешательства человека, при этом по заранее определённому алгоритму. Эти боты более надёжны, по той причине что работают по определённому набору правил. Они запрограммированы создателем той или иной модели. К таким роботам относятся роботы-сборщики на линиях сборки автомобилей, или станки ЧПУ запрограммированные  на какое-либо изделие.
  3. Управляемые — управляемые человеком непосредственно либо дистанционно. Позволяют решать задачи управляя посредством пульта управления или иных устройств ввода сигнала. К таким роботам можно отнести экзоскелеты или просто детская машинка на дистанционном управлении.

Классификация по типу позиционирования:

  1. Стационарные — монтированные в фундамент, к несущим стенам или потолку по отношению к обслуживаемому оборудованию. Чаще используются на производстве где рутинная или тяжелая работа позволяет повысить эффективность и скорость производства продукции. Это сварщики, сборщики, упаковщики, подъёмники и др.
  2. Передвижные — способные перемещаться в пространстве с помощью шасси, либо по ограниченной траектории по рельсам или индуктивным и оптическим трассам. К таким относятся роботы на колёсах, гусеницах, квадрокоптеры и др.

Классификация по типу назначения:

  1. Промышленные — участвующие в производственном процессе изготовления изделий и деталей.
  2. Бытовые — предназначенные для облегчения жизнедеятельности человека.   
  3. Медицинские — предназначенные для работы в медицинской отрасли, облегчающие труд врачам и помогающие исключить человеческий фактор.   
  4. Военные — предназначенные для ведения боевых действий и обороны различных стран мира. К ним можно отнести различные противовоздушные системы, сапёры, военные беспилотники.

Классификация по способу передвижения:

  1. Подземные — соответственно перемещающиеся под землёй. Это могут быть исследовательские дроны.
  2. Подводные — перемещающиеся под водой. Это могут мыть подводный батискаф или торпеда.
  3. Надводные — перемещающиеся над водой. Это могут быть лодки или катера.
  4. Наземные — передвигающиеся по суше. Это самоходные машины на гусеничном или колёсном ходу. Некоторые модели перемещаются при помощи механических ног.
  5. Летательные — перемещающиеся по воздуху над землёй. Это так называемые беспилотники и квадрокоптеры.

В этой статье мы классифицировали роботов по разным признакам и сформировали понимание какие бывают роботы.

Немного определений: стандарты по робототехнике

Пойдем по порядку. Итак, слова «исполнительный механизм» говорят нам о том, что робототехники признают роботами только некие механические агрегаты, оснащенные приводами. Этим робототехники отличаются от программистов, которые могут называть роботом или ботом

В конце концов, вполне обычное дело, когда разные области знаний используют одни и те же слова для описания собственных смыслов. Пока просто запомним это разночтение.

Далее в ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 сказано про «определенную степень автономности», понимаемой как

Так все же, господа робототехники, роботы это или не роботы?

Кроме того, этакой несколько наивной формулировкой об «определенной степени автономности» разработчики стандарта как бы намекают на свою неспособность дать точное определение термину «робот». Что такое определенная степень автономности и кем она определена? Является ли признаком робота определенная полная автономность, или же определенная никакая — тоже? Впрочем, действительно, на этот вопрос однозначно не ответить, но, по крайней мере, отмечено стремление хоть к какой-нибудь автономности.

Далее имеем неточность в словах «способный перемещаться во внешней среде», так как перемещение представляет собой

Современный промышленный робот-манипулятор, который не изменяет своего местоположения в пространстве, но отвечает другим предъявленным требованиям (программируется по двум и более степеням подвижности и обладает определенной степенью автономности, особенно если, скажем, оснащен техническим зрением), должно быть, с удивлением узнает, что он роботом не является. Здесь была бы более точна формулировка из предшествующего ГОСТ Р ИСО 8373-2014  от ООО «НИИ экономики связи и информатики «Интерэкомс», который как раз и был заменен обсуждаемым более свежим стандартом, а именно: «движущийся внутри своей рабочей среды».

Кстати, в англоязычном оригинале  это определение звучит так:

Мне кажется, коллеги из НИИ экономики связи и информатики лучше разобрались в роботах, чем коллеги из ЦНИИ робототехники. Шутка (зато термин «степень подвижности» от ЦНИИ РТК более уместен, чем «ось» от «Интерэкомс»). Но и в целом, ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 грешит подобными неточностями (где в переводе, а где и в робототехнической терминологии).

Зато в нём же приведена сноска с еще одним, чуть менее противоречивым, определением робота:

Мы обсудили свежие стандарты по робототехнике. А ведь ещё есть и более ранние. Правда, они были выпущены в 1980-х гг. и уже настолько устарели, что вовсе не помогут нам в понимании, что же такое современный робот.

Что ж, будем считать, что со стандартами стало яснее. А вот с роботами — нет. Какая-то путаница.