Двухполярное питание из однополярного для портатива на tps65133

Оглавление

Обратный ток акустической системы

Как известно, акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю. Этот ток, протекая по проводникам, создаёт разность потенциалов, что может привести к появлению положительной обратной связи и как следствие нестабильности усилителя.

Для избежания этого, земляную клемму громкоговорителя следует подключать к общему выводу конденсаторов фильтра питания. Часто вывод громкоговорителя подключают к общему выводу микросхемы, как показано на рисунке:

Такое подключение замыкает отрицательную полуволну сигнала в локальном контуре, исключая фильтрующий конденсатор, который мог бы снизить излучаемые помехи и повысить стабильность системы.

На рисунке показано, как ток утечки на землю одной полуволны сигнала может навести неприятные помехи и искажения, если общий провод громкоговорителя подключен к выводу выходного каскада микросхемы:

Аналогично, если на плате усилителя в цепях питания есть байпасные конденсаторы (а они обычно есть) довольно большой ёмкости в несколько сотен микрофарад, то импульсы зарядного тока также создадут на общем проводнике разность потенциалов. Поэтому, повторимся ещё раз, наилучшая точка подключения общего провода акустической системы — это общий вывод конденсаторов фильтра питания.

Схема цепей смещения в усилителях типа UBbIX = – kUBX – b

Последний, четвёртый случай ОУ с однополярным питанием и переходной характеристикой вида UBbIX = – kUBX – b имеет схему представленную на рисунке ниже


Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX — b

Данная схема представляет собой инвертирующий сумматор и состоит из ОУ DA1, развязывающего конденсатора С1, резисторов R1, R2 и R3. С учётом элементов схемы передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить в следующем виде

Расчёт усилителя с переходной характеристикой вида UBbIX = – kUBX – b

Для примера рассчитаем усилитель реализующий переходную характеристику вида UBbIX = – kUBX — b. В качестве начальных условий примем следующие параметры схемы: диапазон входного напряжения UBX = -0,2 … -0,8 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты k и b, для этого решим систему линейных уравнений

    Решив данную систему, получим k = – 6,67 и b = — 0,334. Тогда переходная характеристика будет иметь вид

  2. Определим величину сопротивления R1 и R3

    Примем R1 = 10 кОм, тогда R3 = 6,67 * 10 = 66,7 кОм. Примем R3 = 68 кОм.

  3. Определим величину сопротивления R2

    Примем R2 = 200 кОм.

Как сделать двухполярное питание из однополярного источника: трансформатор с одной вторичной обмоткой

Двухполярное питание из однополярного. Хотел бы в этой статье рассказать как я сделал двухполярное питания используя при этом однополярное. Не так давно я для собственных нужд собрал пару усилителей мощности на микросхеме TDA7294, далее для них нужно было подогнать импульсник с двухполярным питанием.

Но зато у меня хранились на всякий случай пара мощных трансов, каждый только с одной вторичной обмоткой, и причем на разные напряжения. Вообщето у меня была своя задумка как выйти из этого положения исходя из наличия имеющихся деталей. Поэтому поискав в Интернете дополнительную информацию я начал делать схему, с помощью которой можно было бы с одной вторичной обмотки снять напряжение имеющее две разные полярности.

Конечно в устройстве, которое способно обеспечить двухполярное питание из однополярного, ничего сложного нет, но я думаю для начинающих радиолюбителей он будет полезна:

Необходимые электронные компоненты:

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
VDS1,VDS2 Выпрямительный диодный мост Любой на нужное напряжение и ток 2 Распространенные KBU-610, KBU-810
C1,C5 Электролит 4700 мкФ 50В 2
C2,C6 Конденсатор неполярный 100 нФ 2 Пленка или керамика
C3,C4 Электролит 470 мкФ 100В 2

Предложенная в этой публикации схема электронного устройства для конвертирования двухполярного питания из однополярного работает только с переменным входным напряжением, входной постоянный ток для нее не приемлем. Принцип работы этого модуля заключается в том, чтобы получить от одной вторичной обмотки трансформатора переменное напряжение с двумя полярными значениями.

Диоды для выпрямителя выбирайте такие, чтобы выдерживали ток в 2,5 больше, чем максимальный ток потребления усилителя или любого другого устройства куда вы намерены его ставить. В моем распоряжении оказались плоские мостовые выпрямители KBL рассчитанные на ток 15А и напряжение 400V. Вот как на фото ниже:

Это конечно очень жирно, на этот усилитель ставить такие мощные мосты, но для проверки работоспособности аппарата пришлось ставить их. В дальнейшем я их конечно заменю, например, на 4 амперные RBA401У с напряжением 100v, такие мосты свободно обеспечат корректную работу усилителя. Вообщето сейчас выбор мостов большой, не только по электрическим параметрам, но и по типу корпуса.

В случае применения вами данного модуля на устройствах требующих напряжения питания больше 50v, тогда нужно будет установить электролиты C1 и C5 с напряжением соответствующему рабочему напряжению устройства, ну разумеется с запасом. Если у вас не под рукой емкостей с номиналом, который указан на схеме, то можно поставить четыре кондера по 2200µF, соединив параллельно по два в каждое плечо.

В качестве силового источника питания я использовал тороидальный трансформатор, имеющий только одну выходную обмотку с напряжением 30v и потребляемой мощностью мощностью немного больше 55V·A. В итоге, на концах выходной цепи выпрямителя получилось ±43v постоянного напряжения.

Во время тестирования усилителя я его нагрузил по полной, и мощность в нагрузке составила, где то 38W при падении напряжения 24v на максимальной мощности. Но в таком слишком большом падение, ясное дело, виноват маломощный трансформатор. Электронные компоненты установленные на печатной плате были абсолютно холодными.

Снимаем двухполярное питание с одной вторичной обмотки

https://youtube.com/watch?v=l-saJ-b2CCI

В заключение хочу сказать, что такое устройство отлично работает, никаких нареканий к нему нет.

Источник

Буфер сигнала входного напряжения

Другим ограничением конструкции этого усилителя является то, что его входные импедансы довольно низки по сравнению с другими схемами на операционных усилителях, в первую очередь, по сравнению с неинвертирующим усилителем (с несимметричным входом). Каждый источник входного напряжения должен обеспечивать ток через сопротивление, которое значительно меньше импеданса просто входа одиночного операционного усилителя. Решение этой проблемы, к счастью, довольно простое. Всё, что нам нужно, это «буфер» для каждого сигнала входного напряжения через повторитель напряжения следующим образом:


Использование буферных повторителей напряжения на входах дифференциального усилителя

Теперь входные линии V1 и V2 подключаются напрямую к входам двух повторителей напряжения на операционных усилителях, что обеспечивает очень высокий импеданс. Два операционных усилителя слева теперь вместо источников входных напряжений обеспечивают ток через резисторы. Повышение сложности нашей схемы минимально для полученной существенной выгоды.

Оригинал статьи:

Building a Differential Amplifier

Развязка

При использовании двух фильтрующих конденсаторов при двухполярном питании надо следить, чтобы две полуволны сигнала суммировались в одной точке, как показано на рисунке:

Часто применение одного конденсатора, включенного между плюсом и минусом питания, позволяет решить эту проблему. Этот метод хорошо работает с операционными усилителями типа 5532, и для усилителей мощности типа LM3886.

Когда питание драйверного каскада и выходного каскада подключено раздельными проводами, это может вызвать некоторую нестабильность усилителя на высоких частотах. Проблема решается подключением керамического конденсатора небольшой ёмкости между выводами питания микросхемы:

увеличение по клику

Если ёмкость байпасных (блокировочных) конденсаторов больше 100мкФ, их общий провод должен подключаться к «грязной» земле, так как большие зарядные токи могут создавать ощутимые помехи, если конденсаторы будут подключены к сигнальной земле.

Двухполярное питание из однополярного на микросхеме TPS65133

Главным достоинство этого преобразователя является то, что выходное напряжение составляет ±5В независимо от входного напряжения, которое может быть от 2.9 до 5 вольт (допустимо подавать до 6 вольт). Т.е. микросхема создана для непосредственного использования с 3.6 вольтовыми аккумуляторами. Но никто не запрещает запитать ее от usb или блока питания.

Частота преобразования тут 1.7МГц. Для аудио устройств это отличный вариант. При этом, для работы не требуется использование трансформаторов, которые нужны в большинстве SEPIC конвертеров. Для преобразования требуется только индуктивность которая, благодаря столь высокой частоте, достаточно мала.

Схема преобразователя однополярного напряжения в двухполярное на TPS65133 выглядит следующим образом:

Конденсаторы желательно устанавливать танталовые. Так же будет не лишним поставить дополнительно конденсаторы по 0.1 мкФ для фильтрации ВЧ-помех.

Что касается такого параметра как выходной ток, то тут все очень хорошо. Выходной ток может достигать 250 мА на плечо. Производитель заявляет, что при выходном токе от 50 до 200 мА КПД преобразователя превышает 90%, что является очень хорошим показателем для применения в портативной технике.

Исходная схема

Сначала была собрана исходная однополярная схема для пробы и поиска возможных ошибок, про которые писали некоторые собиравшие данную конструкцию. У меня всё сразу заработало нормально, возникли лишь вопросы с регулировкой тока ограничения и индикацией срабатывания этого ограничения. 

Далее была собрана аналогичная схема для напряжения отрицательной полярности — полностью аналогичная, лишь с заменой полярности включения электролитических конденсаторов, диодов (стабилитронов) и с применением транзисторов противоположной структуры (n-p-n / p-n-p). Обозначения элементов «минусового» плеча оставлены такими же, как у «плюсового» для упрощения рисования схемы 🙂

Схема цепей смещения в усилителях типа UBbIX = – kUBX + b

Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже

Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.

Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.

С учётом элементов схемы можно передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить следующими выражениями

Расчёт усилителя с характеристикой вида UBbIX = – kUBX + b

В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений

    Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид

  2. Определим сопротивление резисторов R1 и R4

    Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм

  3. Рассчитаем сопротивление резисторов и R3

    Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.

Работа делителя однополярного напряжения

Операционный усилитель DA1 измеряет разницу напряжений в средней точке делителя напряжения R1 — R2,R3 с напряжением на «корпусе» и реагирует на их разницу увеличивая, или уменьшая выходное напряжение.

При подаче питания на устройство, происходит заряд конденсаторов С1 и С2 по пути «+» источника питания, конденсатор С1, конденсатор С2, «-» источника питания. Таким образом, каждый конденсатор зарядится половинным входным напряжением. Эти напряжения и будут на выходе устройства. Но это будет наблюдаться при сбалансированной нагрузке.

Рассмотрим случай, когда к устройству подключена несбалансированная нагрузка – например, сопротивление нагрузки в цепи положительного выходного напряжения намного меньше сопротивления нагрузки подключенной к цепи отрицательного выходного напряжения. Так как параллельно конденсатору С1 подключена цепь нагрузки – диод VD1 и малое сопротивление нагрузки, то заряд конденсатора С2 будет проходить не только через С1, но и по параллельной ему цепи — диод VD1, малое сопротивление нагрузки. Это приведёт к тому, что конденсатор С2 будет заряжаться большим напряжением, чем конденсатор С1, что в свою очередь приведёт к тому, что положительное выходное напряжение будет меньше отрицательного. На корпусе устройства напряжение возрастёт по потенциалу относительно средней точки резисторов R1 — R2,R3, где потенциал равен половине входного напряжения. Это приведёт к появлению на выходе операционного усилителя отрицательного напряжения относительно корпуса устройства. И чем больше будет разница потенциалов на входе операционного усилителя, тем больше будет отрицательное напряжение. В результате отрицательного напряжения на выходе ОУ, транзисторы VT3 и VT4 откроются и подобно цепи «диод VD1, малое сопротивление нагрузки» в положительной цепи, создаст шунтирующее действие на конденсатор С2 в отрицательной цепи. Это в свою очередь приведёт к уравновешиванию токов в положительной и отрицательной цепях и выровняет выходные напряжения. В случае разбалансировки нагрузки устройства в сторону отрицательного напряжения открываются транзисторы VT1 и VT2.

Таким образом, за счёт схемы автоматического контроля за потенциалом «нуля», осуществляется его балансировка в «среднее состояние» между плюсом и минусом питания.

Детали.

В качестве операционного усилителя можно использовать микросхемы К140УД6, К140УД7, К140УД601, К140УД701.

Резисторы R8 – R15 – для выравнивания эмиттерных токов транзисторов и ограничения их бросков в моменты переключения.

Диоды VD1 и VD2 предназначены для исключения шунтирования транзисторами устройства цепей нагрузки.

Транзисторы устанавливают на теплоотводы достаточного размера. Размеры теплоотводов определяются только тем, насколько нагрузка будет не сбалансирована. Чем больше не сбалансирована, тем больше площадь радиаторов.

Варианты двухполярного питания для портатива

Конечно для двухполярного питания в портативе можно воспользоваться двумя аккумуляторами. Но это приведет к дополнительным сложностям с их зарядкой, а также к расбалансу плеч по мере старения аккумуляторов.

Более продвинутый вариант сделать двухполярное питание из однополярного — использовать
или любой другой. Но и тут есть проблема. при разряде аккумулятора, вслед за положительным напряжением будет падать и отрицательное. Т.е. при заряженном аккумуляторе питание будет ±4.2, а при разряженном ±3 В или еще меньше.

И тут на помощь приходят SEPIC преобразователи. Не будем углубляться в теорию процесса преобразования — это тема отдельной статьи. А пока рассмотрим преобразователь однополярного напряжения в двухполярное на TPS65133.

Дифференциальные схемы на операционных усилителях

Операционный усилитель без обратной связи уже является дифференциальным усилителем, усиливающим разность напряжений между двумя входами. Однако его коэффициент усиления нельзя контролировать, и он, как правило, слишком велик для практического использования. До сих пор наше применение отрицательной обратной связи для операционных усилителей приводило к практической потере одного из входов, и этот усилитель был хорош только для усиления напряжения одиночного входного сигнала. Однако с небольшой изобретательностью мы можем построить на операционном усилителе схему, поддерживающую оба входных напряжения, и с регулируемым коэффициентом усиления, установленным внешними резисторами.

Схема дифференциального усилителя на операционном усилителе

Если номиналы всех резисторов равны, этот усилитель будет иметь дифференциальный коэффициент усиления по напряжению 1. Анализ этой схемы, по сути, такой же, как и для инвертирующего усилителя, за исключением того, что неинвертирующий вход (+) операционного усилителя вместо того, чтоб быть непосредственно соединенным с землей, находится под напряжением, равным части V2. Как и следовало ожидать, V2 действует как неинвертирующий вход конечной схемы усилителя. Следовательно:

\(V_{вых} = V_2 — V_1\)

Если бы мы хотели обеспечить дифференциальное усиление, отличающееся от 1, нам пришлось бы подстраивать сопротивления и в верхнем, и в нижнем делителях напряжения, что потребовало бы изменений нескольких резисторов и балансировки между этими двумя делителями для симметричной работы. По понятным причинам это не всегда практично.

Схема цепей смещения в усилителях типа UBbIX = kUBX + b

Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже

Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.

Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением

тогда коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа UBbIX = kUBX + b

Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Определим тип передаточной характеристики. Определяем коэффициенты k и b

    Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид

  2. Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3

    Подставив значения коэффициентов k, b и UCM получим следующее уравнение

    Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.

    Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.

  3. Рассчитаем величины сопротивлений R3 и R4

    Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.

Схема цепей смещения в усилителях типа UBbIX = kUBX + b

Схема, реализующая передаточную характеристику вида UBbIX = kUBX + b, представлена на рисунке ниже


Схема усилителя с передаточной характеристикой типа UBbIX = kUBX + b.

Данная схема представляет собой неинвертирующий сумматор и состоит из развязывающих конденсаторов С1 и С2 имеющих ёмкость порядка 0,001 – 0,1 мкФ, резисторов R1, R2, R3 и R4 и самого ОУ DA1 в неинвертирующей схеме. Передаточная характеристика данной схемы описывается следующим выражением

тогда коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа UBbIX = kUBX + b

Для примера рассчитаем элементы усилителя со следующими параметрами: входное напряжение UBX = 0,1…1 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Определим тип передаточной характеристики. Определяем коэффициенты k и b

    Решив данную систему, получим k = 4,44 и b = 0,556, тогда передаточная характеристика будет иметь следующий вид

  2. Рассчитаем номиналы резисторов R1 и R2, решив следующую систему уравнений относительно (R3 + R4) / R3

    Подставив значения коэффициентов k, b и UCM получим следующее уравнение

    Величина резистора R1 обычно выбирается в пределах от 1 до 10 кОм, так как резистор R1 определяет входное сопротивление усилителя и его следует увеличивать, чтобы исключить перегрузку источника сигнала.

    Выберем R1 = 10 кОм, тогда R2 = 47,91 * 10 = 479,1 кОм. Примем R2 = 470 кОм.

  3. Рассчитаем величины сопротивлений R3 и R4

    Величина резистора, также как и R1 выбирается в пределах 1 … 10 кОм, поэтому примем R3 = 10 кОм, R4 = 10 * 3,53 = 35,3 кОм. Примем R4 = 36 кОм.

Конструкция устройства

Следует учесть, что выход GND приставки является «искусственной средней точкой», поэтому он не должен контактировать с «общим» проводом исходного БП (!) — обычно это «-» питания.

На фото приведён пример моей конструкции. Схема собрана на печатной плате размерами 55 х 30 мм и установлена в корпусе «основного» (однополярного) БП. Корпус от компьютерного блока питания имеет компактные размеры, поэтому монтаж получился довольно плотным. Однако на работу как основного блока, так и «приставки» это не оказало никакого влияния. Транзисторы выведены на проводах небольшой длины (порядка 60…80 мм) и закреплены на свободном месте основного теплоотвода через изоляционные прокладки. Переключатель S1 выведен на переднюю панель БП (тумблер). Предохранитель F1 установлен на боковой стенке справа. Автор статьи: Барышев Андрей Владимирович.

Форум по блокам питания

Работа ОУ от двухполярного источника питания

Как указывалось в одной из предыдущих статей, в основе операционного усилителя лежит дифференциальный каскад на транзисторах, для питания которого требуется источник питания с двумя напряжениями – положительным и отрицательным. Причем оба эти напряжения должны быт одинаковы: например, +5 и -5 В, +12 и -12 В. Типовая схема подключения ОУ к источнику питания приведена ниже

Типовая схема питания ОУ.

Типовая схема питания ОУ состоит из следующих элементов: конденсаторов С1, С2, защитный диодов VD1, VD2 и двухполярного источника питания +Uпит, -Uпит. Защитные диоды VD1 и VD2 являются необязательными элементами схемы, но рекомендуются для всех источников питания, где есть возможность случайно перепутать выводы питания.

Конденсаторы С1 и С2 обеспечивают развязку шин питания по переменному току и должны подключаться как можно ближе к выводам микросхемы. Данные конденсаторы должны иметь ёмкость порядка 0,001 – 0,1 мкФ.

Так как современные ОУ имеют достаточно большое усиление на высоких частотах, то довольно часто возникает паразитная обратная связь по цепям питания усилителя. Поэтому довольно часто в дополнение к развязывающим конденсаторам С1 и С2 в цепях питания ОУ часто подключают конденсаторы непосредственно к шинам питания, что улучшает стабильность усилителей.

Подача опорного напряжения на ОУ, ИУ и АЦП

На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.

Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием

Схема цепей смещения в усилителях типа UBbIX = kUBX – b

Схема усилителя передаточная характеристика, которого имеет вид UBbIX = kUBX – b представлена ниже

Схема усилителя с передаточной характеристикой типа UBbIX = kUBX – b

Передаточная характеристика данной схемы представлена следующим выражением

В данном случае коэффициенты k и b будут определяться следующими выражениями

Расчёт усилителя с характеристикой типа UBbIX = kUBX — b

Для примера рассчитаем усилитель со следующими параметрами: входное напряжение UBX = 0,3…0,7 В, выходное напряжение UBЫX = 1…5 В, напряжение питания UПИТ = 6 В, в качестве источника смещения используется напряжение питания UCM = UПИТ = 6 В.

  1. Рассчитаем коэффициенты передаточной характеристики

    Решив данную систему уравнений, получим k = 10 и b = -2.

    Тогда переходная характеристика данного усилителя будет иметь вид

  2. Рассчитаем сопротивление резисторов R3 и R В данной схеме сопротивление резистора R3 должно быть значительно больше эквивалентного сопротивления параллельных резисторов R1 || R2. Поэтому коэффициент k можно выразить следующим приближённым выражением

    Примем сопротивление резистора R3 = 10 кОм, тогда R4 = 90 кОм.

  3. Рассчитаем сопротивление резисторов и R

    Так как R3 >> R1 || R2 примем R2 = 0,75 кОм, тогда R1 = 26*0,75=19,5 кОм. Примет R1 = 20 кОм.

    Таким образом, передаточная характеристика усилителя будет иметь вид UBbIX = 10UBX — 2 при следующих номиналах элементов: R1 = 20 кОм, R2 = 0,75 кОм, R3 = 10 кОм, R4 = 90 кОм.

Конструкция устройства

Следует учесть, что выход GND приставки является «искусственной средней точкой», поэтому он не должен контактировать с «общим» проводом исходного БП (!) — обычно это «-» питания.

На фото приведён пример моей конструкции. Схема собрана на печатной плате   размерами 55 х 30 мм и установлена в корпусе «основного» (однополярного) БП. Корпус от компьютерного блока питания имеет компактные размеры, поэтому монтаж получился довольно плотным. Однако на работу как основного блока, так и «приставки» это не оказало никакого влияния. Транзисторы выведены на проводах небольшой длины (порядка 60…80 мм) и закреплены на свободном месте основного теплоотвода через изоляционные прокладки. Переключатель S1 выведен на переднюю панель БП (тумблер). Предохранитель F1 установлен на боковой стенке справа. Автор статьи: Барышев Андрей Владимирович.