Дифференциальная защита: принцип работы и виды

Оглавление

ОЦЕНКА ПРОДОЛЬНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ

Основными достоинствами защиты являются: быстродействие, простота и надежность схемы и конструкции измерительного органа.
Защита не реагирует на качания и перегрузки, действует при КЗ в любой точке ЛЭП. К недостаткам РЗ следует отнести высокую стоимость соединительного кабеля и работ по его прокладке, а также возможность ложной работы при повреждении соединительных проводов. При наличии автоматического контроля повреждения кабеля обнаруживаются своевременно, и случаи ложной работы РЗ по этой причине редки. Защита получила распространение в качестве основной на ЛЭП 110 и 220 кВ длиной до 10-15 км.

Файл-архив ›› Реле дифференциальных защит элементов энергосистем. A. Д. Дроздов, B. В. Платонов

Работа содержит описание и принцип действия реле дифференциальных защит серий РНТ и ДЗТ, широко распространенных в энергосистемах. Рассмотрены способы улучшения характеристик этих реле, даны новые схемы защит повышенной чувствительности. В книге указаны особенности выбора уставок защит. Рекомендованы объем и методы испытаний дифференциальных реле. Описаны схемы, применяемые для испытаний. Работа содержит практические рекомендации по наладке и эксплуатации. Книга предназначена для работников служб энергосистем и проектных институтов, а также может быть полезна студентам энергетических специальностей вузов и техникумов.

ПОЛНАЯ СХЕМА ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ ЛИНИЙ

Во всех рассмотренных схемах подразумевалась установка реле на трех фазах в тех случаях, когда РЗ должна реагировать на все виды КЗ. Для выполнения таких схем необходимо шесть дифференциальных реле и не менее четырех соединительных проводов. Для уменьшения числа реле и соединительных проводов реле включаются через фильтры симметричных составляющих или суммирующие трансформаторы, как показано на принципиальной схеме (рис.10.9).
Помимо уже рассмотренных элементов в этой схеме предусмотрены разделительные (изолирующие) трансформаторы ТI, с помощью которых цепь соединительного кабеля АВ отделяется от цепей реле. Такое разделение исключает появление в цепях реле высоких напряжений, наведенных в жилах кабеля при протекании токов КЗ по защищаемой ЛЭП или возникающих в них по любым другим причинам.

Основные требования к защитным устройствам

Итак, по отношению к РЗА предъявляются следующие требования:

Селективность. При возникновении аварийной ситуации должен быть отключен только тот участок, на котором обнаружен ненормальный режим работы. Все остальное электрооборудование должно работать.
Чувствительность. Релейная защита должна реагировать даже на самые минимальные значения аварийных параметров (заданы уставкой срабатывания).
Быстродействие

Не менее важное требование к РЗА, т.к. чем быстрее реле сработает, тем меньше шанс повреждения электрооборудования, а также возникновения опасности.
Надежность

Само собой аппараты должны выполнять свои защитные функции в заданных условиях эксплуатации.

9.5. Защита от сверхтоков

9.5.1.
Назначение защиты от сверхтоков

Защита от сверхтоков служит для
отключения трансформаторов при КЗ на сборных шинах или на отходящих от неё
присоединениях, если защиты или выключатели этих элементов отказали (см. рис.
9.5.1.). Одновременно защита от сверхтоков используется и для отключения при
повреждении в самом трансформаторе. Однако, имея выдержку времени (по условиям
селективности) она может использоваться лишь в качестве резервной.

Наиболее
простой защитой от внешних КЗ является МТЗ. В тех случаях, когда
чувствительность её недостаточна, применяют МТЗ с блокировкой по напряжению.

Понизительные
трансформаторы защищаются МТЗ. Кратность тока КЗ обычно значительна и
достаточна для действия МТЗ.

Повышающие
трансформаторы, устанавливаемые на электрических станциях находятся в худших
условиях. МТЗ может иметь недостаточную чувствительность. Кратность тока КЗ
невелика. Здесь применяются защиты реагирующие на ток обратной и нулевой
последовательности. Также используются МТЗ с пуском по напряжению.

Рис.
9.5.1.

9.5.2.
Максимальная токовая защита трансформаторов

9.5.2.1.
Защита 2-х обмоточных понизительных трансформаторов

Принципиальная
схема МТЗ двухобмоточных понизительных трансформаторов представлена на рис.
9.5.2. По соображениям надежности целесообразно воздействовать на оба
выключателя Q1 иQ2, с тем, чтобы при внешних КЗ один
выключатель резервировался вторым.

В
сети с глухозаземленной нейтралью защита выполняется по 3-х фазной схеме, а в
сети с изолированной нейтралью – по 2-х фазной с 1,2 или 3-мя реле, в
зависимости от нужной чувствительности. Причем схема с одним реле, включенным
на разность токов 2-х фаз на трансформаторах с соединением обмоток
звезда/треугольник – не применяется.

Рис. 9.5.2.

Выбор
уставок

Ток
срабатывания защиты должен быть больше тока перегрузки, не требующей быстрого
отключения трансформатора.

(9.16.)

где:Iраб.макс – рабочий максимальный ток
в режиме длительно возможной перегрузки.

Коэффициент
чувствительности:

(9.17.)

где:Iкз.мин – минимальный ток сквозного
КЗ при повреждении в конце зоны действия МТЗ, установленной на трансформаторе.

Выдержка
времени:

tTP = tW
+
Dt(9.18.)

где:tW
– наибольшая выдержка времени защиты присоединения (линий, отходящих от шин
низкого напряжения трансформатора);

Dt – ступень селективности.

9.5.2.2.
Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или
работающих на две секции шин

Принципиальная
схема защиты представлена на рис. 9.5.3.

Рис. 9.5.3.

9.5.2.3.
Защита трехобмоточных трансформаторов

9.5.2.3.1.
Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки
среднего напряжения

Принципиальная
схема защиты представлена на рис. 9.5.4.

При
внешних КЗ защита должна обеспечивать отключение только той обмотки
трансформатора, которая непосредственно питает место повреждения. Комплект со
стороны низкого напряжения действует на отключение выключателя этой обмотки.
Другой комплект со стороны высокого напряжения действует с двумя выдержками
времени, с меньшей на отключение обмотки среднего напряжения и с большей на
отключение всех выключателей трансформатора.

Рис. 9.5.4.

9.5.2.3.2.
Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание

МТЗ на трехобмоточных
трансформаторах, имеющих 2-х или 3-х стороннее питание для обеспечения
селективности должна быть направленной (см. рис. 9.5.5.).

При
КЗ в точке К2 выдержка времени защиты 2 должна быть
меньше защиты 1.
При КЗ в точке К1, наоборот, защита 1 должна
срабатывать раньше, т.е. простая МТЗ не может обеспечить селективности. Защиту 2 необходимо
выполнить направленной, с выдержкой времени t’2<t1, так, чтобы
она действовала при КЗ на шинах II. При КЗ на шинах I и III,
защита II
должна работать, несмотря на запрет реле направления мощности (как МТЗ, но с
выдержкой t’’2>t1и t3.

Принципиальная
схема защиты комплекта 2
представлена на рис 9.5.6.

Рис.
9.5.5.

а)б)

Рис. 9.5.6.

9.5.3.
Токовая защита с пуском по напряжению

Принципиальная схема защиты представлена на рис. 9.5.7.

Рис. 9.5.7.

Реле KV2,включенное на
фильтр обратной последовательности, срабатывает при 2-х фазных КЗ, размыкая
контакт KV2.1.
Реле KV1 замыкает
свой контакт KV1.1
и промежуточное реле KL
срабатывает. При трехфазном КЗ реле KV1 замыкает свой контакт KV1.1.

VI. Требования к каналам связи для функционирования

режимной автоматики

40. В отношении каналов связи для функционирования режимной автоматики в дополнение к требованиям, предусмотренным настоящих требований, должны соблюдаться требования, предусмотренные — настоящих требований.

41. Для функционирования централизованных систем автоматического регулирования частоты и перетоков активной мощности должна быть обеспечена передача по каналам связи телеметрической информации.

42. Для передачи информации, необходимой для функционирования централизованных систем автоматического регулирования частоты и перетоков активной мощности, должно быть организовано не менее двух независимых каналов связи в каждом направлении передачи информации и использоваться дублированный режим передачи информации.

43. Суммарное время измерения (формирования) и передачи телеметрической информации с объектов электроэнергетики в управляющий вычислительный комплекс централизованной системы автоматического регулирования частоты и перетоков активной мощности не должно превышать 1 секунды без учета времени обработки данных в комплексах режимной автоматики.

44. Время передачи телеметрической информации от управляющего вычислительного комплекса централизованной системы автоматического регулирования частоты и перетоков активной мощности до системы автоматического регулирования частоты и активной мощности генерирующего оборудования тепловой электростанции или системы группового регулирования активной мощности гидроэлектростанции не должно превышать 1 секунды.

45. При передаче телеметрической информации между управляющим вычислительным комплексом централизованной системы автоматического регулирования частоты и перетоков активной мощности и системой автоматического регулирования частоты и активной мощности генерирующего оборудования тепловой электростанции или системой группового регулирования активной мощности гидроэлектростанции в прямом и обратном направлении должна обеспечиваться периодическая (циклическая) передача всего объема данных.

Поперечная дифзащита

Принцип работы генераторов тока в автомобилях

Применяется для предохранения нескольких линий электропередачи от КЗ, подключенных под одну систему шин.

Принцип работы

Поперечная дифзащита включает токовое реле также, как и продольная – от разности токов защищаемых линий.

Токовое реле сравнивает значения нагрузок каждого трансформатора. В отличие от продольной, для поперечной защиты ТТ могут быть установлены на разных ЛЭП, отходящих от единого источника электропитания. Пример – несколько фидеров, действующих от одного автоматического выключателя. Принцип действия защиты дифференциальной не позволяет ей срабатывать от действия внешних КЗ. Поперечная защита срабатывает, когда разница значений не будет равна нулю, т.е. возникает аварийная ситуация на одной из линий.

Схема срабатывания защиты

Токовые цепи подключаются на разность значений двух ЛЭП. Если происходит короткое замыкание на одной из линий, токовая нагрузка одного трансформатора (подключенном к ЛЭП с КЗ) становится больше, чем другого. Реле реагирует на разность значений и срабатывает отключение аварийной ЛЭП. Устройство защиты рассчитано на выбор и отключение только той линии, которая повреждена.

Таким образом, если срабатывает поперечная дифференциальная защита, обслуживающий персонал самостоятельно определяет поврежденный участок линии, отключает его, выводит реле из действия и включает работоспособные участки ЛЭП.

Преимущества:

  • 100% селективность;
  • не влияет на работу других реле;
  • не имеет временного промежутка отключения – срабатывает мгновенно.

Недостатки:

  • необходим принудительный повторный запуск после срабатывания отключения;
  • не может применяться как основная единственная защита;
  • необходимо применение дополнительных мероприятий для мониторинга мертвых зон;
  • не защищает концы линии и ошиновку на ПС – имеет несколько мертвых зон;
  • самостоятельно не определяет место действия КЗ;
  • не применяется для ЛЭП с автоматическими выключателями, где требуется отключение лишь поврежденных участков ЛЭП;
  • необходимость полного выведения из действия одной линии.

Область применения

  • Устанавливается на линиях 35-220 кВ.
  • Поперечная дифференциальная защита используется на параллельных ЛЭП с двумя источниками напряжения как резервная, на линиях с односторонним питанием – как основная. При двухстороннем питании ТТ устанавливаются с обоих концов линии, при одностороннем – лишь на источнике питания. Имеет место на ЛЭП с одинаковым сопротивлением (провода и кабели одного сечения, одинаковая нагрузка).

Если мертвая зона на ЛЭП составляет не более 10%, то такую ЛЭП можно считать эффективно защищенной.

Защита бытовых сетей (УЗО)

Защита от перенапряжения в частном доме

Работа устройств с дифзащитой, устанавливаемых на вводах в административные и жилые здания, ничем существенно не отличается от уже рассмотренного ранее принципа действия для трансформаторов и двигателей. В них также имеется чувствительный элемент, реагирующий на дисбаланс втекающего и вытекающего тока и реагирующий при его появлении отключением потребителя от питающей линии.

Устройства этого класса, используемые в обозначенных выше целях, получили название УЗО (смотрите рисунок ниже).


Защита линии с УЗО

Причиной возникновения дисбаланса токов в бытовых условиях могут быть следующие факторы:

  • Прикосновение человека или животного к оголенным токовым носителям (проводам) или к оказавшемуся под опасным потенциалом корпусу оборудования;
  • Разрушение изоляции электропроводки с угрозой КЗ;
  • Повышенная влажность в обслуживаемом помещении (в ванной, например);
  • Повреждение кабелей бытовых электроприборов с образованием утечки на землю.

Обратите внимание! В тех случаях, когда система узо срабатывает без наличия нарушений в работе потребителя (без нагрузки токами утечки), следует считать, что этот прибор неисправен и подлежит ремонту. Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй

При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством

Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй. При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством.

В электротехнике принимается за правило, что обеспечить эффективную дифференциальную защиту с помощью УЗО удаётся лишь при использовании трехуровневой схемы. Это означает, что в защищаемую линию последовательно включается несколько устройств, рассчитанных на три уровня значений токов утечки: 100-300, 30 и 10 мА, соответственно.

Важно! Такая токовая защита, работающая по дифференциальному принципу, может быть эффективной даже на объектах, где в составе проводки шина заземления отсутствует. Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка»

В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации

Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка». В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации.

Дифференциальная защита – принцип действия


Рис №1. Схема, поясняющая принцип действия дифференциальной защиты трансформатора, с двусторонним питанием, а) при КЗ снаружи трансформатора, на его выводах, б) при внутреннем КЗ трансформатора

Принцип действия дифференциальной защиты построен на применении первого закона Киргофа. Защищаемый объект принимается за узел, ток фиксируется полностью на всех ветвях, соединяющих объект с внешней электрической сетью.

Диффзащита трансформатора отличается от дифференциальной защиты высоковольтных линий и генераторов наличием неравенства первичных токов разных обмоток трансформаторов и несовпадением по фазе.

Статьи ›› Основные требования к устройствам релейной защиты и управления,предназначенным к применению в современных энергосистемах России

Обеспечение надежной и устойчивой работы Единой национальной электрической сети (ЕНЭС) в определяющей мере связано с функционированием релейной защиты и линейной автоматики (РЗА), предназначенной осуществлять быструю и селективную автоматическую ликвидацию повреждений и анормальных режимов в электрической части энергосистемы. Произошедший за последние годы скачок в развитии средств РЗА определяет необходимость ориентации на широкое внедрение на объектах ЕНЭС систем РЗА на базе интеллектуальных микропроцессорных (МП) устройств. Новые качества и возможности МП устройств, в свою очередь, определяют необходимость внесения корректировок в идеологию построения систем РЗА энергообъектов и соответственно в практику эксплуатации этих систем.

Продольная дифференциальная защита линий и устройств

Чтобы осуществить защиту продольного типа, необходимо с обоих концов установить одинаковые трансформаторы тока. Их вторичные обмотки должны быть соединены друг с другом последовательно при помощи дополнительных электропроводов, которыми необходимо подключать токовые реле. Причем эти токовые реле необходимо соединять со вторичными обмотками параллельно. При нормальных условиях, а также при наличии внешнего короткого замыкания в обеих первичных обмотках трансформаторов будет протекать одинаковый ток, который окажется равным как по фазе, так и по величине. По обмотке электромагнитного тока реле будет протекать немного меньшее его значение. Вычислить его можно по простой формуле:

Ir=I1-I2.

Предположим, что токовые зависимости трансформаторов будут полностью совпадать. Следовательно, вышеупомянутая разность значений токов близко или равна нулю. Другими словами, Ir=0, а защита в это время не работает. Во вспомогательной электропроводке, которая соединяет вторичные обмотки трансформаторов, происходит циркуляция тока.

Общие принципы выбора уставок ДЗТ

Когда требуется уменьшить составляющую небаланса используют блоки БМРЗ с отдельными характеристиками. К числу таких относят учет положения прибора. Выделяют типы:

  • грубые;
  • чувствительные.

К первому типу установки относят все усредненные регулятивные положения (до половины отклонения). При чувствительных выбирают вариации с отклонениями не более 5 процентов от изначального показателя. Чувствительность увеличивается, если снижать ток при расчете положения трансформатора.

Принцип выбора состоит в поиске верной группы переключения. Условия пользования блоками приведены в инструкциях к устройствам. Современные варианты переключаются автоматически, при этом блок сам ответственен на подачу сигнала

Важно провести такие действия как установку первичного тока, установку сигнала небаланса

Выбор уставки начального тока срабатывания ДЗТ

На этот этапе важной характеристикой становятся условия отстройки. Они вычисляются от максимального показателя тока небаланса при включенной нагрузке

Учет происходит в режимах двух переключателей. Один раз проверяются данные по грубому, а второй по чувствительному типу. После проводится суммирование показателей и вычисляется среднестатистическое.

Преимущества и недостатки

Несмотря на широкое применение благодаря высокой скорости срабатывания, каждый из видов дифференциальных защит имеет свои плюсы и минусы.

Преимущества продольной дифзащиты:

  1. Абсолютная селективность.
  2. Возможность применения с другими видами защит.
  3. Отлично подходит для линий электропередач (ЛЭП) небольшой длины.
  4. Отключение аварийного участка сети без задержки.

К недостаткам продольной защиты можно отнести:

  1. Снижается эффективность при проектировании длинных ЛЭП.
  2. Необходимы устройства контроля за отказом вспомогательных проводов для корректировки дифзащиты.
  3. Возникновение тока небаланса.
  4. Высокая стоимость при использовании реле (реле с торможением).
  5. Очень сложная реализация (дополнительно сооружаются линии связи для трансформаторов токов).

Преимущества поперечной дифзащиты:

  1. Высокая селективность (100%).
  2. Не оказывает влияние на работу других реле в схемах.
  3. Мгновенное срабатывание.

Недостатки поперечной защиты:

  1. Возрастает необходимость повторного запуска защиты при срабатывании.
  2. Не применяется в виде основной и единственной защит.
  3. Необходимо учитывать мертвые зоны, которых несколько.
  4. Не может защитить концы линии и ошиновку подстанции.
  5. Не может определить место короткого замыкания.
  6. Не применяется для ЛЭП, где требуется отключить лишь поврежденные участки.
  7. Не применяется с автоматическими выключателями.
  8. Необходимо полностью отключать линию с повреждением.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит. 1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з.

— ток срабатывания защиты 2РЗ, величина, которую мы и определяем

— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

kсзп

— коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс.

— максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл.

— ток срабатывания защиты 2РЗ

kн.с.

— коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.

— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках

— это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов.Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх

— коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

— коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Советуем изучить — Указательные и сигнальные реле в электроустановках

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt

, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Разновидности защит и их суть

Все защиты для трансформаторов должны обладать достаточным быстродействием, чтобы вовремя отключить опасный режим. Так как при возникновении сверхбольших электрических величин он запросто приведет к разрушению изоляции, отпуску металла, возгораниям и прочим неприятным последствиям.

Для предотвращения перегрузок выполняется установка того или иного вида защиты на трансформатор. Какая именно защита используется на понижающих подстанциях, в оборудовании распределительных устройств, определяется местными условиями и особенностями режима работы.

Продольная дифференциальная защита

Область применения дифференциальной токовой защиты охватывает как сам силовой трансформатор, так и окружающие его присоединения вплоть до измерителей токовой нагрузки. Нормальным режимом работы каждого трансформатора считается равномерное перераспределение нагрузки между всеми тремя фазами, когда электрический ток в каждой из них получается приблизительно одинаковым.

Продольные дифференциальные защиты осуществляют сравнение токовой нагрузки во всех фазах. Так как ток примерно одинаков, то их геометрическая сумма должна равняться нулю. В результате сравнения получается, что токовая составляющая отсутствует или слишком мала для реакции. Но, как только произойдет замыкание одной фазы или сразу между несколькими, токи в них перестанут компенсировать друг друга, и их сумма будет отличаться от нуля, сработает дифференциальная отсечка.

Рис. 3. Пример дифференциальной защиты

Релейная

Для предотвращения повреждения трансформаторов применяется достаточно большое количество релейных защит. Однако отдельного внимания заслуживает реле контроля уровня масла. Этот вид предусматривает контроль за состоянием изоляционной среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается выше контактов цепи срабатывания.

Если аварийный режим приведет к утечке масла и последующему снижению менее нормы, после которой может произойти пробой, произойдет отключение. Может располагаться в основном баке или иметь резервную релейную защиту в расширителе, которая предварительно даст сигнал о начале процесса.

Тепловая

Основой для тепловой защиты в трансформаторах служит классическая термопара. Место ее расположения определяется типом устройства, его мощностью и габаритами, так как перегрев может привести к нарушению изоляционных свойств, привести к термическому расширению масла.

К наиболее эффективным местам размещения относятся:

  • в верхней части бака;
  • у высоковольтных вводов;
  • в обмотках.

Имеет две ступени – первая производит включение резервных вентиляторов или других средств охлаждения. Вторая, если первой не удалось сбросить перегрев ниже предельного значения, производит отключение трансформатора.

Токовая отсечка

Данный вид защиты применяется для отключения повреждения, которое могло возникнуть внутри трансформатора. Она размещается со стороны вводов защищаемого трансформатора, однако воздействие охватывает все обмотки, с которых может быть подано напряжение. Особенностью ее применения является схема питания, которая используется в соответствующей линии.

Так для трехфазных цепей с изолированной нейтралью токовая отсечка должна устанавливаться в двух фазах. А при использовании цепей с глухозаземленной нейтралью защита должна применяться в каждом фазном присоединении. При отключении трансформатора полностью отсутствует какая-либо выдержка времени.

Недостатком отсечки является срабатывание исключительно на токи большой величины. Поэтому некоторые межфазные КЗ, межвитковых или КЗ на землю в цепи с изолированной нейтралью могут остаться незамеченными. На практике это один из самых простых способов, отключающих трансформатор в аварийном режиме.

Газовая защита

Газовое реле, как вид защиты, нашло широкое применение в маслонаполненных трансформаторах, где роль диэлектрика, разделяющего токоведущие элементы и заземленную конструкцию корпуса, выполняет трансформаторное масло. В нормальном режиме работы понижающие трансформаторы не воздействуют на жидкий диэлектрик, и масло пребывает в постоянном физическом состоянии.

Но, в случае возникновения межвитковых замыканий, контакта проводников со сталью или других ситуаций внутри бака горение дуги или разогрев металла приводит к локальному закипанию масла. От этого места и начинается выделение газов, которые поднимаются в верхнюю точку емкости.

Для чего нужны дифференциальные автоматы?

Прямым предназначением дифференциального автомата является защита человека от поражения электрическим током при прямом контакте. Устройство одновременно отслеживает как возникновение короткого замыкания, так и проявление признаков утечки электричества через повреждённые токопроводящие компоненты сети.

Дифференциальный автомат обесточит контролируемую линию при возникновении:

  • короткого замыкания;
  • перегрева электрической проводки из-за превышения уставки номинального тока дифавтомата;
  • утечки на землю больше, чем соответствующая уставка.

Так, простое устройство вполне способно обезопасить квартиру или частный дом, предотвращая возникновение чрезвычайных ситуаций, вызванных проблемами с электричеством.

Преимуществом использования дифференциального автомата является отсутствие необходимости подбора УЗО, ведь он уже содержится в составе компонентов дифференциального автомата. Одно устройство, совмещающее в себе функции двух (УЗО и автоматического выключателя), занимает меньше места в электрическом щитке на размер однополюсного автомат – его ширина 17,5 мм.

Среди недостатков можно выделить вероятность выхода из строя одного из двух компонентов дифавтомата – замена отдельной части невозможна, что вынудит приобрести новый дифференциальный автомат.