Явление самоиндукции

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.


Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Движение ЭДС

Давайте рассмотрим конкретный пример. У нас есть стержень, который движется на скорости v вдоль пары проводящих рельсов, отдаленных на дистанцию ℓ в однородном магнитном поле. Относительно поля рельсы остаются неподвижными и объединены стабильным резистором. Детальнее рассмотрим площадь, заключенную перемещающимся стержнем, рельсами и резистором. Поле перпендикулярно этому участку, а площадь возрастет из-за движения стержня. В итоге, вырастет и магнитный поток, а значит индуцируется ЭДС.

(а) – Движение ЭДС = Bℓv и индуцируется между рельсами, когда стержень отходит вправо в условиях однородного магнитного поля. Само поле выступает перпендикулярным к перемещающемуся стержню и рельсам. (b) – Закон Ленца указывает направленность индуцированного поля, тока и полярности индуцированной ЭДС. С помощью правила правой руки можно определить текущее направление

Чтобы определить величину индуцированной ЭДС, необходимо задействовать закон индукции Фарадея:

Здесь N = 1, а поток Φ = BAcosθ. У нас есть θ = 0° и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ(BA) = BΔA, потому что B равномерно. Отметьте, что создаваемая стержнем площадь: ΔA = ℓx. Введем полученные величины в ЭДС:

Закон Ленца используют, чтобы определить направленность индуцированного поля, тока и полярность индуцированной ЭДС. Поток увеличивается вместе с площадью, поэтому индуцированное поле должно вступить в противостояние с существующим.

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность , краем которой является этот контур. .

— магнитный поток, — ток в контуре, — индуктивность.

Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно – в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока :

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током :

.

Появление понятия магнитной индукции

На заре эпохи развития электричества люди стали исследовать сопутствующие явления. Так, Ханс Эрстед в 1819 году обнаружил: проводник с током создает вокруг круговое магнитное поле, Андре-Мари Ампер показал, что если направление движения зарядов совпадает, соседствующие проводники притягивают друг друга. Конец спорам положило создание закона Био-Савара (отечественные источники добавляют Лапласа), описывающего величину, направление магнитной индукции в точке пространства. Источники допускают оговорку касательно того, что исследования велись постоянного тока.

Взаимосвязь индукции и напряженности магнитного поля

Интегрирование (см. рисунок) идет по контуру с током. В формуле r подразумевает элементарную среднюю точку текущего отрезка, r0 – место пространства, для которого вычисляется магнитная индукция

Обратите внимание, в знаменателе дроби за интегралом перемножаются два вектора. Результатом выходит величина, направление которой определим по правилу буравчика (левой или правой руки). Интегрирование ведется по элементу контура dr, r – средняя точка малого отреза полной длины

Идентичные разности в числителе и знаменателе сократим, остается вверху единичный вектор, задающий направление результата

Интегрирование ведется по элементу контура dr, r – средняя точка малого отреза полной длины. Идентичные разности в числителе и знаменателе сократим, остается вверху единичный вектор, задающий направление результата.

Формула показывает, как найти поле для контуров любой формы, проводя интегрирование по точкам. Современные численные методы лежат в основе действия компьютерных приложений (наподобие Maxwell 3D) по решению соответствующей задачи. Уравнение согласуется с законами Гаусса (магнитной индукции) и Ампера (циркуляции магнитного поля). Георг Ом использовал знания о компасе, выводя известную зависимость. Форму линий поля получим при помощи магнитных стрелок и силы оставления направления неизменным (см. заметку про закон Ома для участка цепи). Это будет картина магнитной индукции в пространстве, экспериментально подтвердившая закон Био-Савара-Лапласа.

Позволило сделанное Амперу в 1825 году показать: электрический ток в некоторых случаях является аналогом постоянного магнита. Появилась новая модель, которая лучше согласовывалась с действительностью, нежели схема диполей Пуассона. Подобная абстракция объясняла отсутствие в природе изолированных магнитных полюсов. По современным представлениям, кусок стали намагничивается, оттого что диполи элементарных частиц и молекул приобретают упорядоченность. На этом основаны контуры размагничивания сердечников трансформаторов, которые перед выключением питания вызывают затухающие колебания тока. В результате эффект упорядоченности размывается, выраженные свойства пропадают.

Спин электрона

Наличие магнитного момента объясняется существованием спинов (понятие введено в 20-х годах XX века) – угловой момент частиц микромира. Реальные, не абстрактные вещи, существование подтверждено экспериментально (Штерн-Герлах). Спин является векторной величиной, одинаковой для всех частиц одного типа (например, электронов), описывается специальным квантовым числом. В СИ единицей измерений служит Дж с, как и для другого углового момента (постоянной Планка). Иногда применяется упрощенная безразмерная запись. Постоянная Планка опускается. Указывается просто спиновое квантовое число (s, ms).

Благодаря наличию спина, элементарная частица обзаводится магнитным моментом, вычисляемым по формуле: в числителе произведение спинового углового момента на заряд частицы и g-фактор (постоянные, приводимые в различных справочниках для тех или иных элементарных частиц); в знаменателе – удвоенная масса элементарной частицы. Как видите, поддается учету, максимальную намагниченность материала в заданных условиях можно заранее рассчитать. Настоящим триумфом квантовой электродинамики явилось предсказание g-факторов для некоторых элементарных частиц.

Открытие Майклом Фарадеем в 1831 году генерации переменным магнитным полем кругового электрического показало: два явления тесно связаны, что явилось предпосылкой созданию (четырех) уравнений Максвелла, частным случаем которых являются большинство формул в этой области, считая упомянутые выше. Исследования шли своим чередом, но несколько разными путями. Интеграцию произвел лорд Кельвин, известный как Вильям Томпсон, который показал наличие H (напряженность) и B магнитной индукции, первая характеризует модель Пуассона, вторая – Ампера.

Что такое взаимная индукция? Взаимная индуктивность

Для разъяснения понятия взаимной индукции рассмотрим две катушки К1 и К2 расположенные близко друг от друга

Взаимная индукция двух катушек расположенных рядом.

Если по одной из катушек пропускать электрический ток i1, то вокруг данной катушки возникнет магнитное поле с потоком Φ1, часть магнитных силовых линий которого будет пересекать и вторую катушку, вокруг которой образуется магнитный поток Φ12. Таким образом, при изменении тока i1в первой катушке будет изменяться магнитный поток Φ1, а, следовательно, и магнитный поток Φ12, пересекающий вторую катушку, что непременно приведёт к изменению электрического тока во второй катушке и соответственно возникновению ЭДС.

Таким образом, возникновение ЭДС в контуре под действием изменяющегося тока в близкорасположенном соседней катушке, имеет название взаимной индукции.

Как было сказано выше, явление самоиндукции в количественной форме выражается индуктивностью L, аналогично и взаимная индукция определяется физической величиной называемой взаимной индуктивностью М (имеет размерность Генри – «Гн»). Данная величина определяется отношением потокосцепления во вторичной катушке Ψ12  к току в первичной катушке i1

Однако, определить взаимную индукцию можно и обратным способом, то есть пропуская ток i2 через вторичную катушку. В этом случае будет создаваться магнитный поток Φ2, часть которого Φ21 будет пронизывать первичную катушку, тогда взаимная индукция будет определяться следующим выражением

Так же как и в случае с самоиндукцией, ЭДС взаимной индукции во вторичной катушке будет зависеть от скорости изменения магнитного потока или потокосцепления

Взаимная индуктивность М имеет зависимость от индуктивности двух катушек и определяется согласно следующему выражению

где k – коэффициент связи, зависящий от степени индуктивной связи между катушками;

L1 – индуктивность первой катушки;

L2 – индуктивность второй катушки.

Коэффициент индуктивной связи k определяется следующим выражением

Из данного выражения видно, что коэффициент связи всегда будет меньше единицы, так как Φ12< Φ1 и Φ21< Φ2.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Индуктивность.Электродвижущая сила самоиндукции

• Электромагнетизм •
  • Магнитное поле тока, магнитная индукция, магнитный поток
  • Электромагнитная сила
  • Взаимодействие парал лельных проводов с токами
  • Магнитная проницаемость
  • Напряженность магнитного поля,магнитное напряжение
  • Закон полного тока
  • Магнитное поле катушки с током
  • Ферромагнетики,их намагничивание и перемагничивание
  • Ферромагнитные материалы
  • Магнитная цепь и ее расчет
  • Электромагниты
  • Электромагнитная индукция
  • Принцип работы электричес кого генератора
  • Принцип работы электродви гателя
  • Вихревые токи
  • Индуктивность.Электродви жущая сила самоиндукции
  • Энергия магнитного поля
  • Взаимная индуктивность
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:

Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):

Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.

Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)

а индуктивность её

Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):

Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):

Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.

Физика для средней школы

ЭДС индукции. Закон электромагнитной индукции

Выше рассмотренные опыты показали, что в замкнутом контуре возникает индукционный ток при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром. Как известно, ток в проводнике возникает в том случае, если на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного заряда вдоль замкнутого проводника называют электродвижущей силой.

Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в нем появляются сторонние силы (природу их выясним ниже: ЭДС индукции в движущихся проводниках), действие которых характеризуется ЭДС, называемой ЭДС индукции.

Как показывает опыт, значение индукционного тока (а значит, и ) не зависит от причины изменения магнитного потока (изменяется ли площадь, ограниченная контуром, или его ориентация в пространстве, изменяется ли индукция магнитного поля при перемещении его источников или за счет изменения среды и т.д.). Существенное значение имеет лишь скорость изменения магнитного потока (так, стрелка гальванометра в опытах Фарадея отклоняется тем больше, чем быстрее вдвигается магнит в катушку).

Эта формула выражает закон Фарадея для электромагнитной индукции: среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограничен ную контуром. Мгновенное значение ЭДС индукции равно взятой с противоположным знаком первой производной от магнитного потока по времени, т.е.

Знак «-» учитывает правило Ленца, согласно которому при увеличении магнитного потока ЭДС индукции отрицательная и, наоборот, при уменьшении магнитного потока ЭДС индукции положительная .

Сила индукционного тока в замкнутом контуре рассчитывается по закону Ома

где R — сопротивление контура.

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. В соответствии с законом электромагнитной индукции любые изменения магнитного потока, пронизывающего проводящее тело, сопровождаются возникновением в нем индукционных токов. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми (а также токами Фуко). Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Токи Фуко можно обнаружить на опыте с маятником (проводящей пластиной), колеблющемся в зазоре между полюсами электромагнита. До включения маятник совершает практически незатухающие колебания. При пропускании тока через катушку электромагнита маятник испытывает сильное торможение и очень быстро останавливается. Торможение маятника объясняется действием магнитного поля на индукционные токи, возникающие в пластине при ее движении в магнитном поле. Если в пластине сделать разрезы, то вихревые токи ослабляются и торможение почти отсутствует. Этот факт торможения используется для успокоения подвижных частей различных приборов.

Токи Фуко вызывают нагревание проводников (якоря генераторов и сердечников трансформаторов), выделяемая токами Фуко теплота используется в индукционных металлургических печах и в других случаях.

По закону Фарадея (1) определяется ЭДС индукции, возникающая и в движущемся проводнике, и в неподвижном (см. опыты, описанные в разделе Электромагнитная индукция). Но механизм происхождения ЭДС индукции в этих случаях различен.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.

Последовательный и параллельный колебательные контуры

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.

Q-метр для измерения добротности

Как возникает ЭДС индукции и индукционный ток?

Как я говорил в предыдущих статьях вокруг проводника, по которому протекает электрический ток, возникает электромагнитное поле. Данное магнитное поле я рассмотрел здесь и здесь. Однако существует и обратное явление, которое называется электромагнитная индукция. Данное явление открыл английский физик М. Фарадей.

Для рассмотрения данного явления рассмотрим следующий рисунок


Рисунок, иллюстрирующий электромагнитную индукцию.

На данном рисунке показана рамка из проводника, помещённая в электрическое поле с индукцией В. Если данную рамку двигать вверх-вниз по направлению магнитных силовых линий или влево – вправо перпендикулярно силовым линиям, то магнитный поток Φ пронизывающий рамку буден практически постоянным. Если же вращать рамку вокруг оси О, то за некоторый промежуток времени ∆t  магнитный поток изменится на некоторую величину ∆Φ и в результате в рамке появится ЭДС индукции Еi и потечёт ток I, называемым индукционным током.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

История

В 1820 году Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 году в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 года наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, состояла из кольца из мягкого железа примерно 2 см шириной и 15 см диаметром. На каждой половине кольца было намотано много витков медной проволоки. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

Советуем изучить Охранная зона ЛЭП

В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.

М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.