Электрическое поле и способы его описания

«Материальные уравнения»

Для решения многих практических задач вполне достаточна ограниченная точность. С помощью «материальных» уравнений выполняют расчеты различных электрических цепей.

Уместный пример – закон Ома. Он был создан в ходе измерения электрических параметров. В начальном виде формула (Х=П/L+B) состояла из следующих компонентов:

  • Х – показания измерительного устройства (гальванометра), включенного в разрыв электрической цепи;
  • П – параметры источника питания, заставляющие стрелку прибора отклоняться на определенный угол;
  • L – длина соединительных проводов;
  • B – общие свойства установки.

Несложно догадаться, что в современном представлении это известный закон, показывающий взаимное влияние основных параметров полной электрической цепи:

I = E/R+r,

где:

  • I – ток;
  • E – ЭДС (напряжение);
  • R и r – сопротивление подключенных компонентов и самого источника питания, соответственно.

Физика распространения

Если рассматривать одинокую частицу, то линии силы будут исходить от неё в радиальном направлении. При взаимодействии же двух и более зарядов на вид распространения влияет напряжённость. Чтобы нарисовать, как будут выглядеть линии, следует сложить векторы напряжённости. Их результирующая и будет характеризовать суммарное поле.

При составлении картинки распространения поля нужно учитывать, что точки соприкосновения на силовой линии определяются вектором напряжённости. Чтобы математически описать силовые кривые, необходимо составить уравнения. Вектора в них будут являться производными первого порядка. По сути, это обыкновенные касательные.

Каждая частица, добавленная в электромагнитное поле, оказывает на него влияние. Соответственно будет изменяться и узор кривых сил. Но в любом случае основой для построения визуализированного рисунка будет вектор напряжённости каждого источника поля. При этом правило, что линии напряжённости начинаются на положительном заряде, а заканчиваются на отрицательном, условное.

Довольно интересным для изучения является процесс возникновения электрического поля между заряженными бесконечными плоскостями. Созданная однородная материя между пластинками будет распространяться в параллельном направлении, то есть линии пересекаться не будут. Если же в зазор между ними внести точечный заряд, то кривые начнут изгибаться по дуге, поле станет неоднородным, а значение напряжённости будет зависеть от плотности.

Распространение поля подчиняется следующим правилам:

  • излучается во все направления;
  • изменяет свой рисунок при оказании внешнего воздействия;
  • уменьшается при удалении от источника;
  • может быть как однородным, так и неоднородным.

Электрические силы при внесении заряженной частицы в поле совершают работу. При незначительном воздействии её можно описать так: A = F * l * cos (a) = E * q * L. Таким образом, структура распространения зависит от расстояния между частицами.

Линии напряженности

Попытаемся теперь охарактеризовать электростатическое поле нескольких зарядов. В этом случае необходимо воспользоваться сложением векторных величин напряженностей всех зарядов. Внесем пробный заряд и запишем сумму векторов сил, действующих на этот заряд. Результирующее значение напряженности получится при разделении значений этих сил на величину пробного заряда. Данный метод называется принципом суперпозиции.

Напряженность электростатического поля принято изображать графически при помощи силовых линий, которые также называют линиями напряженности. Такое изображение можно получить, построив вектора напряженности поля в как можно большем количестве точек вблизи данного заряда или целой системы заряженных тел.

Рис. 4. Линии напряженности электрического поля точечного заряда (Источник)

Рассмотрим несколько примеров изображения силовых линий. Линии напряженности выходят из положительного заряда (рис. 4,а), то есть положительный заряд является источником силовых линий. Заканчиваются линии напряженности на отрицательном заряде (рис. 4,б).

Рассмотрим теперь систему, состоящую из положительного и отрицательного зарядов, находящихся на конечном расстоянии друг от друга (рис. 5). В этом случае линии напряженности направлены от положительного заряда к отрицательному.

Большой интерес представляет электрическое поле между двумя бесконечными плоскостями. Если одна из пластин заряжена положительно, а другая отрицательно, то в зазоре между плоскостями создается однородное электростатическое поле, линии напряженности которого оказываются параллельными друг другу (рис. 6). 

Рис. 5. Линии напряженности системы двух зарядов (Источник)  

Рис. 6. Линии напряженности поля между заряженными пластинами (Источник)

В случае неоднородного электрического поля величина напряженности определяется густотой силовых линий: там, где силовые линии гуще, величина напряженности поля больше (рис. 7).

Рис. 7. Неоднородное электрическое поле (Источник)

Определение: Линиями напряженности называют непрерывные линии, касательные к которым в каждой точке совпадают с векторами напряженности в этой точке.

Линии напряженности начинаются на положительных зарядах, заканчиваются на отрицательных и являются непрерывными.

Изображать электрическое поле с помощью силовых линий мы можем так, как сами посчитаем нужным, то есть число силовых линий, их густота ничем не ограничивается. Но при этом необходимо учитывать направление векторов напряженности поля и их абсолютные величины.

Очень важно следующее замечание. Как говорилось ранее, закон Кулона применим только для точечных покоящихся зарядов, а также заряженных шариков, сфер. Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает

Напряженность же позволяет характеризовать электрическое поле вне зависимости от формы заряженного тела, которое это поле создает.

Список литературы

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: учеб. для 10 кл. общеобразоват. учреждений: базовый и профил. уровни. – М.: Просвещение, 2008.
  2. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000.
  3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. учреждений. – М.: Дрофа, 2013.
  4. Генденштейн Л.Э., Дик Ю.И. Физика. 10 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (базовый уровень) – М.: Мнемозина, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Nauka.guskoff.ru (Источник).
  2. Youtube (Источник).
  3. Physics.ru (Источник).

Домашнее задание

  1. Стр. 378: № 1–3. Касьянов В.А. Физика. 10 кл.: учеб. для общеобразоват. учеб. заведений. — М.: Дрофа, 2000. (Источник)
  2. С каким ускорением движется электрон в поле напряженностью 10 кВ/м?
  3. В вершинах равностороннего треугольника со стороной a находятся заряды +q, +q и –q. Найти напряженность поля Е в центре треугольника.

Как изобразить однородное электрическое поле

Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.

Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.

Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.

Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.

Рис. 18. Поле, расположенное в пространстве между двух заряженных плоскостей, будет однородным

Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.

Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.

Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).

Общая характеристика

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

Сила порождаемая электрическими зарядами

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q. Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы, а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом, так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q.

При помещении пробного заряда в электрическое поле источника силы (заряд Q), пробный заряд будет испытывать действие электрической силы — или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F. Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E, то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр. Для понимания сути такого предмета как напряженность электрического поля гораздо важнее размерность в метрической системе в Н/Кл, потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник) и q пробный. Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Напряженность электрического поля не зависит от количества пробного заряда q. На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q, если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q — скажем, в 2 раза — увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона, увеличение заряда также увеличит пропорционально и порождаемую силу F. Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника) будет одинаковой при измерении или вычислении.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц

Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Что такое электрическое поле?

Мы знаем, что электрическое поле существует реально. Мы можем исследовать его свойства опытным путем. Но мы не можем сказать, из чего это поле состоит. Здесь мы доходим до границы того, что сейчас известно науке.

Дом состоит из кирпичей, плит и других материалов, которые в свою очередь состоят из молекул, молекулы — из атомов, атомы — из элементарных частиц. Элементарные же частицы, такие, как электрон, ни из чего более простого, чем они сами, не состоят. По крайней мере, сейчас более простых образований мы не знаем. Так же обстоит дело и с электрическим полем. Ничего более простого, более элементарного, чем поле, мы не знаем. Поэтому на вопрос о том, что такое электрическое поле, мы можем ответить только так:

во-первых, поле материально: оно существует независимо от нас, от наших знаний о нем;
во-вторых, поле обладает определенными свойствами, которые не позволяют его спутать с чем-либо другим в окружающем мире. Установление этих свойств является единственным ответом на вопрос, что такое электрическое поле.

При изучении электрического поля мы сталкиваемся с особым видом материи, движение которой не подчиняется законам механики Ньютона. С открытием электрического поля впервые за всю историю науки появилась глубокая идея: существуют различные виды материи и каждому из них присущи свои законы.

Поле электрического смещения

Окончательное уравнение векторных полей

В присутствии вещества полезно распространить понятие электрического поля на три векторных поля:

Dзнак равноεE+п{\ Displaystyle \ mathbf {D} = \ varepsilon _ {0} \ mathbf {E} + \ mathbf {P} \!}

где P — электрическая поляризация — объемная плотность электрических дипольных моментов , а D — поле электрического смещения . Так как Е и Р определены отдельно, это уравнение может быть использовано для определения D . Физическая интерпретация D не так ясна, как E (фактически поле, приложенное к материалу) или P (индуцированное поле из-за диполей в материале), но все же служит удобным математическим упрощением, поскольку уравнения Максвелла можно упростить в условия .

Учредительное отношение

В E и D полей связаны диэлектрической проницаемости материала, е .

Для линейных, однородных , изотропных материалов E и D пропорциональны и постоянны по всей области, нет позиционной зависимости:

D(р)знак равноεE(р){\ Displaystyle \ mathbf {D} (\ mathbf {r}) = \ varepsilon \ mathbf {E} (\ mathbf {r})}

Для неоднородных материалов существует позиционная зависимость по всему материалу:

D(р)знак равноε(р)E(р){\ Displaystyle \ mathbf {D} (\ mathbf {r}) = \ varepsilon (\ mathbf {r}) \ mathbf {E} (\ mathbf {r})}

Для анизотропных материалов поля E и D не параллельны, и поэтому E и D связаны тензором диэлектрической проницаемости ( поле тензора 2-го порядка ) в компонентной форме:

Dязнак равноεяjEj{\ displaystyle D_ {i} = \ varepsilon _ {ij} E_ {j}}

Для нелинейных сред E и D непропорциональны. Материалы могут иметь различную степень линейности, однородности и изотропии.

Магнитное поле Земли

Существование магнитного поля земли связано с геофизическими процессами происходящими в Земле и верхней её атмосфере. Магнитное поле обусловлено действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере.

Для объяснения происхождения основного (постоянного) геомагнитного поля существует много различных гипотез, однако современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в жидком электропроводящем ядре Земли происходят сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогичного тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Полная напряженность магнитного поля от экватора к полюсу растет с 33,4 до 55,7 А/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса: долгота 101,50° западная долгота, широта 75,70° северная широта; южного магнитного полюса: долгота 140,30° восточная долгота, широта 65,50° южная широта.

Геомагнитное поле имеет различные магнитные аномалии (отклонения от нормального распределения геомагнитного поля), например, Восточно-Сибирскую, Бразильскую и др., которые вызваны неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5 R3 над поверхностью Земли (R3 – радиус Земли). Магнитное поле Земли простирается до высот ~ 3Rз. Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150 g в год (1g = 10-5 э).

Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2° в год и изменение величины и направления магнитного момента Земли со скоростью ~ 20γ в год, что заставляет часто проводить мировые магнитные съёмки для уточнения магнитной карты Земли.

Переменное геомагнитное поле возникает при обтекании магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыва в магнитосферу. Эти процессы вначале приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли.

Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10-5 до 102 Гц) и амплитуду (от 10-3 до 10-7 э).

В «спокойное» время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные магнитные вариации с амплитудой 30 ÷ 70 γ и 1 ÷ 5 γ соответственно. Другие наблюдаемые неправильные колебания геомагнитного поля различной формы и амплитуды называют магнитными возмущениями.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного до нескольких дней, называются мировыми магнитными бурями, во время которых амплитуда может превзойти 1000g. Магнитная буря – одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

  • Главная  
• Практикум инженера   • Электрическое поле Земли  

Энергия электрического поля

Виды энергии:
Механическая  Потенциальная Кинетическая
‹› Внутренняя
Электромагнитная  Электрическая Магнитная
Химическая
Ядерная
G{\displaystyle G} Гравитационная
∅{\displaystyle \emptyset } Вакуума
Гипотетические:
Тёмная
См. также: Закон сохранения энергии

Полная энергия на единицу объёма, запасённая электромагнитным полем, равняется

uEM=ε2|E|2+12μ|B|2{\displaystyle u_{EM}={\frac {\varepsilon }{2}}|\mathbf {E} |^{2}+{\frac {1}{2\mu }}|\mathbf {B} |^{2}}

где ε — диэлектрическая проницаемость среды, в которой существует поле, μ{\displaystyle \mu } её магнитная проницаемость, а E и B — векторы электрического и магнитного полей.

Поскольку поля E и B связаны, то было бы ошибочным разделять это выражение на «электрические» и «магнитные» вклады. Однако в стационарном случае поля больше не связаны (см. Уравнения Максвелла). В этом случае имеет смысл вычислить электростатическую энергию в единице объёма

uES=12ε|E|2,{\displaystyle u_{ES}={\frac {1}{2}}\varepsilon |\mathbf {E} |^{2}\,,}

Таким образом, полная энергия U, запасённая в электрическом поле в данном объёме V, равна

UES=12ε∫V|E|2dV.{\displaystyle U_{ES}={\frac {1}{2}}\varepsilon \int _{V}|\mathbf {E} |^{2}\,\mathrm {d} V\,.}
UES=12∫VρΦdV.{\displaystyle U_{ES}={\frac {1}{2}}\int _{V}\rho \Phi \,\mathrm {d} V\,.}

Равенство двух выражений для электростатической энергии, одно из которых зависит от электрического поля E, а другое от электрического потенциала Φ{\displaystyle \Phi }, доказывается интегральной теоремой энергии поля, при этом интегрирование делается по всему бесконечному объёму.

Однородные и неоднородные поля

Например, температура во всех точках пространства имеет одно и то же значение. Или, электрическое поле действует на помещенный в него заряд во всех точках пространства с одной и той же силой.

Однородные силовые поля изображают прямыми линиями, расстояние между которыми не изменяется (рис. 8а).

Рис. 8. Линии однородного – а) и неоднородного – б) поля

могут создавать однородные поля. Электрическое поле, существующее между двумя заряженными параллельными плоскостями, однородное.

Если же в разных точках пространства поле действует на пробный заряд с различными силами, тогда поле называют неоднородным. Линии неоднородных полей кривые и расстояние между ними изменяется (рис. 8б).

Например, поле магнита – это неоднородное поле, потому, что сила воздействия магнита возрастает по мере приближения к нему. Электрическое поле вокруг точечного заряда, так же неоднородное, потому, что сила воздействия на пробный возрастает с уменьшением расстояния до заряда, создавшего поле.

По силовым линиям можно узнать величину поля. Чем гуще располагаются линии поля в какой-либо области, тем больше величина поля в этой области.