Оглавление
- Обозначающие средства
- Линии магнитного потока
- Основные уравнения
- Измерительные приборы
- Постоянные магниты
- Ученые сделавшие открытия в области электричества
- Электромагниты в повседневной жизни
- Конвертер величин
- ⓘ Энциклопедия | Потокосцепление — Вики ..
- Закон электромагнитной индукции
- Гипотеза Ампера. Элементарные токи
- Магнитный поток
- Паразитная индукция и тепловые потери
- Индуктивность.Электродвижущая сила самоиндукции
- Примеры задач с решением
- Осциллятор Теслы
Обозначающие средства
При измерении показателя индуктивности в пределах системы СИ, для ее обозначения используют «Гн». Один контур вмещает себя величину индукции равную одному генри. Но для этого необходимым условием является изменение тока на один ампер ежесекундно. Данное требование дает контуры на выводе с показателем возникшего напряжения, равного одному вольту.
Системные возможности СГС позволяют нам измерять показатель индуктивности при помощи Гауссовой системы. СГСЭ единицей, определяющей данную величину, служит статгенри. Однако очень часто ей не дают имени.
Обозначение символом L увековечило имя ученого Э. Х. Ленца. По имени Дж. Генри также назвали единицу измерения величины индуктивности. Предложил ввести в терминологию понятие индуктивности О. Хевисайд, а сделал он это в 1886 году.
Линии магнитного потока
Магнитные силовые линии определяются как кривые, перемещающиеся по определенной траектории в магнитном поле. Касательная к этим кривым в любой точке показывает направление магнитного поля в ней же. Характеристики:
-
Каждая линия потока образует замкнутый контур.
-
Эти индукционные линии никогда не пересекаются, но имеют тенденцию сокращаться или растягиваться, изменяя в ту или иную сторону свои размеры.
-
Как правило, силовые линии имеют начало и конец на поверхности.
-
Имеется также определенное направление с севера на юг.
-
Силовые линии, которые расположены близко друг к другу, образуя сильное магнитное поле.
-
Силовые линии, которые находятся дальше друг от друга, указывают на слабое магнитное поле.
- Когда соседние полюса одинаковы (север-север или юг-юг), они отталкиваются друг от друга. Когда соседние полюса не совпадают (север-юг или юг-север), они притягиваются друг к другу. Этот эффект напоминает знаменитое выражение о том, что противоположности притягиваются.
Основные уравнения
Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.
(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).
В магнитостатике
В магнитостатическом пределе наиболее важными являются:
-
Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
- B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
- B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
-
Теорема Ампера о циркуляции магнитного поля:
- ∮∂SB→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
- rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}
В общем случае
Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:
Три из четырех уравнений Максвелла (основных уравнений электродинамики)
-
- divE→=ρε, rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
- divB→=, rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
- а именно:
Закон отсутствия монополя:
-
- divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}
Закон электромагнитной индукции Фарадея:
-
- rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}
Закон Ампера — Максвелла:
-
- rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}
Формула силы Лоренца:
-
- F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
-
- Следствия из неё, такие как
Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)
-
- dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
- dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}
выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):
-
- M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}
выражение для потенциальной энергии магнитного диполя в магнитном поле:
-
- U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
- а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
- Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
-
- F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}
(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
Выражение для плотности энергии магнитного поля
-
- w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}
Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).
Измерительные приборы
Линии магнитной индукции
Магнитные потоки, определимые с помощью специальных приборов – флюксметров, измеряются и в лабораторных, и в полевых условиях. Приборы ещё называют веберметрами. Особенностью такого измерительного аппарата магнитоэлектрической системы (МЭС) является то, что ток подводится к перемещающейся бескаркасной рамке через спирали, не имеющие момента противодействия (безмоментные).
Схема применения и устройства флюксметра
Прибор состоит из следующих деталей, отмеченных на рис. выше:
- испытуемый постоянный магнит – 1;
- рамка измерительная – 2;
- рамка прибора – 3;
- магнит прибора – 4;
- рамка корректирующего устройства – 5;
- головка регулировки корректирующей рамки – 6;
- переключатель «работа – коррекция» – 7.
Флюксметр не может измерять слабые МП из-за низкой чувствительности.
Постоянные магниты
Что является источником магнитного поля
Одним из источников поля являются постоянные магниты. Они известны много веков. Из намагниченного железа изготавливалась стрелка компаса, а в Древней Греции существовала легенда об острове, притягивающем к себе металлические части кораблей.
Постоянные магниты есть различной формы и изготавливаются из разных материалов:
- железные – самые дешёвые, но обладают меньшей притягивающей силой;
- неодимовые – из сплава неодима, железа и бора;
- альнико – сплав железа, алюминия, никеля и кобальта.
Все магниты являются двухполюсными. Это заметнее всего в стержневых и подковообразных устройствах.
Если стержень подвесить за середину или положить на плавающий кусочек дерева или пенопласта, то он развернётся по направлению «север-юг». Полюс, показывающий на север, называют северным и на лабораторных приборах красят в синий цвет и обозначают «N». Противоположный, показывающий на юг, – красный и обозначен » S». Одноимёнными полюсами магниты притягиваются, а противоположными – отталкиваются.
В 1851 году Майкл Фарадей предложил понятие о замкнутых линиях индукции. Эти линии выходят из северного полюса магнита, проходят по окружающему пространству, входят в южный и внутри устройства возвращаются к северному. Ближе всего линии и напряжённость поля у полюсов. Здесь также выше притягивающая сила.
Если на устройство положить кусок стекла, а сверху тонким слоем насыпать железные опилки, то они расположатся вдоль линий магнитного поля. При расположении рядом нескольких приборов опилки покажут взаимодействие между ними: притяжение или отталкивание.
Магнит и железные опилки
Ученые сделавшие открытия в области электричества
Если бы мы спросили, кто открыл электричество, то получили бы разные ответы из разных стран. То же самое произойдет, если мы спросим, кто создал двигатель внутреннего сгорания, электрический двигатель, телеграф, телефон, радио, телевизор или компьютер. Это неудивительно, поскольку в ряде случаев приоритет изобретений, возникших почти одновременно в разных местах, был предметом долгих и сложных научных изысканий, а окончательные применения часто вызывали критику среди специалистов.
Вряд ли янтарь, натёртый комком шерсти и описанный древнегреческим математиком и философом Фалес Милетским в VII веке до н. э признается периодом открытия электричества. Только с 17 века происходит ряд открытий в области магнетизма и электричества.
Открытие электричества эволюционировало в течение длительного периода, что позволило выявить различные этапы. Ученые занимавшиеся изучением электричества обеспечили то применение, нынешнюю структуру и эксплуатационные характеристики обусловленные электрическими зарядами сейчас.
Электромагниты в повседневной жизни
Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.
Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.
Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.
Конвертер величин
Калькуляторы
В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.
Магнитостатика, магнетизм и электродинамика
Магнитостатика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае.
Электродинамика
— раздел физики, изучающий силы, возникающие при взаимодействии электрически заряженных частиц и тел. Эти силы объясняются в электродинамике с помощью электромагнитных полей. Силы электромагнитного взаимодействия лежат в основе большинства явлений, с которыми мы встречаемся в повседневной жизни. Часть привычных явлений обусловлена действием гравитационных сил.
Электромагнитное поле
— физическое поле, появляющееся при взаимодействии движущихся заряженных телами или частиц. Электромагнитное поле можно рассматривать как сочетание электрического и магнитного полей.
Электрическое поле
— физическое поле, окружающее электрически заряженные частицы, проводники с проходящими в них электрическими токами и изменяющиеся во времени и пространстве магнитные поля.
Магнитное поле
— физическое силовое поле, окружающее заряженные частицы, проводники с электрическим током, магнитные материалы и переменные электрические поля, а также действующее на проводники с электрическим током, движущиеся электрические заряды и тела, обладающие магнитным моментом. Магнитное поле в любой точке определяется направлением и силой и таким образом является векторным полем. Магнитное поле характеризуется двумя основными величинам — вектором магнитной индукцииВ и вектором напряженности магнитного поляH .
Конвертер магнитного потока
Магнитный поток
определяется как интеграл вектора магнитной индукции через конечную поверхность. Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади. Для измерения магнитного потока используют флюксметр, который измеряет напряжение на измерительной катушке.
В СИ единицей магнитного потока является вебер
(Вб, размерность — В·с = кг·м²·с⁻²·А⁻¹). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м². В системе СГС — магнитный поток измеряется вмаксвеллах (Мкс).
Использование конвертера «Конвертер магнитного потока»
На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.
Изучайте технический английский язык и технический русский язык с нашими видео! — Learn technical English and technical Russian with our videos!
Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие. Примечание.
В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.
Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись
, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение отexponent ) — означает «· 10^», то есть«…умножить на десять в степени…» . Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.
Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.
Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!
Канал Конвертера единиц TranslatorsCafe.com на YouTube
ⓘ Энциклопедия | Потокосцепление — Вики ..
Значение слова ПОТОКОСЦЕПЛЕНИЕ что это?.
РОЗРАХУНКОВО ДОСЛіДНИЙ МЕТОД ПОТОКОСЦЕПЛЕНИЕ КОТУШКИ зависимости потокосцепления катушки с блоком постоянных магнитов от их. Потокосцепление с комментариями. Эти магнитные потоки называют потоками самоиндукции, а их сумму для всех витков катушки называют потокосцеплением самоиндукции ψ. Рис. 2.13. Синонимы и антонимы потокосцепление анализ и. Решение. Потокосцепление катушки. Отсюда. Так как катушку можно приближённо считать бесконечно длинным соленоидом см. данные задачи ,.
Индуктивные сопротивления обмоток.
Задача 4 3 5 4. Определить потокосцепление самоиндукции и энергию, запасенную в магнитном поле контура, по которому проходит ток I 12 А, если. Индуктивность L катушки без сердечника равна 0.02 Гн. Какое. Потокосцепления электрической машины. Если пренебречь насыщением магнитопровода АД, то магнитные потоки, сцепляющиеся с его обмотками,. Министерство образования Российской Федерации. По сути потокосцепление это поток, проходящий через сложную поверхность, натянутую на все витки. А под потоком понимается. УРАВНЕНИЯ ДИНАМИКИ ЭЛЕКТРОМАГНИТА ПЕРЕМЕННОГО. При этом всегда потокосцепление и ток имеют одинаковый знак, так что L 0. Зависимость потокосцепления от тока в общем случае нелинейная, и.
Что такое потокосцепление и какая при этом Ответы.
ПОТОКОСЦЕПЛЕНИЕ. полный магнитный поток, пронизывающий электрич. контур напр., в катушке индуктивности магн. поток, сцепленный со. Магнитный поток и потокосцепление. Здравствуйте! Нужно узнать потокосцепление катушек в генераторе. Геометрию машины полностью нарисовал в компасе,. Магнитный поток и потокосцепление. Магнитный поток. Рактер: вектор потокосцепления ротора совершает колебания относительно вектора потокосцепления статора, то есть может как отставать от него,.
Электротехника Анализ электрических цепей Индуктивность.
Потокосцепление. Правильно слово пишется: потокосцепление. Ударение падает на 5 й слог с буквой е. Всего в слове 15 букв, 7 гласных, 8 согласных,. Произношение потокосцепление: Как произносится Forvo. 1.19. Потокосцепление катушки равно алгебраической сумме магнитных потоков Φi, пронизывающих ее отдельные витки: 1.20. где N число витков. 2.2.4. МАГНИТНЫЙ ПОТОК. ПОТОКОСЦЕПЛЕНИЕ. Магнитный поток и потокосцепление. В пространстве, окружающем проводники, по которым протекает электрический ток, а также окружающем.
Потокосцепление самоиндукция Большая Энциклопедия.
Потокосцепление полный магнитный поток физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми. Потокосцепление Карта знаний. Каким бывает потокосцепление прилагательные?. Подбор прилагательных к слову на основе русского языка. Данные, связанные с этим словом пока. 1.5 Индуктивность. Теоретические основы электротехники. Топ подборка потокосцепление самоиндукции контура г.! Премиум шопинг и выгодные цены на подборку потокосцепление самоиндукции контура г. на.
Самоиндукция индуктивность.
Полное потокосцепление обмотки переменного тока может быть представлено, в виде суммы главного потокосцепления и потокосцепления рассеяния. Потокосцепление шагового двигателя НГУ Просмотр темы. Естественные науки Физика. Электричество и магнетизм, колебания и волны 2.2.4. МАГНИТНЫЙ ПОТОК. ПОТОКОСЦЕПЛЕНИЕ В случае. Слово Потокосцепление значения к слову. Потокосцепление в электротехнике, полный магнитный поток, сцепленный с рассматриваемым контуром. если память не изменяет Потокосцепление. Электрические машины: Учебное пособие. Читать бесплатно. Синонимы к слову Потокосцепление. В помощь копирайтеру! Поиск сразу по нескольким базам синонимов к словам, онлайн! Синонимайзер. Потокосцепление Мультитран. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется.
Закон электромагнитной индукции
Закон электромагнитной индукции (закон Фарадея) звучит так:
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.
Математически его можно описать формулой:
Закон Фарадея
Ɛi — ЭДС индукции
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.
Закон Фарадея для контура из N витков
Ɛi — ЭДС индукции
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
N — количество витков
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением R:
Закон Ома для проводящего контура
Ɛi — ЭДС индукции
I — сила индукционного тока
R — сопротивление контура
Если проводник длиной l будет двигаться со скоростью v в постоянном однородном магнитном поле с индукцией B ЭДС электромагнитной индукции равна:
ЭДС индукции для движущегося проводника
Ɛi — ЭДС индукции
B — магнитная индукция
v — скорость проводника [м/с]
l — длина проводника
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
- вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него
Что это за токи? Эти элементарные токи
циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.
Источник
Магнитный поток
Что является источником магнитного поля
Данное явление представляет собой совокупность силовых линий, проходящих через определённое сечение проводника или замкнутого токопроводящего контура.
Рассчитывается модуль этой величины Ф по следующей формуле:
Ф= B×S×Cos α, где:
- В – модуль вектора создаваемой силовыми линиями индукции;
- S – площадь поверхности, через которую проходит поток силовых линий;
- α – угол между векторами силовых линий индукции и нормали (т.е. перпендикуляром к пронизываемой силовыми магнитными линиями плоскости).
Измеряется данная величина в Веберах (Вб).
Паразитная индукция и тепловые потери
Рассмотренные явления могут применяться с пользой для разогрева кухонной посуды или плавки различных материалов. Однако в трансформаторах и электродвигателях паразитные вихревые индукционные токи – это негативное явление. Кроме прямых энергетических потерь, увеличивается вероятность аварийных ситуаций. При слишком высокой температуре повреждается изоляция.
Расслоение электромагнита
Уменьшают негативные проявления с помощью особых «наборных» конструкций. Если объединить несколько пластин, обеспечивается взаимная компенсация полей.
Принцип конструкции из нескольких слоев
При правильном расчете потери уменьшают (2) до 1-2% от уровня, который создает цельный аналог (1).
Паразитные потери в катушках индуктивности
Размеры проводника также имеют значение. Крупные элементы образуют паразитные токи, так как в определенном положении распределение линий магнитного поля неравномерно.
Пояснение к появлению в катушке паразитных токов
На рисунке схематично показаны различные силовые характеристики поля для участков по линиям a-b и c-d, соответственно. При уменьшении размеров проводника снижаются энергетические потери. В некоторых устройствах этот параметр определят класс энергетической эффективности.
Индуктивность.Электродвижущая сила самоиндукции
• Электромагнетизм • |
- Магнитное поле тока, магнитная индукция, магнитный поток
- Электромагнитная сила
- Взаимодействие парал лельных проводов с токами
- Магнитная проницаемость
- Напряженность магнитного поля,магнитное напряжение
- Закон полного тока
- Магнитное поле катушки с током
- Ферромагнетики,их намагничивание и перемагничивание
- Ферромагнитные материалы
- Магнитная цепь и ее расчет
- Электромагниты
- Электромагнитная индукция
- Принцип работы электричес кого генератора
- Принцип работы электродви гателя
- Вихревые токи
- Индуктивность.Электродви жущая сила самоиндукции
- Энергия магнитного поля
- Взаимная индуктивность
- …
• Обзор сайта • |
- Электрооборудование до 1000 В
- Электрические аппараты
- Электрические машины
- Эксплуатация электро оборудования
- Электрооборудование электротехнологических установок
- Электрооборудование общепромышленных установок
- Электрооборудование подъемно-транспортных установок
- Электрооборудование металлообрабатывающих станков
- Электрооборудование выше 1000 В
- Электрические аппараты высокого напряжения
- Электротехника
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- Электромонтаж
- С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
- Монтаж электропроводки
- Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
- Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
- Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
- Электромонтаж и заземле ние розеток
- Электромонтаж уравнива ния потенциалов
- Электромонтаж контура заземления
- Электромонтаж модульного штыревого контура заземле ния
- Электромонтаж нагреватель ного кабеля для подогрева полов
- Электромонтажные работы по прокладке кабеля в зем ле
- Электричество в частном доме
- Проект электроснабжения
• Электротехника • |
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- …
ЭЛЕКТРОСПЕЦ
ЭЛЕКТРОСПЕЦ
При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:
Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):
Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.
Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)
а индуктивность её
Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):
Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):
Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.
Примеры задач с решением
Пример 1
Задание. Чему равен вектор поляризации в некоторой точке однородного изотропного диэлектрика, если известен вектор электрической индукции в этой точке ($\overline{D}$)? Диэлектрическая проницаемость вещества равна $\varepsilon $.
Решение. За основу решения задачи примем определение вектора электрического смещения вида:
\
Выразим вектор поляризации из (1.1):
\
Так как по условию рассматриваемый диэлектрик является однородным и изотропным, то:
\
следовательно:
\
Подставим правую часть формулы (1.4) вместо $\overline{E}$ в уравнение (1.2), имеем:
\
Ответ. $\overline{P}=\left(1-\frac{1}{\varepsilon }\right)\overline{D}$
Пример 2
Задание. Между двумя бесконечными заряженными пластинами, несущими одинаковые по величине, но противоположные по модулю заряды поместили пластину из диэлектрика. Пластина сторонних зарядов не имеет. Каков поток вектора электрической индукции через поверхность, которая изображена на рис.2?
Решение. В соответствии с теоремой Гаусса поток вектора электрической индукции равен алгебраической сумме свободных зарядов, которые находятся внутри выделенной замкнутой поверхности (рис.2). Так как по условию задачи свободных зарядов между пластинами и в диэлектрике нет, то поток вектора $\overline{D}$ будет равен нулю:
\
Ответ. $\oint\nolimits_S{\overline{D}d\overline{S}=0\ }$
Осциллятор Теслы
Знали ли вы, что каждый атом в предмете вибрирует на определенной чистоте? И если частота колебаний системы совпадает с частотой вибраций атома, то происходит известный всем резонанс. На основе этой концепции Тесла разработал карманный прибор, способный разрушить любой объект.
В процессе эксперимента вокруг аппарата начали появляться молнии, затем все предметы начали вращаться вокруг. Ученый уничтожил машину молотком, прежде чем обрушилось все здание.
Вот такой он, великий и могучий ученый
Его история лишний раз доказывает, как важно верить в настоящие умы человечества и не препятствовать их гениальной деятельности