Расчет фазоинвертора онлайн калькулятор. блог › простая методика настройки фазоинвертора

Расчёт фазоинвертора

При резонансе, сопротивление звуковой катушки растёт. Для измерения, к динамику последовательно подключают резистор, номинал которого выше сопротивления динамика на порядок, от 100 — до 1000 Ом. При измерении напряжения можно оценить сопротивление звуковой катушки. На частотах, где будет высокое сопротивление — напряжение на резисторе минимально и наоборот.

Нам не важны абсолютны значения, только максимальное сопротивление на катушке (минимальное на резисторе). Для этого воспользуемся мультиметром в режиме замера переменного напряжения. В качестве источника, профессионалы используют генератор звуковых частот. А для нашей задачи подойдёт специальный компакт диск.

Процесс измерения выглядит таким образом:

  • Отверстие фазоинвертора затыкается куском фанеры.
  • Диск с записями звуковых частот включается на приемлемую громкость.
  • Переключая по трекам, следим за напряжением на резисторе, как только она прыгнет до минимума, вот и нужная частота.

Побочно, подбирается оптимальный объем наполнителя для динамика, постепенно добавляя небольшое количество и отслеживая колебания резонансной частоты. А найдя этот параметр, нужно его умножить на 0,63, и получится необходимая частота для фазоинвертора. Но нам нужно ещё измерить длину, для этого открываем отверстие, включаем тестовый диск с записью. И смотрим на показание резистора. Но теперь ищем не минимальное сопротивление, а максимальное. Частота фазоинвертора будет сильно отличаться от нужной. Для его повышения укорачивают длинную тоннеля или увеличивают его диаметр.

Расчёт показателей с помощью программы Bass Port

Интерфейс программы прост и понятен, все поля и настрой подписаны.

Необходимо ввести эти параметры:

  • Скорость звука (по умолчанию 344 м/с, влажность 50% температура 20° C ).
  • Объем ящика.
  • Частота фазоинвертора.
  • Диаметр динамика.
  • Низкие частоты динамика.
  • Ход диффузора.
  • Сечение порта.
  • Количество отверстий в корпусе.

После этого нажимается кнопка пересчитать и получаете результат. Учитывайте что скорость воздуха не должна быть больше 13 м/c.

Расчёт фазоинвертора по методике журнала «Радио»

Собираем схему с генератором звуковой частоты и резистором в 1000 Ом, меньшую мощность брать не рекомендуется. Динамики размещаем вдали от потолка и стен. Подключаем вольтметр и измеряем напряжение на частоте 500 Гц. И находим максимальные (Fs) и минимальные показатели (Us). Чтобы узнать необходимый объем ящика (V), берём такого же размера коробку с дыркой под динамик, но не из картона. Устанавливаем динамик и герметизируем все отверстия. Проводим измерения и вычисляем Fs. Полученные данные подставляем в формулу: Vas = (( Fs ’/ Fs )^2-1)* V.

Для настройки фазоинвертора, закрываем отверстие туннеля и вычисляем максимальный показатель (Fs), добавляем звукопоглощающий материал и снова замеряем. Полученный результат добавляем в формулу Fb = 0,63* Fs. Длина туннеля вычисляется: LV= 31*10^3* S /(Fb ^2* V), где S — площадь порта фазоинвертора (в см ²), а V — объем ящика (в литрах).

Фазоинвертор напрямую влияет на качество звучания акустики. Существует несколько методик расчёта фазоинвертора, у них одинаковый первый этап — замер показателей. Использование программного обеспечения, часто даёт неправильный результат. Также можно воспользоваться онлайн сервисами, но у них те же минусы.

Виды акустических систем

Звук — это колебание, имеющее механическую природу возникновения, распространяющееся под давлением вызванным источником излучения. Акустическая система, представляющая собой звуковую колонку, преобразует электрические сигналы в механические, воспринимаемые слухом человека. Частота этих колебаний лежит в границах от 20 гц до 20 КГц. Существуют различные виды акустических систем:

  1. Акустический лабиринт. Имеет вид лабиринта, выполненного в виде туннеля, находящегося в середине колонки. Его предназначение — усиливать низкие частоты за счёт множества изгибов. Внутренние стенки лабиринта покрываются демпфирующим покрытием, за счёт чего лабиринт не привносит в звук паразитные призвуки.
  2. Открытого типа. Представляет собой систему, в которой стенка, противоположная направлению излучения динамиков, не устанавливается. В таком типе исполнения невозможно получить хорошие низкие частоты из-за отсутствия компрессии, а средние и высокие звуки кажутся более открытыми и воздушными.
  3. Закрытого типа. Выполняется из полностью герметичного корпуса, создающего внутри замкнутый объём воздуха. Этот объём образует внутреннее давление, мешающее нормальному ходу диффузоров динамика. Такого рода колонки имеют большие габариты с накладкой на внутренние стенки — демпфера. Достоинством этой системы является чистота звука, в гамму которого не примешиваются нежеланные посторонние звуки.
  4. Изобарического типа. Отличается сложностью изготовления и дороговизной, но из-за конструктивных особенностей позволяет увеличивать мощность и глубину низкочастотной составляющей. В середине колонки располагаются два динамика, разделённые звуконепроницаемой перегородкой и направленные в одну сторону. Эти динамики подключаются параллельно друг другу и работают в фазе.
  5. Пассивная. Основное её предназначение — повысить эффективность воспроизведения низкочастотной составляющей звука за счёт использования пассивного излучателя. Этот излучатель располагается в глубине отверстия, выполненного в корпусе колонки и не обладает магнитной системой. При подаче сигнала диффузор излучателя движется не с помощью преобразования электрического сигнала, а под воздействием потока воздуха, вызванного установленным низкочастотным динамиком. Такая конструкция позволяет достичь глубокого баса, но может привнести гул в звук.
  6. С дипольным излучателем. Дипольного вида акустика воспроизводит звук в двух направлениях. Другое название такого типа — биполярный. По своему типу относится к открытому виду. Для получения приемлемых низких частот потребуется использование динамиков с большими размерами диффузоров.
  7. Контрапертурная. Редко используемая конструкция. Динамики в ней направляются в верхнюю или нижнюю сторону, и к ним подводится одинаковый сигнал. При столкновении звука, излучаемого динамиками, он изменяет своё направление, распространяясь радиально. К недостаткам такой системы относят возникновение реверберации, из-за чего «размывается» стереопанорама. Достоинства заключаются в появлении эффекта «растворения» звуковых колебаний в помещении.
  8. Фазоинверторная. Эта система изготавливается в виде классической колонки закрытого типа, но со специальным отверстием. В него устанавливается труба, уходящая вглубь ящика. Такой подход позволяет получить низкочастотный звук значительно ниже по частоте, чем возможности динамиков. Такая система очень востребована, так как позволяет в относительно небольших размерах корпуса воспроизвести глубокие басы, выдавая частоты, недостижимые простым применением динамиков.

Использование фазоинверторного типа даёт возможность не только расширить нижний частотный диапазон, но и повысить коэффициент полезного действия. При этом частотный диапазон не изменится. Отверстие фазоинвертора выполняется разного вида и размеров. Размещаться оно может на любой поверхности колонки

При разработке акустической системы наиболее важно выполнить правильно расчёт размера фазоинверторного короба, от чего зависит не только диапазон воспроизводимой частоты, но и качество всего звука в целом

Как рассчитывается фазоинвертор

Расчет фазоинвертора происходит способом выбора динамиков, добротность которых от 0,3 до 0,5, а отношение резонансной частоты 50 (не менее).

Расчет ФИ короба сабвуфера

В этом случае необходимо вычислить следующие параметры:

  1. Объем сабвуфера.
  2. Площадь сечения.
  3. Длину и диаметр трубы.
  4. Порт фазоинвертора.

Информация о коробе подбирается по таким же формулам, как при расчете закрытого ящика. Только здесь отличается добротность колонки: от 0,6 до 0,65. Данные порта выясняются с использованием значения частоты, при которой осуществляется настройка фазоинвертора. Она выбирается наравне с резонансной частотой динамика. Но может быть и меньше. Расчет проводится по формулам, которые также есть на фото.

Длина расчетная иногда получается больше, чем рекомендованное максимальное значение. Но есть способы, которые помогают уменьшить эту длину. Выход круглого фазоинвертора размещается на плоскости панели. Это позволяет выигрывать в длине примерно 0,85. А труба фазоинвертора имеет на конце фланцы, которые способны усиливать эффект в большую сторону.

Примерно 15% от длины позволяет сэкономить размещение фазоинвертора вплотную к одной стороне колонки. Если использовать порт как усеченный конус сечения (круглого или прямоугольного), это даст возможность сделать длину меньше на 35%.

Расчет короба для сабвуфера

Итак, вы определились с сабвуфером, подобрали к нему усилитель, выбрали акустическое оформление и решили самостоятельно изготовить корпус. Перед тем как создать чертеж вам нужно рассчитать короб для сабвуфера, то есть получить исходные данные. Для закрытого ящика — это объем; для фазоинвертора — это объем корпуса, площадь сечения порта и его длина; для четвертьволнового резонатора — длина и площадь сечения тоннеля; для бандпассов — объем отсеков, площадь и длина портов, форма корпуса. Все эти параметры нужно рассчитать и для этого применяются специальные программы. Основой для всех калькуляций являются параметры Тиля — Смолла.

Смысл правильного расчета сабвуфера заключается в том, что бы спроектировать такое оформление, в котором динамик будет выдавать бас, подходящий для ваших вкусов и музыкальных предпочтений. Например, для закрытого ящика плавность АЧХ и характер звучания будет зависеть от объема корпуса, который вам нужно будет подобрать исходя из характеристик вашего сабвуферного динамика; для фазоинвертора частота настройки и горб АЧХ зависит от объема корпуса, объема порта, его длины формы и сечения и т.д.

Закрытый ящик

Данный тип оформления самый простой. Закрытый ящик для сабвуфера несложно рассчитать и собрать. Его конструкция представляет собой короб из нескольких стенок, чаще всего из 6.

Преимущества ЗЯ:

  1. Несложный расчет;
  2. Несложная сборка;
  3. Маленький литраж готового короба, а следовательно компактность;
  4. Хорошие импульсивные характеристики;
  5. Быстрый и четкий бас. Хорошо отыгрывает клубные треки.

Недостаток у закрытого ящика всего один, но он порой является решающим. У данного типа оформления очень низкий уровень КПД относительно других коробов. Закрытый ящик не подойдет для тех, кому хочется высокого звукового давления.

Однако он подойдет для любителей рока, клубной музыки, джаза и подобного. Если человеку хочется баса, но нужно место в багажнике, то закрытый ящик – это идеальный вариант. Закрытый ящик будет плохо играть если выбран неправильный объем. Какой объём короба нужен для данного типа оформления уже давно решили опытные люди в автозвуке путем вычислений и экспериментов. Выбор объема будет зависеть от размера сабвуферного динамика.

Чаще всего встречаются динамики таких размеров: 6, 8, 10, 12, 15, 18 дюймов. Но также можно найти динамики других размеров, как правило в инсталляциях они используются очень редко. Сабвуферы диаметром 6 дюймов выпускаются несколькими компаниями и в инсталляциях также встречаются редко. В основном люди выбирают динамики диаметром 8-18 дюймов. Некоторые люди указывают диаметр сабвуферного динамика в сантиметрах, что не совсем правильно. В профессиональном автозвуке принято выражать размеры в дюймах.

Показатель Vas

Этот параметр для динамиков может измеряться по двум методикам:

  • добавочной массы;
  • добавочного объема.

В первом случае измерения делают с использованием каких-либо грузиков (10 грамм на каждый дюйм диаметра диффузора). Это могут быть, к примеру, гирьки от аптечных весов или старые монеты, номинал которых соответствует их весу. Такими предметами нагружают диффузор и измеряются его частоту. Далее производят необходимые расчеты по формулам.

При использовании метода добавочного объема звукоизлучатель герметично закрепляют в специальном измерительном ящике магнитом наружу. Далее измеряют резонансную частоту и вычисляют электрическую и механическую добротность динамика, а также полную. Затем с учетом полученных данных по формуле определяют Vas.

Вам будет интересно:Звездочет — это ученый, который изучает астрономию

Считается, что чем меньше Vas при прочих равных величинах, тем более компактное оформление можно использовать для динамика. Обычно небольшие значения этого параметра при той же резонансной частоте являются результатом сочетания тяжелой подвижной системы и жесткого подвеса.

Основные преимущества и недостатки фазоинверторов

К основным преимуществам фазоинверторов для сабвуферов в транспортных средствах можно отнести следующие:

  1. Уменьшение уровня и показателей вибрации и искажений диффузора.
  2. Более качественный, четкий и приятный для человеческого восприятия звук. Правда, относится это не к каждому жанру и типу композиций, а к определенным разновидностям музыки. Из-за воздушных потоков, поступающих прямо в отверстие вентиляции, звук будет напоминать небольшой, едва слышимый свист. Этот свист очень похож на тот, который получается, когда человек дует на горлышко пустой бутылки.

К основным преимуществам фазоинверторов для сабвуферов в автомобилях можно отнести следующие:

  1. Звуки при воспроизведении композиции, которые получаются при помощи вентиляционных каналов, могут стать причиной причинения вреда, а не пользы, но это относится не ко всем видам музыки, а только к некоторым из них. Как было отмечено выше, фазоинверторы – это тот комплекс в общей акустической системе транспортного средства, который не сможет подойти под абсолютно любую музыку.
  2. Фазоинвертор — это достаточно чувствительный вид корпуса, а в особенности его чувствительность распространяется на изменения в климате. Больше всего работа фазоинвертора зависит от таких климатических показателей, как температурные показатели, а также уровень и процент влажности.
  3. Фазоинвертор и тип корпуса, как ни странно, способствует физическому переутомлению человека.
  4. Из-за постоянного высокого давления внутри корпуса фазоинвертора система должна быть очень прочной. Все это говорит о том, что ее сложнее делать и продавать, а себестоимость входит в итоговый ценник.

Добротность динамика и оформление

Считается, что головки с показателем Fs/Qts>50 должны использоваться в закрытых корпусах, Fs/Qts>85 — с фазоинверторами, Fs/Qts>105 — с полосовыми резонаторами, Fs/Qts>30 — с экранами и открытыми ящиками.

Подбирать акустическое оформление для динамиков можно, как уже упоминалось, и просто по показателям их добротности. К примеру, головки с Qts> 1,2 чаще всего используются для открытых ящиков. Оптимальным показателем добротности для них считается 2,4. Динамики с Qts<0,8-1,0 предназначены для закрытых ящиков. В данном случае оптимальный показатель, как мы выяснили раньше, равен 0,5-0,6.

Добротность динамиков для фазоинвертора должна быть такой: Qts<0,6. Оптимум в данном случае будет равен 0,4. Устройства же с Qts<0.4 подходят для рупоров.

10-ка лучших статей

  • Простой и надёжный металлоискатель своими руками — 206 429 просм.
  • Ремонт микроволновой печи своими руками — 192 533 просм.
  • Зарядное из компьютерного блока питания. — 186 982 просм.
  • Простой металлоискатель своими руками — 185 864 просм.
  • Автомобильные зарядные устройства. Схемы. Принцип работы. — 161 904 просм.
  • Простая и надёжная схема терморегулятора для инкубатора — 154 431 просм.
  • Простое автоматическое зарядное устройство — 118 375 просм.
  • Разнообразие простых схем на NE555 — 117 725 просм.
  • Самогонный аппарат своими руками — 110 649 просм.
  • Как самому поменять разъём USB? — 103 658 просм.

Расчёт фазоинвертора

При резонансе, сопротивление звуковой катушки растёт. Для измерения, к динамику последовательно подключают резистор, номинал которого выше сопротивления динамика на порядок, от 100 — до 1000 Ом. При измерении напряжения можно оценить сопротивление звуковой катушки. На частотах, где будет высокое сопротивление — напряжение на резисторе минимально и наоборот.

Нам не важны абсолютны значения, только максимальное сопротивление на катушке (минимальное на резисторе). Для этого воспользуемся мультиметром в режиме замера переменного напряжения. В качестве источника, профессионалы используют генератор звуковых частот. А для нашей задачи подойдёт специальный компакт диск.

Процесс измерения выглядит таким образом:

  • Отверстие фазоинвертора затыкается куском фанеры.
  • Диск с записями звуковых частот включается на приемлемую громкость.
  • Переключая по трекам, следим за напряжением на резисторе, как только она прыгнет до минимума, вот и нужная частота.

Побочно, подбирается оптимальный объем наполнителя для динамика, постепенно добавляя небольшое количество и отслеживая колебания резонансной частоты. А найдя этот параметр, нужно его умножить на 0,63, и получится необходимая частота для фазоинвертора. Но нам нужно ещё измерить длину, для этого открываем отверстие, включаем тестовый диск с записью. И смотрим на показание резистора. Но теперь ищем не минимальное сопротивление, а максимальное. Частота фазоинвертора будет сильно отличаться от нужной. Для его повышения укорачивают длинную тоннеля или увеличивают его диаметр.

Расчёт показателей с помощью программы Bass Port

Интерфейс программы прост и понятен, все поля и настрой подписаны.

Необходимо ввести эти параметры:

  • Скорость звука (по умолчанию 344 м/с, влажность 50% температура 20° C ).
  • Объем ящика.
  • Частота фазоинвертора.
  • Диаметр динамика.
  • Низкие частоты динамика.
  • Ход диффузора.
  • Сечение порта.
  • Количество отверстий в корпусе.

После этого нажимается кнопка пересчитать и получаете результат. Учитывайте что скорость воздуха не должна быть больше 13 м/c.

Расчёт фазоинвертора по методике журнала «Радио»

Собираем схему с генератором звуковой частоты и резистором в 1000 Ом, меньшую мощность брать не рекомендуется. Динамики размещаем вдали от потолка и стен. Подключаем вольтметр и измеряем напряжение на частоте 500 Гц. И находим максимальные (Fs) и минимальные показатели (Us). Чтобы узнать необходимый объем ящика (V), берём такого же размера коробку с дыркой под динамик, но не из картона. Устанавливаем динамик и герметизируем все отверстия. Проводим измерения и вычисляем Fs. Полученные данные подставляем в формулу: Vas = (( Fs ’/ Fs )^2-1)* V.

Для настройки фазоинвертора, закрываем отверстие туннеля и вычисляем максимальный показатель (Fs), добавляем звукопоглощающий материал и снова замеряем. Полученный результат добавляем в формулу Fb = 0,63* Fs. Длина туннеля вычисляется: LV= 31*10^3* S /(Fb ^2* V), где S — площадь порта фазоинвертора (в см ²), а V — объем ящика (в литрах).

Фазоинвертор напрямую влияет на качество звучания акустики. Существует несколько методик расчёта фазоинвертора, у них одинаковый первый этап — замер показателей. Использование программного обеспечения, часто даёт неправильный результат. Также можно воспользоваться онлайн сервисами, но у них те же минусы.

Расчёт низкочастотного туннеля

Существует несколько способов для проведения вычислений размеров ФИ. Наиболее популярным является расчёт фазоинвертора онлайн или с использованием специализированных программ. Такие способы обычно требуют знаний множества параметров используемых динамиков. Существуют варианты и проще, но с большим расхождением конечного результата с реальным значением. Хотя в любом случае после расчёта и изготовления приходится проводить настройку.

Простая формула для вычисления

Метод вычисления заключается в использовании несложных формул и происходит методом подбора данных, когда за основу используется желаемая длина ФИ канала.

F = (C/2 π) * K, где:

  • F — желаемая частота настройки;
  • C — скорость звука;
  • π — математическая постоянная, равная 3,14;
  • K — коэффициент, зависящий от размеров фазоинвертора.

При этом коэффициент K равен квадратному корню отношения S/LV, где:

  • S — площадь отверстия;
  • L — длина канала;
  • V — объем колонки.

В качестве единиц измерения везде используются метры, а для частоты — герцы. При определении значений объёма считается, что лучше выбрать узкий фазоинвертор, но такой подход неверен, ведь при этом в нём возрастает скорость движения воздуха, а это вносит искажения в звучание. Проектирование широкого и длинного ФИ также лишено смысла, ведь длина фазоинвертора не должна превышать длину волны в момент наступления резонанса. Выполнение этого правила помогает избавиться от стоячих волн.

Использование специализированных программ

Существует много программ, позволяющих автоматизировать расчёты при построении акустических систем, например, Bassport. Эта программа специально разработана для автоматизации проведения расчёта порта фазоинвертора. При разработке программы учитывалось, что когда скорость потока воздуха в трубе становится более шести метров в секунду, то становятся заметными шумы.

Интерфейс программы интуитивно понятен, тем более она имеет локализацию на русском языке. Для получения нужных результатов понадобится ввести:

  • скорость звука;
  • объем колонки;
  • частоту фазоинвертора и динамика;
  • диаметр диффузора;
  • ход диффузора.

После ввода всех данных останется нажать кнопку «Пересчитать» и получить результат, соответствующий максимальной добротности, зависящей, прежде всего, от соотношения объёма ящика к диаметру порта. Программа Bassport позволяет выполнить расчёт для различных форм, но чаще всего, при скоростях потока до шести метров в секунду, применяется несложная форма для трубчатого или щелевого вида.

Необходимо отметить следующие нюансы при использовании программы. Измерение диаметра диффузора происходит между расстояниями противоположными средним точкам подвесов. Цвет отображения цифры скорости потока, обозначает возможные возникновения шума: чёрный — шума нет, красный — шум заметно слышимый.

Использование онлайн-программ построено по такому же принципу: вводятся параметры системы и выдаётся результат. Сайты с такими программами легко находятся по запросу «фазоинвертор онлайн-калькулятор» в любой поисковой системе. Хотя для достоверности результатов следует перепроверить полученные данные на нескольких сайтах.

О чем нужно знать

Измерить параметры ТС, включая добротность, правильно при конструировании акустических систем очень важно. Чтобы избежать больших погрешностей, перед выполнением измерений динамик обязательно нужно «размять»

Дело в том, что у новых или не эксплуатировавшихся некоторое время устройств подобного типа параметры ТС могут значительно отличаться от показателей, использовавшихся до начала расчетов оборудования.

«Разминать» динамики перед измерениями можно, к примеру, синусоидальными сигналами, просто музыкой, белым и розовым шумом, тестовыми дисками. Длиться при этом процедура подобной подготовки устройства должна, по мнению специалистов, в течение минимум суток.

Виды акустических систем

Звук — это колебание, имеющее механическую природу возникновения, распространяющееся под давлением вызванным источником излучения. Акустическая система, представляющая собой звуковую колонку, преобразует электрические сигналы в механические, воспринимаемые слухом человека. Частота этих колебаний лежит в границах от 20 гц до 20 КГц. Существуют различные виды акустических систем:

  1. Акустический лабиринт. Имеет вид лабиринта, выполненного в виде туннеля, находящегося в середине колонки. Его предназначение — усиливать низкие частоты за счёт множества изгибов. Внутренние стенки лабиринта покрываются демпфирующим покрытием, за счёт чего лабиринт не привносит в звук паразитные призвуки.
  2. Открытого типа. Представляет собой систему, в которой стенка, противоположная направлению излучения динамиков, не устанавливается. В таком типе исполнения невозможно получить хорошие низкие частоты из-за отсутствия компрессии, а средние и высокие звуки кажутся более открытыми и воздушными.
  3. Закрытого типа. Выполняется из полностью герметичного корпуса, создающего внутри замкнутый объём воздуха. Этот объём образует внутреннее давление, мешающее нормальному ходу диффузоров динамика. Такого рода колонки имеют большие габариты с накладкой на внутренние стенки — демпфера. Достоинством этой системы является чистота звука, в гамму которого не примешиваются нежеланные посторонние звуки.
  4. Изобарического типа. Отличается сложностью изготовления и дороговизной, но из-за конструктивных особенностей позволяет увеличивать мощность и глубину низкочастотной составляющей. В середине колонки располагаются два динамика, разделённые звуконепроницаемой перегородкой и направленные в одну сторону. Эти динамики подключаются параллельно друг другу и работают в фазе.
  5. Пассивная. Основное её предназначение — повысить эффективность воспроизведения низкочастотной составляющей звука за счёт использования пассивного излучателя. Этот излучатель располагается в глубине отверстия, выполненного в корпусе колонки и не обладает магнитной системой. При подаче сигнала диффузор излучателя движется не с помощью преобразования электрического сигнала, а под воздействием потока воздуха, вызванного установленным низкочастотным динамиком. Такая конструкция позволяет достичь глубокого баса, но может привнести гул в звук.
  6. С дипольным излучателем. Дипольного вида акустика воспроизводит звук в двух направлениях. Другое название такого типа — биполярный. По своему типу относится к открытому виду. Для получения приемлемых низких частот потребуется использование динамиков с большими размерами диффузоров.
  7. Контрапертурная. Редко используемая конструкция. Динамики в ней направляются в верхнюю или нижнюю сторону, и к ним подводится одинаковый сигнал. При столкновении звука, излучаемого динамиками, он изменяет своё направление, распространяясь радиально. К недостаткам такой системы относят возникновение реверберации, из-за чего «размывается» стереопанорама. Достоинства заключаются в появлении эффекта «растворения» звуковых колебаний в помещении.
  8. Фазоинверторная. Эта система изготавливается в виде классической колонки закрытого типа, но со специальным отверстием. В него устанавливается труба, уходящая вглубь ящика. Такой подход позволяет получить низкочастотный звук значительно ниже по частоте, чем возможности динамиков. Такая система очень востребована, так как позволяет в относительно небольших размерах корпуса воспроизвести глубокие басы, выдавая частоты, недостижимые простым применением динамиков.

Использование фазоинверторного типа даёт возможность не только расширить нижний частотный диапазон, но и повысить коэффициент полезного действия. При этом частотный диапазон не изменится. Отверстие фазоинвертора выполняется разного вида и размеров. Размещаться оно может на любой поверхности колонки

При разработке акустической системы наиболее важно выполнить правильно расчёт размера фазоинверторного короба, от чего зависит не только диапазон воспроизводимой частоты, но и качество всего звука в целом

На что влияет добротность динамика

Влияет Q в акустических системах в первую очередь на АЧХ и на импульсные характеристики АС. То есть этот показатель в значительной мере определяет особенности звучания динамиков. При добротности 0,5, к примеру, можно достичь наилучшей импульсной характеристики. При показателе же 0,707 получается ровный АЧХ. Также при:

  • добротности 0,5-0,6 динамики выдают аудиофильский бас;
  • показателях 0,85-0,9 бас становится упругим и рельефным;
  • добротности 1,0 в срезе появляется «горбик» амплитудой 1,5 дБ, воспринимаемый ухом человека как хлесткий звук.

При дальнейшем росте показателя Q «горб» в звуке растет и из динамиков начинают исходить характерные гудящие шумы.

Расчет короба для сабвуфера: видео

Характеристики ящика (фазоинвертора) напрямую влияют на звучание динамика

В автомобильной акустике зачастую этому не уделяется должное внимание, там используют принцип — чем больше динамик в ящике, тем лучше. Фазоинвертор требует тщательной настройки, а не использования подручных материалов

Кому лень занимается подсчётами и замерами, используют закрытый ящик.

Для расчёта фазоинвертора, применяют программы моделирования (Bass Port)

, но для получения результата, нужно ввести множество параметров. И даже если вы их знаете, то часто получается большое расхождение с конечным результатом. С помощь простого метода расчёта фазоинвертора, вам не потребуется знать данные для ваших динамиков, ящиков, без сложных математических вычислений и измерительных приборов. Методика существует 30 лет, погрешность всего 5%.