Фотодиоды и их применение в схемотехнике

Оглавление

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Материалы

Материал, используемый для изготовления фотодиода, имеет решающее значение для определения его свойств, потому что только фотоны с достаточной энергией, чтобы возбудить электроны через материал запрещенная зона будет производить значительные фототоки.

Материалы, которые обычно используются для изготовления фотодиодов, перечислены в таблице ниже.

Материал Электромагнитный спектрдлина волны диапазон (нм)
Кремний 190–1100
Германий 400–1700
Арсенид галлия индия 800–2600
Сульфид свинца (II) <1000–3500
Теллурид кадмия ртути 400–14000

Из-за большей ширины запрещенной зоны кремниевые фотодиоды генерируют меньше шума, чем фотодиоды на основе германия.

Бинарные материалы, такие как MoS2 и графен появился как новый материал для производства фотодиодов.

Что такое фотодиод?

Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.

В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.

Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.

Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

5.1. Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам

Фотодетектором (фотоприёмником) называют устройство, преобразующее оптическую энергию в электрическую.

В фотодетекторах используются два фотоэффекта: фотогальванический и фотопроводимости.

Приборы на основе фотогальванического эффекта: фотодиоды, фототранзисторы, солнечные элементы.

Эффект фотопроводимости используется в фоторезисторах.

К фотодетекторам оптических систем связи предъявляются следующие требования:

высокая чувствительность;

требуемые спектральные характеристики и широкополосность;

низкий уровень шумов;

требуемое быстродействие;

длительный срок службы;

использование в интегральных схемах совместно с оптическими усилителями.

В большой степени этим требованиям отвечают фотодиоды.

Фотодиод – прибор, электрические свойства которого изменяются под действием падающего на него излучения.

В технике оптической связи наибольшее применение получили p-i-n фотодиоды и лавинные фотодиоды (ЛФД). Перспективными приборами для высокоскоростных систем являются фотодиоды бегущей волны TAP (Travelling-Wave Photodetectors), используемые на скорости от 10Гбит/с до 160Гбит/с и выше. В этих приборах, фотодетектирование сочетается с оптическим усилением в полупроводниковом оптическом усилителе .

Фотодатчик. Часть 1

Наверняка многим захочется присобачить к AVR фотодетектор, чтобы отслеживать хотя бы наличие или отсутствие света. Это полезно как для роботостроителей, так и для тех кто делает всякую автоматику. Итак, кратко опишу какие бывают фотодетекторы.

Фоторезистор

ИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая сероватая зигзагообразная дорожка. При освещении его сопротивление падает, правда незначительно, раза в три четыре.

Фототранзистор

Фотодиод

Внешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.

В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном. В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.

Спектр

Кроме типа прибора у него еще есть рабочий спектр. Например, фотодетектор заточенный на инфракрасный спектр (а их большинство) практически не реагирует на свет зеленого или синего светодиода. Плохо реагирует на лампу дневного света, но хорошо реагирует на лампу накаливания и красный светодиод, а уж про инфракрасный и говорить нечего. Так что не удивляйся если у тебя фотодатчик плохо реагирует на свет, возможно ты со спектром ошибся.

Подключение

Теперь пора показать как это подключить к микроконтроллеру. С фоторезистором все понятно, тут заморочек нет никаких — берешь и подцепляешь как по схеме. С фотодиодом и фототранзистором сложней. Надо определить где у него анод/катод или эмитер/коллектор. Делается это просто. Берешь мультиметр, ставишь его в режим прозвонки диодов и цепляешься на свой датчик. Мультиметр в этом режиме показывает падение напряжения на диоде/транзисторе, а падение напряжения тут в основном зависит от его сопротивления U=I*R. Берешь и засвечиваешь датчик, следя за показаниями. Если число резко уменьшилось, значит ты угадал и красный провод у тебя на катоде/коллекторе, а черный на аноде/эмитторе. Если не изменилось, поменяй выводы местами. Если не помогло, то либо детектор дохлый, либо ты пытаешься добиться реакции от светодиода (кстати, светодиоды тоже могут служить детекторами света, но там не все так просто. Впрочем, когда будет время я покажу вам это технологическое извращение).

Фотопроводящий режим в фотодиодных схемах

Чтобы переключить показанную выше схему детектора в фотопроводящий режим, мы подключаем анод фотодиода к источнику отрицательного напряжения, а не к земле. Катод всё еще находится под напряжением 0 В, но анод находится под некоторым напряжением ниже 0 В; таким образом, на фотодиод подается обратное смещение.

Рисунок 2 – Пример включения фотодиода в фотопроводящем режиме

Когда использовать фотопроводящий режим

Прикладывание напряжения обратного смещения к PN-переходу приводит к расширению обедненной области. Это имеет два положительных эффекта в контексте применения фотодиодов. Во-первых, более широкая обедненная область, как объяснялось в предыдущей статье, делает фотодиод более чувствительным. Таким образом, фотопроводящий режим – хороший выбор, когда вы хотите получить больший выходной сигнал при той же освещенности.

Во-вторых, более широкая обедненная область снижает емкость перехода фотодиода. В схеме, показанной выше, наличие сопротивления обратной связи и емкости перехода (наряду с другими источниками емкости) ограничивает полосу пропускания замкнутой петли системы. Как и в случае с базовым RC-фильтром нижних частот, уменьшение емкости увеличивает частоту среза. Таким образом, фотопроводящий режим обеспечивает более широкую полосу пропускания и предпочтителен, когда вам нужно максимизировать способность детектора реагировать на быстрые изменения освещенности.

Наконец, обратное смещение также расширяет диапазон линейной работы фотодиода. Если вас беспокоит точность измерений при высокой освещенности, вы можете использовать фотопроводящий режим и выбрать напряжение обратного смещения в соответствии с требованиями вашей системы. Но помните, что большее обратное смещение также увеличивает темновой ток.

Рисунок 3 – Hamamatsu – ведущий производитель фотоприемников. Этот график, взятый из их руководства по кремниевым фотодиодам, дает представление о том, насколько вы можете расширить область линейного отклика фотодиода, увеличив напряжение обратного смещения

Конструкция p-i-n-фотодиодов

Конструкция p-i-n-фотодиодов подобна использовавшейся для светодиодов и лазеров, но оптические требования менее критичны. Активная область детекторов обычно гораздо больше, чем сердечник волокна, поэтому поперечное выравнивание не создает проблем. У фотопроводящих материалов падающий свет приводит к увеличению числа заряженных частиц в активной области, что уменьшает сопротивление детектора. Изменение сопротивления влечет к изменению регистрируемого напряжения, поэтому фоточувствительность принято выражать в единицах В / Вт.

Обратите внимание, что данная схема не предназначается для практических целей, так как в ней присутствует низкочастотный шум. Механизм обнаружения основан на проводимости тонкой пленки активной области

Выходной сигнал детектора без падающего света определяется следующим уравнением. В случае, когда свет попадает на активную область, изменение выходного напряжения определяется таким соотношением:

Частотный отклик

Для получения сигналов переменного тока фотопреобразователи должны подключаться в цепь, где присутствует импульсный сигнал. То есть при использовании этих детекторов в схемах с CW-источниками следует подключать оптический прерыватель. Сигнал фотокондуктора будет оставаться постоянным до предельного времени отклика. Многие детекторы, включая устройства на PbS, PbSe, HgCdTe (MCT) и InAsSb, имеют спектр шума 1 / f (т. е. шум уменьшается с увеличением частоты модуляции), что существенно влияет на время отклика на более низких частотах. Детектор будет проявлять меньшую чувствительность на более низких частотах модуляции.

Фотодиоды.

Фотоэлектрический режим в фотодиодных схемах

Следующая схема представляет собой пример реализации фотоэлектрической системы.


Рисунок 1 – Пример включения фотодиода в фотоэлектрическом режиме

Эта схема на операционном усилителе называется трансимпедансным усилителем (TIA, transimpedance amplifier). Она разработана специально для преобразования сигнала тока в сигнал напряжения, причем отношение тока к напряжению определяется значением резистора обратной связи Rос. Неинвертирующий вход операционного усилителя соединен с землей, и если мы применим предположение о виртуальном коротком замыкании, мы узнаем, что на инвертирующем входе всегда будет примерно 0 В. Таким образом, катод и анод фотодиода поддерживаются при напряжении 0 В.

Понятие фотодиода

Фотодиод, ФД — это полупроводниковая деталь, тот же диод, как и он пропускает ток в одну сторону, с p-n (p-i-n) переходом, но из материала, который меняет свои качества при влиянии оптического излучения, инициируя процессы, создающие электроток.

Если свет полностью отсутствует, не падает на такую радиодеталь, то она в спокойном состоянии, в равновесии, имеет качества аналогичные простому диоду.

Если же на чувствительный участок попадает УФ или ИК-излучение, то элемент начинает реагировать, преобразовывать этот поток в электричество.

Надо отличать разные радиодетали с приставкой «фото»:

  • рассматриваемый нами фотодиод. Кратко выразить суть «фото» или «опто», «гальванического» (такие названия применяют реже) диода, которая сразу же отличит его, можно одним предложением: деталь преобразует свет в ток;
  • фототранзисторы. «Два в одном», это объединенные одним корпусом фотоэлемент и транзистор, который открывается от количества подаваемого света. То есть, если на рассмотренных ниже нами схемах эти элементы разнесены, то в данном случае они в одной опрессовке. Вместо связки отдельных указанных деталей можно применить такую цельную запчасть, если она подходит по параметрам;
  • фоторезисторы. Меняют сопротивление (тут это ключевой параметр) в зависимости от уровня освещенности.

Как видим, «фото» радиодетали можно применять для очень схожих, в некоторых случаях аналогичных целей (например, датчики, реле), но схемы будут разными с учетом отличий принципа работы каждого типа.

Обозначение на схемах разных элементов надо также знать. Фотодетектор имеет две стрелки, направленные к нему, и в такой графике есть логика: изделие воспринимает излучение.

Светодиод часто сотрудничает в схемах с фотодиодом. Первый инициирует сработку второго: его ставят напротив, и когда включают, поток света падает на первый элемент, активизирует его, а тот подает сигнал исполнительному узлу. Такой принцип применен для пультов ДУ, разнообразных приемников ИК-сигналов, а также для оптических (лазерных) сигнализаций, активируемых, если злоумышленником пересекается световой поток.

Итак, фотоэлемент преобразует свет, попадающий на его чувствительный сегмент, в электрозаряд. Такой процесс происходит, из-за возникновения особых процессов при движении частичек-транспортировщиков заряда на атомном уровне при облучении p-n зоны. Данное явление обуславливается изменениями свойств применяемых материалов (полупроводников).

Если на фоторезисторах меняется именно проводимость при движении транспортировщиков заряда, то на фотодиодах появляется ток на сегментах смыкания p-n переходов — в этом их отличие.

Структура

Обычный светодиод имеет такую же структуру, как и «фото», но у последнего есть окошечко, чтобы свет попадал на воспринимающую его часть.

Фотодиод схема структуры:

Фототок

Основной выходной сигнал фотодиода – это ток, который течет через устройство от катода к аноду и приблизительно линейно пропорционален освещенности (однако имейте в виду, что на величину фототока также влияет длина волны падающего света – подробнее об этом в следующей статье). Для дальнейшей обработки сигнала этот фототок преобразуется в напряжение с помощью последовательно включенного резистора или преобразователя ток→напряжение на операционном усилителе.

Детали связи света и тока фотодиода будут варьироваться в зависимости от условий смещения диода. В этом суть различия между фотоэлектрическим и фотопроводящим режимами: в фотоэлектрической реализации схема, окружающая фотодиод, поддерживает анод и катод под одним и тем же потенциалом; другими словами, диод имеет нулевое смещение. В фотопроводящей реализации схема, окружающая фотодиод, создает обратное смещение, что означает, что катод находится под более высоким потенциалом, чем анод.

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Нежелательные и желаемые эффекты фотодиода

Любой p – n-переход, если он освещен, потенциально является фотодиодом. Полупроводниковые устройства, такие как диоды, транзисторы и ИС, содержат p – n-переходы и не будут правильно работать, если они будут освещены нежелательным электромагнитным излучением (светом) с длиной волны, подходящей для создания фототока. Этого можно избежать, заключив устройства в непрозрачные корпуса. Если эти корпуса не полностью непрозрачны для излучения высокой энергии (ультрафиолета, рентгеновских лучей, гамма-лучей), диоды, транзисторы и ИС могут работать неправильно. из-за индуцированных фототоков. Фоновое излучение от упаковки также является значительным.Радиационное упрочнение смягчает эти эффекты.

В некоторых случаях эффект действительно нужен, например, чтобы использовать Светодиоды как светочувствительные устройства (см. Светодиод как датчик света) или даже для сбор энергии, затем иногда называли светодиоды и светопоглощающие диоды (ВЕДЕТ).

Фотодиоды для средней инфракрасной области спектра (2-6 мкм)

  • Фотодиоды на основе гетероструктур из твердых растворов InAs;
  • Флип-чип дизайн;
  • Оптическое сопряжение чипа с иммерсионной линзой с помощью халькогенидного стекла с высоким показателем преломления;
  • Просветляющее покрытие иммерсионной линзы из Si или Ge
  • Широкий диапазон рабочих температур (-60 оС — +85 оС – для иммерсионных фотодиодов;4 К — +180 оС – для фотодиодов без иммерсии);
  • Не требуют внешнего смещения;
  • Детектирование от непрерывных сигналов до наносекундных импульсов;
  • Отсутствие деградации;
  • 10-и кратное увеличение обнаружительной способности  по сравнению с фотодиодами без иммерсии

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Резюме

На характеристики детекторной системы на базе фотодиода влияют условия смещения фотодиода. Фотопроводящий режим использует обратное смещение и обеспечивает более высокую чувствительность, более широкую полосу пропускания и улучшенную линейность. Фотоэлектрический режим использует нулевое смещение и минимизирует темновой ток.

Следующая статья из серии «Введение в фотодиоды» посвящена нескольким различным полупроводниковым технологиям, на которых основываются фотодиоды.

Оригинал статьи:

Robert Keim. Understanding Photovoltaic and Photoconductive Modes of Photodiode Operation

Поддержание стабильности в фотодиодных схемах

В схеме, показанной выше, усиление определяет только резистор (Rос). Назначение конденсатора (Cос) состоит в том, чтобы избежать проблем, связанных с возбуждением колебаний, за счет компенсации внутренней емкости pn-перехода фотодиода, которая создает полюс в цепи обратной связи. Cос компенсирует ее, создавая ноль в цепи обратной связи.

Возбуждение колебаний – это реальная проблема фотодиодных схем. Внутренняя частотная компенсация обычно защищает операционные усилители от нестабильности, но фотодиодные трансимпедансные усилители могут генерировать колебания, даже когда вы используете операционный усилитель с внутренней компенсацией.

Вы можете узнать гораздо больше о стабильности фотодиодных усилителей, в том числе о том, как эффективно подобрать величину емкости компенсационного конденсатора, в 8-ой части серии статей об отрицательной обратной связи.

Фотодиодная матрица

Чип фотодиодной матрицы 2 x 2 см с более чем 200 диодами

Одномерный массив из сотен или тысяч фотодиодов может использоваться в качестве датчика положения , например, как часть датчика угла.

В последние годы одним из преимуществ современных матриц фотодиодов (КПК) является то, что они могут обеспечивать высокоскоростное параллельное считывание, поскольку управляющая электроника не может быть встроена, как устройство с зарядовой связью (CCD) или датчик CMOS .

Пассивно-пиксельный сенсор

Датчика пассивно-пиксел (ПФС) представляет собой тип массива фотодиодов. Он был предшественником сенсора с активными пикселями (APS). Пассивный пиксельный датчик состоит из пассивных пикселей, которые считываются без усиления , причем каждый пиксель состоит из фотодиода и переключателя MOSFET . В матрице фотодиодов пиксели содержат pn переход , интегрированный конденсатор и полевые МОП-транзисторы в качестве транзисторов выбора . Матрица фотодиодов была предложена Г. Веклером в 1968 году, еще до появления ПЗС-матрицы. Это было основой для PPS.

Ранние фотодиодные матрицы были сложными и непрактичными, что требовало изготовления селективных транзисторов в каждом пикселе вместе со схемами мультиплексора на кристалле . Шум из фотодиодных матриц был также ограничение на производительность, так как фотодиод считывание автобус емкость приводит к увеличению уровня шума. Коррелированная двойная выборка (CDS) также не может использоваться с матрицей фотодиодов без внешней памяти . В 1970-х годах было невозможно изготовить активные пиксельные датчики с практическим размером пикселя из-за ограниченной технологии микролитографии в то время.

Избегайте насыщения

Даже если вы не хотите сохранять часть сигнала ниже потенциала земли, вам всё равно следует рассмотреть возможность добавления небольшого (возможно, 100 мВ) напряжения смещения, если вы разрабатываете систему с одним источником питания, поскольку это предотвращает насыщение операционного усилителя и притягивание выходного напряжения к отрицательной шине питания.

Насыщение – это конечно не катастрофа, но операционные усилители (в отличие от компараторов) не оптимизированы для создания выходных напряжений, равных напряжениям на шинах питания. Операционному усилителю в режиме насыщения нужно время, чтобы выйти из состояния насыщения; таким образом, трансимпедансный усилитель, который насыщен на отрицательной шине питания, будет демонстрировать некоторую задержку при реагировании на входной сигнал.

Базовая эквивалентная схема фотодиода

Не все модели фотодиодов абсолютно одинаковы, но в дополнение к обычному PN-переходу, представленному символом диода, в них всегда есть следующие четыре элемента: источник тока, параллельный конденсатор, параллельный резистор и последовательный резистор.

Рисунок 1 – Базовая эквивалентная схема фотодиода

Фототок

Идеальный источник тока (Iфд, IPD) представляет собой фототок, то есть ток, генерируемый диодом в ответ на падающий свет

Обратите внимание, что направление фототока соответствует току, который течет от катода диода к аноду диода – это хорошее напоминание о том, что фотодиоды используются с нулевым или обратным смещением, а ток, который они создают, течет в направлении, противоположном тому, что мы ожидаем от диодов с обычным прямым смещением

Как упоминалось в предыдущей статье, для количественной оценки взаимосвязи между мощностью падающего света и фототоком мы используем чувствительность. Чувствительность типового кремниевого фотодиода колеблется от примерно 0,08 ампер на ватт (А/Вт) для ЭМИ 400 нм до 0,48 А/Вт для ЭМИ 700 нм.

Емкость перехода

Параллельный конденсатор (Cпер, CJ) представляет собой емкость перехода диода, то есть емкость, связанную с обедненной областью PN-перехода. Емкость перехода является важным параметром, поскольку она сильно влияет на частотную характеристику фотодиода. Более низкая емкость перехода обеспечивает улучшенную работу на высоких частотах.

Вы могли видеть модели фотодиодов, в которых Cпер представляет собой переменный конденсатор. Хотя такое представление кажется менее распространенным, это вовсе не плохая идея, потому что оно напоминает нам, что емкость перехода зависит от напряжения смещения. Мы можем целенаправленно разработать фотодиодную систему с более широкой полосой пропускания, просто увеличив напряжение обратного смещения.

Рисунок 2 – Данный график, взятый из Photodiode Characteristics and Applications, опубликованного OSI Optoelectronics, демонстрирует значительное уменьшение емкости перехода, которое может быть достигнуто при работе фотодиода в фотопроводящем режиме

Параллельное сопротивление

Резистор, подключенный параллельно фотодиоду, называется шунтирующим сопротивлением (Rш, RSH). Как и в случае с источниками тока в целом, идеальная работа достигается при бесконечном Rш. С бесконечным (или, в реальной жизни, чрезвычайно высоким) шунтирующим сопротивлением источник тока передает весь свой ток нагрузке, а отношение тока к напряжению полностью определяется сопротивлением нагрузки. Когда сопротивление шунта приближается к значению сопротивления нагрузки, оно начинает более заметно влиять на отношение тока к напряжению.

У многих фотодиодов сопротивление шунта настолько велико, что в типовых приложениях оно не оказывает серьезного влияния на общую производительность. Для кремниевых фотодиодов Rш составляет десятки, сотни или даже тысячи мегаом; фотодиоды из арсенида индия-галлия также могут иметь чрезвычайно высокое шунтирующее сопротивление. Однако с германиевыми фотодиодами нужно быть более осторожным, потому что у них Rш обычно находится в диапазоне килоом, а может быть, даже в диапазоне нескольких килоом.

Сопротивление шунта также влияет на шумовые характеристики. По мере уменьшения Rш увеличивается тепловой шум (шум Джонсона) фотодиода.

Последовательное сопротивление

Фотодиод содержит контакты, проволочные соединения и полупроводниковый материал, которые вносят вклад в последовательное сопротивление (Rпосл, RS). Это сопротивление обычно довольно низкое, например, несколько Ом или несколько десятков Ом, хотя возможны и более высокие значения.

Насколько мне известно, последовательное сопротивление обычно не является серьезной проблемой при проектировании фотодиодных систем. Однако чрезмерно высокое последовательное сопротивление может снизить линейность: фототок, проходящий через Rпосл, создает падение напряжения, которое создает прямое смещение фотодиода, который работает в схеме с нулевым смещением (смотрите рисунок ниже). Диод с прямым смещением имеет экспоненциальную зависимость тока от напряжения. Следовательно, увеличение напряжения на Rпосл снижает фототок, который достигает нагрузки, потому что он вызывает отвод части фототока на землю через сам диод, и это отклонение тока происходит нелинейным образом.

Рисунок 3 – Влияние паразитного последовательного сопротивления

Недостатки классических подходов

Для начала вспомним как работает фотодиод: при внешнем освещении он начинает вырабатывать небольшой фототок, порядка сотни наноампер. Затем этот ток либо усиливается и передается, либо наоборот, передается и в приемнике усиливается. Первый подход требует отдельного источника питания, а это, в свою очередь, вынуждает применять трехпроводные кабели и разъемы.

Да и сам усилитель, даже будучи собранным на SMD, занимает ценное пространство пробника и, скорее всего, потребует применение печатной платы, что неудобно. Второй подход порождает иные проблемы. Подключив фотодиод к длинному кабелю, можно столкнуться при передаче с наводками и утечками, а если вход у прибора высокоомный, то и с емкостью самого кабеля, которая ограничит частотный диапазон работы. Данный способ имеет право на жизнь, если соединительная линия имеет небольшую длину и в приемном устройстве применяется приличный усилитель. В нашем же случае на такой усилитель рассчитывать не стоит. А учитывая и то, что тахометр эксплуатируется  в условиях сильных электромагнитных помех, такой подход просто неприменим. Тут требуется иное решение.

Фотодиоды: принцип работы

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля.

В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок.

Данный вид тока с участием фотоносителей получил название фототока.

Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС.

  Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии.

В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами.

Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость.

Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением.

Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.