Печатные платы

Печать шаблона

Принтер настраиваем на максимум dpi, режим с максимальной жирностью печати, у меня этот режим ставится, когда выбираю печать на прозрачную пленку. Печатаем 2 (ДВА) шаблона на листе пленке. Берем эти два шаблона, накладываем друг на друга, и очень точно выравниваем. Скрепляем их просто: утюг на 3-х точках, через бумагу прикладываем утюг к уголкам шаблона на 2-3 секунды. Это очень удобно, так как если выравнивание было плохим, то разъединить пленки можно очень просто и без повреждений. Не бойтесь, выровнять с точностью до 0.1мм руками очень просто. Смотрите через шаблон на лампу — так проще. Вся процедура занимает минут 5 — 10.

Суть метода и ее отличие от технологии ЛУТ

При изготовлении печатных плат с помощью фоторезиста многие проблемы отпадают сами собой. Фоторезистивные материалы в отличие от тонера используемого в ЛУТ, изначально создавались для их последующего нанесения на различные поверхности

Причем площадь поверхности не имеет критически важного значения. Я на своем опыте убедился, что такие характеристики как равномерность нанесения и качество приклейки у фоторезиста значительно выше

Но в методе изготовления плат фоторезистивным способом есть также и свои недостатки. Основной недостаток это включение в технологический процесс дополнительных операций (наклейка фоторезиста, экспонирование, проявка), и это как правило отпугивает начинающих. Еще один недостаток состоит в том, что для этой технологии требуется использование дополнительных материалов и оснащения. Нужно найти фоторезист, пленку для изготовления фотошаблона и т.д.

Но несмотря на недостатки, фоторезистивным методом можно получить результат еще более качественный чем результат полученный ЛУТом.

Нанесение фоторезиста на плату

Сначала плату нужно зачистить очень тонкой шкуркой и тщательно обезжирить ацетоном. Для обезжиривания платы не следует использовать вату, поскольку вата оставляет после себя много волосков, лучше обезжиривать плату смоченным в ацетоне бинтом или тряпкой. После обезжиривания платы на нее можно наносить фоторезист из баллончика, но перед этим плату следует избавить от мельчайших пылинок, для этого я надеваю на пылесос маленькую насадку со щеточкой (идет в комплекте с пылесосом) и вожу ею по плате. Потом, не отводя и не выключая пылесос, сразу же распыляю фоторезист. После нанесения фоторезиста я кладу плату в коробку, которую предварительно тоже прочистил пылесосом, закрываю коробку и кладу ее на камин для сушки фоторезиста. На камине при температуре 65 градусов плата сохнет за 20 минут, если оставить плату при комнатной температуре, то время сушки увеличится до 24 часов. Не забывайте, что сушить плату нужно в темноте или при очень слабом свете иначе плата через отверстия в коробке может засветиться! Еще немаловажная деталь, при распылении фоторезиста баллончик нужно держать вертикально, если его держать горизонтально может случиться, что давление в баллоне закончится быстрее, чем сам фоторезист.

«Внутренний» барабан

Технология «внутреннего» барабана широко используется в типографских фотоплоттерах, в силу большей простоты автоматизации процесса, предусматривающего загрузку фотопленки из рулона. Суть этой компоновки заключается в замене вращающегося барабана на вращающуюся оптическую призму с зеркалом внутри барабана. Развертка по оси X осуществляется за счет вращения призмы с зеркалом. Перемещение всего механизма (системы привода призмы) обеспечивает развертку по оси Υ. Замена массивного барабана на легкую оптическую призму позволяет достигать большей частоты вращения и, следовательно, производительности . Но меньшая инерционность системы вопреки ожиданиям не дает повышения точности поддержания частоты вращения. Однако такую конструкцию сложно назвать простой: высокоточная призма вращается на герметичном воздушном подшипнике (то есть дополнительно необходимо обеспечить фокусировку луча на внутренней поверхности барабана), для поддержания синхронности требуется передача движения, способная создавать большие скорости перемещения. Это заставляет производителей применять шари-ко-винтовую пару или даже дорогостоящие линейные приводы со следящей системой. Наличие сложной оптики и размещение подвижных элементов внутри барабана может потребовать дополнительных затрат на обслуживание и настройку.

Рис. 4. «Внутренний» барабан. 1  — излучатель; 2 — оптическая призма с зеркалом; 3 — модулированный луч, засвечивающий фотопленку (5); 4 — привод вращения призмы; 5 — фотопленка

Что предлагается?

В современном производстве печатных плат уже давно не используются векторные фотоплоттеры (как и фотонаборные машины) ввиду их низкой производительности и высокой стоимости. Поэтому для современного производства остается актуальным только растровый метод засветки. В этом методе рисунок формируется элементарным пятном сфокусированного источника света. Размер пятна является одной из самых важных характеристик растровых фотоплоттеров, которая называется разрешением фотоплоттера. Для формирования топологии фотошаблона необходимо выполнить горизонтальную и вертикальную развертку луча. Точность механизмов, обеспечивающих эти развертки, в значительной степени сказывается на качестве конечного результата.

Рассмотрим существующие компоновки фотоплоттеров, используемых в производстве печатных плат.

Что нам понадобится

  • KiCad
  • лазерный принтер (ИМЕННО лазерный, струйный не подойдет);
  • журналы/каталоги;
  • пластиковые ванны (хорошо, если их будет две);
  • маленькая кисточка или зубная щетка;
  • хлорид железа;
  • листы стеклотекстолита, покрытые медной фольгой.

Два пункта, которые вы скорее всего не найдете у себя дома, – это хлорид железа и листы стеклотекстолита, покрытые медной фольгой; и хлорное железо, и фольгированный стеклотекстолит можно найти в ближайшем магазине радиодеталей, либо заказать на Aliexpress. Кстати, хлорное железо вы можете повторно использовать снова и снова (это хорошо, потому что это не тот химикат, который можно просто выбросить).

Перед покупкой фольгированного стеклотекстолита важно убедиться, что вы покупаете текстолит, покрытый только медной фольгой без дополнительно нанесенного фоторезиста, который необходим для изготовления печатных плат другим способом. Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы

Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат

Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы. Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат.

Предупреждение о безопасности при работе с хлорным железом: хлорид железа является мощным химикатом, который разъедает большинство металлов, а некоторые особенно сильно (следите за алюминием!), но не взаимодействует с синтетическими материалами, такими как пластик, чернила, лак для ногтей. Настоятельно рекомендуется надевать защитные очки, когда работаете с этим химикатом, и хранить его надежно закрытым, так как даже пары могут вызывать коррозию металла. Взгляните на бутылку:

Если символы внизу бутылки недостаточно ясны – если вам нравится ваша кожа, то возможно вам стоит надевать латексные или нитриловые перчатки

По всей вероятности хлорное железо не попадет вам на руки, но всё равно важно принять меры предосторожности. Если немного хлорного железа попадет вам на кожу, немедленно промойте ее с мылом и ХОЛОДНОЙ водой, и всё будет хорошо

Также можно купить хлорное железо в сухом виде. Перед использованием его необходимо растворить в воде из расчета 200-300 грамм на 1 литр воды. При растворении FeCl3 в воде происходит сильное тепловыделение, поэтому добавлять FeCl3 в воду небольшими порциями при помешивании.

Шаг 1: проектирование вашей платы

Для этого руководства я разработаю простую плату для приемопередатчика 915 МГц RFM69HW; у самого модуля расстояние между контактами составляет 2 мм, что несколько уже, чем стандартное расстояние для макетной платы, и затрудняет прототипирование. Я разработаю промежуточную панель, которая использует стандартное расстояние, поэтому я смогу припаять разъем и вставить с ним плату в любую стандартную макетную плату. Представленный метод подходит для изготовления плат и для монтажа компонентов в отверстия, и для поверхностного монтажа, но в моем случае плата будет разработана под поверхностный монтаж. В этом случае компоненты не очень малы по размеру, но этот процесс может быть использован и на таких маленьких компонентах, как компоненты в корпусах MSOP, которые могут быть установлены на плату вручную.

В этом руководстве основное внимание уделяется процессу изготовления плат, поэтому я не буду подробно останавливаться на работе с KiCad; однако есть несколько вещей, на которые стоит обратить внимание. После того, как вы откроете программу, то сможете начать размещать компоненты таким же образом, как в программе моделирования, только в этом случае вы размещаете посадочные места компонентов; когда вы будете делать это, убедитесь, что в правой таблице выбран слой «F.Cu», как показано на рисунке ниже

Всё красное будет напечатано на лицевой стороне платы, а всё желтое (сквозные отверстия) – на обеих сторонах; хотя в этом случае нам интересна только лицевая сторона. Когда вы закончите проектирование, необходимо будет экспортировать результат в PDF. Кликните на кнопку «чертить/plot» и выберите вывод в формате PDF, как показано на рисунке

Важно убедиться, что выбрана опция «Чертить зеркально» (Mirrored plot), иначе при изготовлении платы рисунок перенесется неправильно

Что нам понадобится

  • KiCad
  • лазерный принтер (ИМЕННО лазерный, струйный не подойдет);
  • журналы/каталоги;
  • пластиковые ванны (хорошо, если их будет две);
  • маленькая кисточка или зубная щетка;
  • хлорид железа;
  • листы стеклотекстолита, покрытые медной фольгой.

Два пункта, которые вы скорее всего не найдете у себя дома, – это хлорид железа и листы стеклотекстолита, покрытые медной фольгой; и хлорное железо, и фольгированный стеклотекстолит можно найти в ближайшем магазине радиодеталей, либо заказать на Aliexpress. Кстати, хлорное железо вы можете повторно использовать снова и снова (это хорошо, потому что это не тот химикат, который можно просто выбросить).

Перед покупкой фольгированного стеклотекстолита важно убедиться, что вы покупаете текстолит, покрытый только медной фольгой без дополнительно нанесенного фоторезиста, который необходим для изготовления печатных плат другим способом. Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы

Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат

Журналы и каталоги, которые вам необходимо найти, должны быть из полуглянцевой бумаги – это упростит процесс переноса рисунка платы. Глянцевая бумага или фотобумага из магазина канцтоваров также хорошо подойдет, но журналы бесплатны. Остальные пункты, которые вам понадобятся, и так понятны; вы не обязаны использовать Kicad, существует много других программ, которые могут делать то же самое, но Kicad является бесплатным и довольно мощным программным обеспечением для проектирования печатных плат.

Предупреждение о безопасности при работе с хлорным железом: хлорид железа является мощным химикатом, который разъедает большинство металлов, а некоторые особенно сильно (следите за алюминием!), но не взаимодействует с синтетическими материалами, такими как пластик, чернила, лак для ногтей. Настоятельно рекомендуется надевать защитные очки, когда работаете с этим химикатом, и хранить его надежно закрытым, так как даже пары могут вызывать коррозию металла. Взгляните на бутылку:

Если символы внизу бутылки недостаточно ясны – если вам нравится ваша кожа, то возможно вам стоит надевать латексные или нитриловые перчатки

По всей вероятности хлорное железо не попадет вам на руки, но всё равно важно принять меры предосторожности. Если немного хлорного железа попадет вам на кожу, немедленно промойте ее с мылом и ХОЛОДНОЙ водой, и всё будет хорошо

Также можно купить хлорное железо в сухом виде. Перед использованием его необходимо растворить в воде из расчета 200-300 грамм на 1 литр воды. При растворении FeCl3 в воде происходит сильное тепловыделение, поэтому добавлять FeCl3 в воду небольшими порциями при помешивании.

Подготовка и очистка текстолита

Химическую очистку медного покрытия перед наклейкой фоторезиста будем проводить с применением бытовой химии. Очищаем поверхность текстолита средством для борьбы с накипью «Cillit». В его состав входит ортофосфорная кислота, именно она убирает все загрязнения. Поэтому, пальцы в эту жидкость не суем. Если нет подходящей посудины, можно положить текстолит на дно ванной и просто полить этой жидкостью. Через 2 минуты (передерживать не стоит) хорошенько промываем проточной водой. На поверхности не должно быть пятен. В противном случае следует повторить операцию. Остатки воды удаляем бумажной салфеткой. Стараемся не доводить салфетку до состояния, когда из нее полезет бумажная ворса. Именно из-за ворсы я не применяю тканевых салфеток. Если на поверхности меди останутся даже мельчайшие ниточки, пленка фоторезиста в этом месте ляжет с пузырьком. Сушим текстолит утюгом через бумагу. Поверхность текстолита пальцами не трогать!

В некоторых источникам можно найти рекомендацию обезжиривать поверхность спиртом. Лично у меня при очистке спиртом результат был значительно хуже. Фоторезист не везде приклеивался нормально. После «Cillit» результат всегда на много лучше.

Протяжные фотоплоттеры

Принцип работы этого фотоплоттера можно сравнить с принципом работы офисного принтера (рис. 2). Фотопленка равномерно движется по роликам конвейера фотоплоттера, и с помощью вращающихся призм с зеркалами производится последовательное отклонение засвечивающего луча, обеспечивающее вертикальную развертку. Так как источник света является единственным и неподвижным, а луч света, производимый источником, меняет свое направление, на фотопленке возникает эффект параллакса. Данный недостаток может быть программно компенсирован при одновременном обеспечении равномерности топологии рисунка. В протяжных фотоплоттерах есть дополнительные погрешности формы: трапециевид-ность формы, а также сдвиг одной строки относительно другой. Такие погрешности вызваны проскальзыванием роликов по пленке и неравномерностью движения пленки по конвейеру. Кроме того, при перемещении фотопленка испытывает деформации (растяжения/сжатия), что тоже оказывает влияние на точность фотошаблонов. Все это ограничивает применение данного типа фотоплоттеров для производства фотошаблонов, однако возможно изготовление фотошаблонов для несложных печатных плат.

Рис. 2. Протяжный фотоплоттер: 1  — ролики, протягивающие носитель информации;2 — носитель изображения — фотошаблон; 3 — сканирующий модулируемый луч лазера

Возможно, вам также будет интересно

Александр Задорин Галина Захарова Введение Технология изготовления печатных плат включает ряд этапов механической и химической обработки заготовок, в ходе которых неизбежно появляются ошибки. Проблема контроля на заключительных этапах может решаться электрическими методами, а на предшествующих стадиях образцы подвергаются сплошному или выборочному визуальному контролю. На отечественных предприятиях визуальный контроль в большинстве случаев не автоматизирован. ΑΟΙ-системы (Automation

Максим Шмаков Валерий Паршин Александр Смирнов Вместо введения Перед тем как приступить к операциям очистки поверхности, необходимо знать природу, характер и источник загрязнений. Поверхностные атомы пластин (подложек) по сравнению с объемными имеют большое количество ненасыщенных химических связей, чем объясняется высокая адсорбционная способность, приводящая к загрязнениям. В зависимости от типа взаимодействия загрязняющего вещества с поверхностью различают

Рассмотрен вариант моделирования ультразвуковой колебательной системы с помощью программного комплекса конечно-элементного анализа ANSYS для оптимизации резонансных частот и форм колебаний.

Подготовка стеклотекстолита

 На первом шаге изготовления печатной платы в домашних условиях мы вырезаем текстолит. Для этого я использую ножницы по металлу или ножовку по металлу (хотя собрался переходить на гильотину). Потом края обрабатываются надфилем.

   Перед поклейкой фоторезиста с текстолита необходимо удалить всю грязь и окислы. Для этого достаточно одного ластика и чистой бумаги.

  Ластиком тщательно обрабатываем всю поверхность текстолита. После обработки пальцами не дотрагиваться (может плохо прилипнуть фоторезист)

Важно что бы на текстолите не осталось грязи, жира, окислов

  На фотографии видно обработанную ластиком часть и еще не обработанную. После того как всю плату обработали ластиком она полируется бумагой.

  На фото плохо видно, но правая часть отполирована бумагой, а левая еще нет.

  Следующим шагом идет поклейка фоторезиста. Здесь нам необходимо отрезать фоторезиста немного больше, чем заготовка из текстолита. Фоторезист состоит из трех частей. С двух сторон прозрачная пленка, между которыми и заключен сам фоторезист.

  Для начала необходимо тонкой иглой поддеть внутреннюю тонкую пленку (пленочный фоторезист продается в рулонах и намотан стороной с тонкой пленкой во внутрь) и снять ее на несколько миллиметров (всю не снимать). После чего фоторезист прикладывается к заготовке из текстолита и мягкой тканью (я использую ватные диски)  разглаживается. Потом отклеивается еще немного пленки и процесс повторяется. Главное чтобы фоторезист хорошо приклеился к текстолиту. (Работать можно при обычном освещении, главное, чтобы не попадали прямые солнечные лучи, а хранить фоторезист нужно в темном месте).

  Далее кладем текстолит нашей будущей печатной платы с наклеенным фоторезистом на ровную поверхность, накрываем фотошаблоном, а сверху все это дело — оргстеклом. После чего включается ультрафиолетовая (УФ) лампа для засветки.

  Время засветки платы может изменяться и его необходимо подбирать экспериментально (в моем случае засветка длится три минуты). Для определения времени засветки делается фотошаблон с цифрами 1, 2, 3, 4… (это минуты) Накрывается непрозрачным материалом и каждую минуту сдвигается от большего к меньшему. Оно зависит от расстояния от лампы до заготовки, толщины оргстекла и мощности самой лампы (кстати засвечивать можно и не УФ лампой, а мощной «экономкой»).

  Сразу после засветки ультрафиолетовой лампой печатная плата у нас может выглядеть следующим образом:

   После засвета плату необходимо прогреть. При этом, рисунок становится более контрастным. Для этого плата кладется между двумя листами белой бумаги и прогревается утюгом на средней температуре в течении пяти секунд.

  На этом этапе изготовления печатной платы необходимо отмыть не засвеченный фоторезист. Для этого в емкость набирается немного воды, в которую добавляется сода (я делаю примерно 100 мл воды и чайная ложка соды). Теперь снимается вторая защитная пленка с фоторезиста. Она более толстая и иголка тут не требуется. Снимать необходимо аккуратно, чтобы не отодрать фоторезист с платы. На краях платы он может потянуться за пленкой. В таком случае, необходимо начать снимать плёнку с другой стороны Плата помещается в раствор, каждые три минуты текстолит вынимается и под струей теплой воды протирается мягкой губкой. Процедура повторяется до полного снятия не засвеченного фоторезиста.

Подготовка текстолита с фоторезистом

На эту тему интернет просто завален статьями, но ради целостности и ради некоторых специфических моментов я опишу и такие широко известные этапы как подготовка и травление текстолита.

Мой первый опыт такого изготовления был пару дней назад с отечественным фоторезистом ПФ-ВЩ. С учетом последнего вчерашнего опыта я категорически советую не тратить время на этот фоторезист, а сразу брать приличный — Ordyl Alpha 350(330) 🙂 Говорят, еще Kolon приличный, но его я не пробовал. С фоторезистом Ordyl результаты получаются гораздо более стабильные и точные, он проще проявляется и гораздо крепче держится на фольге. И он может простить те ошибки, которые будут критичными для ПФ-ВЩ

И что немаловажно — продается в куче мест довольно недорого

3.1 Подготовка текстолита

Начну с того, что текстолит должен быть ровным, очень желательно с гладкой фольгой без царапин и вмятин. Иначе шансы на успех снижаются.

Если изготавливается двухсторонняя плата, то нужно сразу вырезать из текстолита плату точно в размер. Если есть какой-нибудь CNC-фрезер, то можно за одну установку сразу и просверлить все отверстия и вырезать по контуру, как это делаю я. Если нет, то сверловку лучше оставить на потом, когда плата будет вытравлена.

После этого заготовку текстолита необходимо очень тщательно почистить и обезжирить. Это можно сделать кухонной абразивной губкой (но только не использованной для мытья посуды, на которой уже накопились жиры) и чистящим порошком наподобие Пемолюкса. Очень тщательно, не спеша трем каждый квадратный миллиметр фольги, не трогая ее пальцами. Вообще, фольгу после начала чистки трогать пальцами категорически не советую, на ней не должно быть ни малейшего даже самого слабого жирного пятнышка. После чистки тщательно промыть в проточной воде, стряхнуть излишки воды и дать ей высохнуть. Промакать или протирать чем-либо не советую, т.к. можно нанести жировые загрязнения, даже с новой салфетки.

3.2 Нанесение фоторезиста

Тоже довольно изъезженная в интернетах тема, поэтому пройдусь коротко.

Фоторезист обычно идет в листах или рулонах. Состоит он из трех слоев — две защитные пленки и сам фоторезист между ними. От фоторезиста отрезается кусочек по размеру платы +5 мм по длине и ширине, затем с него снимается матовая (полиэтиленовая) защитная пленка.

вторая, глянцевая (лавсановая) должна оставаться на нем вплоть до этапа травления.

Проще всего снять пленку с помощью кусочка скотча. Он клеится краем на уголок фоторезиста и затем отгибается назад, утягивая за собой и защитную пленку.

После снятия матовой пленки фоторезист прикладывается к краю платы и приглаживается по этому краю пальцем. Остальной фоторезист держится на весу, без натяга, но так, чтобы как можно меньшая его площадь ложилась на фольгу.

Учтите, что если фоторезист Ordyl упадет на хорошо подготовленный текстолит, то он может намертво приклеиться к нему, и без пузырей его уже не накатаешь. Придется отскребать его и повторять все заново. А ПФ-ВЩ может падать сколько угодно — он точно не приклеится 🙂

Теперь сама накатка. Если у Вас есть ламинатор, в который по толщине пролезет текстолит, то просто замечательно. Делаем из сложенной вдвое полоски бумаги типа конвертика, кладем текстолит с прилепленным краем фоторезиста в него, и подаем этот бутерброд в ламинатор, нагретый до 100-110 градусов. При этом продолжаем придерживать фоторезист, чтобы он соприкасался с фольгой текстолита только непосредственно на входе ламинатора.

Для Ordyl на этом все, для ПФ-ВЩ будет невредным прокатать еще пару раз.

Если ламинатора нет, то приглаживаем фоторезист к текстолиту пальцем от края до края, постепенно опуская его на текстолит. Главное — не поймать пузыри. После того как весь фоторезист лег на фольгу, берем фен и прогреваем текстолит градусов до 70, после чего еще раз хорошенько проглаживаем весь фоторезист.

После накатки даем текстолиту с фоторезистом отлежаться минут 15-20, или как минимум пока они не остынут до комнатной температуры — по рекомендации производителя фоторезиста.

И теперь все готово для засветки рисунка слоя 🙂

Материалы для производства печатных плат.

Характеристики   печатного   монтажа   в   значительной   степени   определяютсясвойствами базовых материалов.

Для изготовления печатных плат чаще всего используют фольгированный с одной или дух сторон стеклотекстолит марки FR-4. Толщина материала основания может быть 0,5 0,8, 1,0, 1,5, 2,0 мм. Толщина фольги: 18, 35 мкм. Чем толще фольга, тем шире должны быть проводники и тем больше должен быть зазор между ними (за счет явления бокового подтрава).

Фольгированный диэлектрик должен отличаться высоким значением адгезии фольги к подложке, в т.ч. под воздействием высокой температуры. Также он должен обладать высоким объемным и поверхностным электрическим сопротивлением, высокой температурой стеклования и стабильностью геометрических размеров.

К базовым материалам относится и фоторезист — жидкий или пленочный материал, обладающий чувствительностью к ультрафиолетовому излучению. Фоторезист под воздействием света должен либо испытывать фотополимеризацию, либо фотодеструкцию (в зависимости от типа). Чаще применяется сухой пленочный фоторезист. Он состоит из трех слоев: защитной полиэтиленовой пленки, среднего слоя, чувствительного к УФ-излучению и внешней оптически прозрачной лавсановой пленки, предназначенной для защиты фоторезиста от окисления на воздухе. 

1Подготовка проектапечатной платы

Готовим проект печатной платы. Я пользуюсь программой DipTrace: удобно, быстро, качественно. Разработана нашими соотечественниками. Очень удобный и приятный пользовательский интерфейс, в отличие от общепризнанного PCAD. Бесплатна для небольших проектов. Библиотеки корпусов радиоэлектронных компонентов, в том числе и 3D модели. Есть экспорт в формат PCAD PCB, Gerber, в вектрный фаормат DXF, а также некоторые другие. Многие фирмы по производству печатных плат уже принимают проекты в формате DipTrace.

Проект печатной платы

В программе DipTrace есть возможность увидеть будущее творение в объёме, что удобно и наглядно. Вот что должно получиться у меня (платы показаны в разных масштабах):

Трёхмерное изображение печатной платы

Накатка фоторезиста

Вырезаем нужный кусок по размеры (делайте минимум на 1см больше с каждого края, чем надо). С одного края отдираем пленку с одной стороны (он покрыт пленкой с двух сторон), прилепляем этот край к плате, аккуратно разглаживая пальцами. Далее два варианта. Или плавно отдирая снизу фоторезиста пленку (не касаясь платы!) лепим его пальцами другой руки и разглаживаем. Для маленьких плат получается хорошо. Но я предпочитаю другой вариант. Прикрепили край, а теперь ставим на него валик, и катим вперед и давим вниз, а другой рукой по необходимости тянем снимаемую пленку из-под фоторезиста. С валиком у меня с первого раза получилось без единого пузыря. И далее пузырей не случалось (сделано на момент написания этого текста более 20 плат фотоспособом). После этого, сильно надавливая, прокатайте фоторезист во всех направлениях. Ну, скажем, в 4-х направлениях (крест и диагонали) по 3 раза от края до края.

Кстати, работайте при обычном свете, ничего не бойтесь, кроме сильного прямого солнечного света.

Теперь берем утюг, ставим на 1 (одну) точку. Кладем на плату бумагу 80г/м2 и, когда прогреется, утюгом водим по плате пока она не станет заметно теплой. Нельзя чтобы фоторезист или верхняя пленка на нем начала плавится. Просто он должен быть теплым. Градусов на 50. После этого сразу еще раз прокатываем все валиком, как и в предыдущий раз. Все, плата готова.

Вообще, из всех моих опытов стало очевидно, что для того, чтобы фоторезист не отходил, надо чтобы плата была идеально обезжирена, а фоторезист был очень равномерно прикатан, причем надо это сделать на теплый текстолит. Я даже сначала текстолит утюгом грел и прикатывал сразу пока он очень теплый. Это оказалось перебором. Описанный способ ни одного раза не позволил отойти фоторезисту.

Засветка

Я засвечиваю лампой 26Вт black-light с расстояния 12 см, 15 минут. Для этого сделал такое вот устройство:

Внимание! Это старые фото! В итоге я убрал отражатель из фольги и засветки проводу без отражателя!

Лампу включаю заранее за 1-2 минуту до засветки, чтобы прогрелась, но мне кажется, что при 15 минутах засветки это неважно. Кладем плату, сверху на нее фотошаблон, прижимаем или стеклом или пакетом с водой, и сверху ставим аппарат засветки

Ждем 15 минут ничего не двигая! Даже после 10 секунд уже двигать поздно!

Кладем плату, сверху на нее фотошаблон, прижимаем или стеклом или пакетом с водой, и сверху ставим аппарат засветки. Ждем 15 минут ничего не двигая! Даже после 10 секунд уже двигать поздно!

Хитрости тут две:

  1. Я на фоторезист (т.е на верхнюю пленку на нем) капаю немного воды, кладу фотошаблон тонером вниз и прикатываю его к фоторезисту. С водой он так прилипает, что кажется и прижимать не надо. Но я так не рисковал. Думаю, что если у вас дорожки и зазоры от 0.4-0.5мм, то действительно можно не прижимать
  2. Пакет с водой ничуть не хуже стекла, а для неровного текстолита просто спасение. Берем пакет, наливаем в него теплой воды из-под крана на половину. Теперь ставим его на пол, а верх пакета кладем на что-то не очень высокое, но так, чтобы вода не выливалась. Например, на коробку из-под обуви. Разумеется, верхний край пакета держать надо постоянно. После этого через бумагу утюгом на 3 (трех) точках проглаживаем верхние 5-10 сантиметров пакета, чтобы все хорошо слиплось. Пакет, однако, долго не живет. По крайне мере мои пакеты после 30 минут засветки УФ начинают протекать без видимых причин. Видать, они разлагаются под действием ультрафиолета.

Как альтернативный вариант, я могу перевернуть аппарат засветки, положить на него сверху стекло, а не стекло плату с фоторезистом и фотошаблоном, который держится на воде, а сверху небольшой груз. Иногда так удобнее.

Кстати, именно печать на лазерном принтере позволяет использовать воду для приклеивания шаблона водой. Струнный шаблон будет размазываться.

После того, как пойдет 15 минут, снимите шаблон, положите плату в темное место на 10 минут. Мне действительно кажется, чтобы если дать фоторезисту плате «дойти» после засветки, то он лучше держится и меньше растворяется, где не надо. Это субъективно, замеров не делал.

Заключение

В заключение хочется отметить, что планшетные, барабанные (в том числе с внутренним барабаном) фотоплоттеры позволяют выполнять фотошаблоны по высоким проектным нормам. Однако способ привода источника света определяет сложность конструкции и системы управления, предназначенной для достижения необходимых параметров точности. Поэтому при равных технических возможностях фотоплоттеры с разными компоновками могут значительно отличаться по стоимости. В статье показано, что на барабанных фотоплоттерах изготавливаются фотошаблоны с высокой точностью и высоким разрешением. А использование недорогих и более надежных компонентов снижает затраты на обслуживание и настройку. Следовательно, стоимость владения этим типом фотоплоттеров (капитальная стоимость и стоимость обслуживания) значительно меньше, чем у других конструкций. А это означает, что с их помощью можно выпускать высокоточные печатные платы с меньшей себестоимостью.