Особенности питания светодиодов: гальваническая развязка, ккм и многое другое

Микросхема ISO721 компании Texas Instruments

Микросхемы семейства ISO72х, выпускаемые компанией Texas Instruments (TI), используют емкостную изоляцию цифровых сигналов. Они изготавливаются по современной высокоэффективной технологии, обеспечивающей исключительную устойчивость к магнитным полям.

В ISO72x используются каналы постоянного и переменного тока, как это показано на рис. 2. В канале переменного тока не используется кодирование, и данные передаются через барьер непосредственно сразу после преобразования в дифференциальную форму. Дифференциальное представление сигнала позволяет использовать подавление синфазных помех в приемнике. Подавление синфазных помех совместно с разностью проводимости развязывающего элемента для низкочастотных помех и высокочастотных сигналов позволяет снизить воздействие синфазных переходных процессов. По мере увеличения частоты помехи подавление синфазных помех становится решающим фактором обеспечивающим сохранность данных.

Рис. 2. Структурная схема ISO72x

В канале постоянного тока сигнал сначала проходит через широтно-импульсный модулятор и только затем передается через барьер. Такая модуляция совместно с последующей демодуляцией на приемной стороне обеспечивает передачу длинных нулевых и единичных последовательностей. Кроме того, этот канал обеспечивает отказоустойчивость. Под этим понимается установление выхода в предопределенное состояние в случае нарушения работы и пропадания сигнала от передающей части микросхемы. Если несущий сигнал не определяется через 4 мкс, то выход ISO72x устанавливается в состояние логической единицы.

Возможно, вам также будет интересно

Блочный фильтр ЭМП Блочный фильтр ЭМП (рис. 1, таблица) — это составной фильтр для подавления электромагнитных помех, его выпускает компания Murata Manufacturing Co., Ltd. под маркой BNX. Входящие в состав фильтравысококачественный проходной конденсатор и многослойный керамический конденсатор большой емкости обеспечивают подавление электромагнитных помех в широком диапазоне частот. Дроссель в цепи общего провода позволяет в значительной

Со времени разработки и широкого внедрения интерфейса USB прошло уже почти 10 лет, но по разным причинам для ряда разработчиков остается непростой задачей реализовать обмен информацией с компьютером по данному интерфейсу в собственных устройствах. Данный обзор микросхем компании Silicon Laboratories (SiLabs) для USB предполагает заполнить этот «информационный пробел». Продукция компании SiLabs для USB — это

Microchip упрощает требования к функциональной безопасности с помощью средств MPLAB с сертификатами TÜV SÜD

Методы развязки по питанию

Трансформаторы

Наиболее распространенной формой развязки является использование трансформатора. При проектировании схемы стабилизации питания, где требуется развязка, изолирующая часть конструкции связана с необходимостью повышения/понижения уровня напряжения и не рассматривается как отдельная часть системы. В случае, если необходимо изолировать всю электрическую систему (например, для многого автомобильного тестирующего оборудования требуется, чтобы источники питания были изолированы от сети переменного тока), для создания необходимой изоляции последовательно с системой может быть установлен трансформатор 1:1.

Рисунок 1 – Ассортимент SMD трансформаторов

Конденсаторы

Менее распространенным методом создания развязки является использование последовательно включенных конденсаторов. Из-за возможности протекания сигналов переменного тока через конденсаторы этот метод может быть эффективным способом изоляции частей электрической системы от сети переменного тока. Этот метод менее надежен, чем метод с трансформатором, поскольку в случае неисправности трансформатор разрывает цепь, а конденсатор закорачивает. Одна из целей создания гальванической развязки от сети переменного тока заключается в том, чтобы в случае неисправности пользователь находился в безопасности от работающего неограниченного источника тока.

Рисунок 2 – Пример использования конденсаторов для создания развязки

Проблемы паразитного заземления и их решение

Если его не предотвратить, паразитное заземление может стать серьезной проблемой для измерительных систем. Иногда называемое «шумом», паразитное заземление связано с непреднамеренной привязкой электрооборудования к более чем одному пути заземления — любая разность потенциалов в этих точках заземления может вызывать токовую петлю, что может приводить к искажениям сигнала. Если амплитуда этих искажений достаточно высока, это может сделать измерение бесполезным.

На рисунке ниже измерительный усилитель соединен с землей (GND 1) с одной стороны. Для подключения датчика используется асимметричный экранированный кабель, металлический корпус которого помещен на проводящую поверхность в точке GND 2. Из-за длины кабеля существует разница в потенциале между GND1 и GND 2. Эта разность потенциалов действует как источник напряжения, обьединяясь с электромагнитным шумом окружающей среды.

Паразитное заземление, вызванное разностью потенциалов заземления

Если бы датчик можно было отделить от GND 2, это могло бы решить проблему. Но это не всегда возможно. Кроме того, иногда по правилам безопасности требуется привязка к экрану кабеля, а значит отказаться от него нельзя.

Оптимальным решением является использование дифференциального усилителя внутри изолированного преобразователя сигнала. Всего одно изменение позволяет решить эту проблему.

Устранение проблем разности потенциалов заземления с помощью изоляции

Паразитное заземление может также поступать от самого прибора через его собственный источник питания. Мы помним, что наша измерительная система подключена к источнику питания, который имеет опорное заземление

Поэтому крайне важно отделить эту привязку от компонентов обработки сигналов, чтобы исключить образование паразитного заземления внутри прибора

Паразитное заземление, вызванное источником питания

Эта ситуация может быть опасной, если существует неисправность проводки. В случае с путем тока высокого напряжения от источника питания, что произойдет, если линия возврата будет разорвана? Вся энергия будет направлена через часть преобразования сигнала системы сбора данных. Это может привести к повреждению или выводу из строя всей системы и даже к возникновению опасных напряжений для оператора прибора.

Опасность паразитного заземления, вызванного источником питания

При полной изоляции сигнального канала от источника питания описанная выше ситуация невозможна.

Изолированная передача данных

Гальваническая развязка позволяет передавать данные между отдельными электрическими цепями. Есть несколько практических решений этой проблемы, включая оптические, емкостные и электромагнитные технологии. Каждый из этих подходов имеет свои преимущества и недостатки, в том числе: по скорости передачи данных, устойчивости к электростатическому разряду, помехам и уровню мощности.

В оптоизоляторе светодиод излучает световые импульсы, которые проходят через изолирующий барьер и затем принимаются фотодиодом на вторичной стороне

Оптическое разделение — одно из самых известных решений. В нем используется оптоизолятор или оптопара, а разделение цепей достигается за счет использования светодиода на первичной стороне и фототранзистора на вторичной. FOD817 — хороший пример такого компонента. Данные передаются с помощью световых импульсов создаваемых светодиодами, которые улавливаются фототранзистором.

FOD817 имеет 1 канал связи с изоляцией 5 кВ переменного тока. Он включает в себя ИК-диод на основе GaAs и кремниевый фототранзистор. Используется в основном в регуляторах мощности и цифровых линиях ввода-вывода.

Электромагнитная связь — это самое старое решение для изоляции цепей, в котором задействуются две катушки с магнитной связью. Этот метод используется компанией Analog Devices как технология iCoupler. Там катушки интегрированы в микросхему и разделены слоем полиамидной подложки.

В двойном изоляторе для шины I2C ADuM1250 каждая линия интерфейса I2C требует двух отдельных трансформаторов для обеспечения двунаправленной передачи

Изоляторы с электромагнитной связью более восприимчивы к помехам чем оптоизоляторы, и создают собственные помехи, которые могут также стать проблемой. Их преимущества — более высокая скорость передачи данных 100 Мбит / с и более низкое энергопотребление. Примером может служить ADuM1250. Он обеспечивает двунаправленную изоляцию данных для шины I?C со скоростью передачи до 1 Мбит / с. Изоляция составляет 2500 В среднеквадратического значения. Схема потребляет ток 2,8 мА на первичной стороне и 2,7 мА на вторичной при напряжении питания 5 В. Двунаправленность достигнута с помощью двух трансформаторов.

Емкостная изоляция позволяет сигналам переменного тока проходить через изоляционный барьер

Обычно данные передаются между катушками трансформатора с использованием кодирования по краям. Импульсы наносекундной длительности используются для идентификации нарастающего и спадающего фронтов сигнала данных. Чип также включает в себя кодировщик и декодер.

Использование несущего радиосигнала и модулируя его сигналом данных, например с помощью двухпозиционной манипуляции (OOK), информация может быть отправлена через гальванический барьер.

Двухпозиционная манипуляция (ООК) позволяет сигналу данных проходить через изолирующий барьер

Как и в случае с магнитной изоляцией, преимущества емкостной заключаются в высокой скорости передачи (100 Мбит / с и более) и низком энергопотреблении. К недостаткам можно отнести большую восприимчивость к помехам от электрического поля.

Примером использования технологии емкостной изоляции является четырехканальный цифровой изолятор Texas Instruments ISO7742, который обеспечивает сопротивление пробоя 5000 В. Эта микросхема имеет множество конфигураций в зависимости от требуемого направления потока данных. Она имеет скорость передачи данных 100 Мбит / с и потребляет 1,5 мА на канал. Применяют в медицинском оборудовании, источниках питания и промышленной автоматике.

Изолированный интерфейс I2C

PC — популярный двухпроводной двунаправленный интерфейс, разработанный для обеспечения простой и дешевой связи между контроллером и периферийными микросхемами в пределах небольших расстояний. Шина PC позволяет снизить стоимость системы, когда к одной шине подключаются многочисленные устройства и контроллер. Два провода — один для данных, другой для тактового сигнала — позволяют обеспечить низкую стоимость при невысокой скорости передачи данных, таким образом шина PC обычно применяется там, где имеется множество периферийных устройств, но они работают при скорости передачи данных менее 1 Мбит/с. В системах с небольшим количеством периферийных устройств, работающих при более высоких скоростях передачи данных, чаще применяются шины SPI.

Сейчас фирма Analog Devices поставляет на рынок электроники многочисленные аналого-цифровые и цифро-аналоговые преобразователи с интерфейсом I2C, а также температурные датчики и преобразователи емкость/код с интерфейсом I2C. Во многих случаях появляется потребность в гальванической изоляции (рис. 11). Однако применение интерфейса I2C в системах с гальванической развязкой осложняется тем, что I2C — двунаправленный интерфейс, а оптопары являются, разумеется, однонаправленными устройствами. Для реализации полноценной двунаправленной шины PC необходимы четыре оптопары.

Кроме того, требуются некоторые дополнительные компоненты. Все это делает схему гальванической развязки дорогостоящей и болыиеразмерной и подрывает исходную идею шины PC — быть недорогой и экономить место.

Рис. 12. Функциональная схема изоляторов интерфейса I2C

Приборы iCoupler упрощают схему двунаправленной изоляции. Адаптация технологии iCoupler для вышеописанной ситуации позволила организовать разделение, изоляцию и воссоединение каналов в виде одной микросхемы. Этот подход реализован в микросхемах ADuM1250 и ADuM1251 — сдвоенных изоляторах для шины PC (рис. 12). В этих приборах, более современных, трансформаторы находятся на одном кристалле с электронными схемами формирования сигнала, а не на отдельном кристалле, как это было показано на рис. 5.

Практическое использование гальванического разделения цепей

Рассмотрим практический пример использования гальванического разделения цепей. Многие компании производят гальванические развязки сигнальных цепей, но далеко не всегда они содержат встроенные DC/DC-преобразователи для разделения цепей питания. Насколько известно автору, среди работающих на нашем рынке компаний гальванические развязки с разделением цепей питания производят Analog Devices, Texas Instruments, Mornsun. К ним можно причислить и компанию SiLabs, но следует учесть, что ее компоненты содержат ключи силового каскада, но не имеют встроенного трансформатора. Применение развязок с встроенными DC/DC-преобразователями позволяет сократить занимаемое на плате место, упрощает топологию и, как следствие, облегчает решение проблем электромагнитной совместимости.

В качестве примера рассмотрим гальваническую развязку ISOW784x компании Texas Instruments. Ее структурная схема показана на рис. 5.

Рис. 5. Структурная схема ISOW784x

Приведем основные параметры ISOW784x:

  • напряжение питания: 3,3–5 В;
  • выходная мощность встроенного DC/DC-преобразователя: 0,65 Вт;
  • выходной ток встроенного DC/DC-преобразователя (max): 130 мА;
  • скорость передачи данных (max): 100 Мбит/с;
  • стойкость к изменению синфазного напряжения: 100 кВ/мкс;
  • электрическая прочность изолирующего барьера: 5 кВ (СКЗ) и 7,071 кВ в пике;
  • диапазон рабочей температуры: –40…125 °C;
  • корпус: 16‑выводной SOIC размером 10,3×7,5 мм.

Максимального выходного тока 130 мА встроенного DC/DC-преобра­­зователя, как правило, вполне достаточно для того, чтобы организовать питание четырех трактов входных сигналов. В качестве диэлектрика в развязке используется диоксид кремния SiO2. Его диэлектрическая прочность достигает 500 В (СКЗ)/мкм, благодаря чему и достигается высокая электрическая прочность изоляции, позволяющая с запасом удовлетворить требования стандартов электробезопасности.

Заметим, что никакое гальваническое разделение цепей не означает полного разделения частей. Проходные емкости собственно развязки, особенно малогабаритного встроенного трансформатора DC/DC-преобразователя, и паразитные емкости платы создают токовый контур, который представляет собой антенну, излучающую помехи. Причем чем выше скорость передачи данных и больше площадь токовой петли из паразитных емкостей, тем больше величина излучаемых помех

На эти обстоятельства следует обратить внимание при разработке топологии платы и постараться уменьшить паразитные емкости между двумя частями системы

Уменьшить величину токовой петли может Y2‑конденсатор СISO (рис. 2). Напомним, что по требованиям стандарта IEC60384-1 максимально допустимое напряжение Y2‑конденсатора должно находиться в диапазоне 150–300 В (АС). Этот конденсатор должен выдерживать пиковое напряжение 5 кВ. Но, к сожалению, такой конденсатор имеет и паразитную индуктивность выводов, которая снижает эффективность его использования в полосе частот выше 200–300 МГц.

Решением этой проблемы может стать емкость, образованная слоями печатной платы (stitching capacitance). На рис. 6 показан пример формирования такой емкости на четырехслойной печатной плате. Изолированные части системы размещаются на верхнем и нижнем слоях, емкость образуется с помощью слоев земли и питания. В данном случае величина емкости составила 30 пФ. Подробный расчет, создаваемой таким образом емкости, изложен в .

Рис. 6. Конденсатор, образованный слоями печатной платы (stitching capacitance)

Проблемы синфазного напряжения и их решение

Синфазные напряжения — это паразитные сигналы, которые попадают в измерительную цепь, как правило, от кабеля, соединяющего датчик с измерительной системой. Иногда называемые шумом, эти напряжения искажают реальный сигнал, который мы пытаемся измерить. В зависимости от амплитуды они могут варьироваться от «незначительных помех» до полного перекрывания реального сигнала, делающего измерение бесполезным.

Представление дифференциального усилителя

Наиболее простым способом устранения синфазных сигналов является использование дифференциального усилителя. Этот усилитель имеет два входа: положительный и отрицательный. Усилитель измеряет только разницу между двумя входами.

Электрический шум от кабеля датчика должен присутствовать на обеих линиях — положительной линии сигнала и линии заземления (или отрицательной линии сигнала). Дифференциальный усилитель будет отклонять сигналы, общие для обеих линий, пропуская только нужный сигнал, как показано на рисунке ниже:

Дифференциальный усилитель успешно устраняет синфазные сигналы в пределах входного диапазона синфазного напряжения

Это отлично работает, но есть ограничения на объем синфазных сигналов, которые может отклонить усилитель. Если объем синфазных сигналов в сигнальных линиях превышает максимальный входной диапазон дифференциального усилителя, он отсекает сигнал. В результате получается искаженный, бесполезный выходной сигнал, как показано ниже:

Дифференциальный усилитель искажает или отсекает сигнал при превышении входного диапазона синфазного сигнала

В таких случаях необходим дополнительный уровень защиты от синфазных напряжений и электрических помех в общем (а также от паразитного заземления, о котором пойдет речь в следующем разделе) — изоляция.

Изолированные входы усилителя «плавают» над синфазным напряжением. Их конструкция подразумевает изолирующий барьер с напряжением пробоя 1000 вольт и более. Это позволяет отклонять очень высокий уровень синфазных шумов и устранять паразитное заземление.

Изолированный дифференциальный усилитель отклоняет даже очень высокий уровень синфазного шума

Изолированные усилители создают такой изолирующий барьер, используя крошечные трансформаторы для разделения («смещения») входного и выходного сигнала, небольшие оптопары, или емкостную связь. Последние два метода обычно обеспечивают максимальную производительность.

Гальваническая развязка цифрового сигнала

Если АЦП применяется для измерения сигнала постоянного тока (тензодатчики в электронных весах, датчики давления, датчики температуры и т.п.) и скорость цифрового потока невысока, то лучше применить гальваническую развязку не аналогового, а цифрового сигнала — это гораздо дешевле и эффективнее. Для создания простого и недорогого цифрового изолирующего барьера можно использовать оптопары. Как показано на рис. 3, развязку для микросхемы АЦП AD7714 можно реализовать всего на трех оптопарах.

Рис. 3. Изолированный трех-проводной интерфейс типа SPI

Тем не менее в такой схеме, конечно, необходим дополнительный источник питания, что усложняет схему и делает ее более дорогостоящей. Обычно в качестве источника питания для изолированной части схемы используются DC/DC-конвер-торы с гальванической развязкой — это готовые гибридные модули, содержащие трансформатор и схемы модуляции и демодуляции. Они широко представлены на рынке компонентов и выпускаются многими производителями.

В такой схеме DC/DC-конвертор является обычно самым громоздким элементом, он занимает самый большой объем и обычно является одним из самых ненадежных и дорогостоящих элементов схемы. Но зато DC/DC-конверторы являются готовыми к применению компонентами, к тому же это обычно сертифицированные приборы, — все это весьма способствует сокращению времени выхода продукции на рынок.

Кроме того, необходимо учитывать следующий аспект: использование оптопар, которые обычно имеют относительно небольшие скорости спада и нарастания сигнала, может привести к проблемам, даже если тактовые импульсы имеют невысокую частоту.

Логические входы КМОП, такие как SCLK или DIN в микросхемах семейства AD771x, разработаны для подачи на них логических сигналов, то есть либо логического нуля, либо логической единицы. В этих состояниях входы потребляют или отводят минимальный ток. Однако когда входное напряжение находится в промежутке между логическим нулем и логической единицей (от 0,8 до 2,0В), логический вход выдает несколько больший ток. Если используются оптопары, имеющие относительно низкую скорость нарастания и спада сигнала, то в течение дополнительного времени, пока сигнал находится в промежутке между нулем и единицей, будет проходить значительный ток, микросхема будет нагреваться и среднее энергопотребление повысится.

Кроме того, медленное пересечение напряжением порога логического входа и присутствие шумов может привести к тому, что одиночный фронт тактового импульса будет воспринят логикой преобразователя как несколько тактовых импульсов. Поэтому, чтобы предотвратить эти многократные пересечения порога, линии SCLK, идущие от оптоизоляторов к АЦП семейства AD771x, необходимо буферировать с помощью триггера Шмитта. В то же время в преобразователях семейства AD779x вход SCLK имеет встроенный триггер Шмитта, так что для AD779x описанная проблема отпадает. В технических описаниях (datasheet) микросхем семейства AD779x специально оговаривается, что вход SCLK пригоден для управления от оптопары. В любом случае, инженер-разработчик должен знать о существовании такой проблемы и быть к ней готовым.

Гальваническая развязка от сети 220 V из старого бесперебойника

И тут пришла в голову идея сделать развязку на «перевёртышах», т.е. когда два идентичных трансформатора включаются зеркально:

Естественно, чем больше напряжение на выходе трансформаторов, тем меньше тока течёт и тем лучше, но выбирать не приходилось и я использовал принцип «как есть». Решено было использовать корпус ИБП и трансформатор, который там уже установлен. У китайцев был заказан простенький вольтметр для контроля наличия напряжения на выходе:

После того, как второй трансформатор был найден и закреплён, оставалось лишь все соединить.

В итоге имеем конечную схему, по которой соединяем трансформаторы:

И получаем примерно такую картину:

Сначала я выбросил родную плату, но, как оказалось, корпус сильно теряет жёсткость и пришлось вернуть её на место, предварительно выпаяв все детали:

Потом я врезал вольтметр:

Вторичную обмотку на 18 В я использовал для питания подсветки штатного выключателя. В качестве входного предохранителя использовал штатный многоразовый предохранитель ИБП, а для защиты выхода врезал обычный держатель предохранителя.

И, вуаля! Наша развязка в работе:

При подключении на выход лампы накаливания на 100 Вт напряжение на выходе просаживается примерно на 7 Вольт , что для меня более чем удовлетворительно. По факту этот блок здорово помогает мне и даже не столько при пользовании осциллографом, сколько при ремонте импульсных БП и других устройств, гальванически связанных с сетью.

Спасибо за внимание! Всем удачи!

Микросхемы для гальванической развязки цифровых сигналов (изоляторы)

TI предлагает широкую линейку микросхем, предназначенных для развязки цифровых сигналов различных скоростей (от постоянного сигнала до 150 Мбит/с), выпускаются одно- и двунаправленные модификации, содержащие от одного до четырех каналов (таб­лица 2). За счет повышения уровня интеграции многоканальные изоляторы позволяют сэкономить место на плате.

Микросхемы могут применяться в распространенных цифровых интерфейсах в различных промышленных приложениях. Все изоляторы имеют однополярное питание 3/5 В, логические КМОП-уровни переключения. Номинальное напряжение питания находится в диапазоне 3,3…5,0 В как для VCC1, так и для VCC2. Возможна различная их комбинация.

Все микросхемы с тремя цифрами в наименовании являются одноканальными (ISO721). В изоляторах с четырьмя цифрами две первые означают серию, предпоследняя говорит о количестве каналов, а последняя — о каналах с обратным направлением передачи данных. Например, ISO7241 часто применяется для гальванической развязки SPI-интерфейса и имеет четыре канала: передачи данных, приема, тактирования, и выбора устройства (рис. 1).

Рис. 1. Структура изолятора ISO7241

Для развязки цепей передачи данных в микросхемах TI используется емкостной барьер с изолятором из диоксида кремния (SiO2). Технология характеризуется высокой степенью надежности, низкими задержками времени распространения сигнала (от 7 нс), малыми искажениями сигнала и задержками «канал-канал» (от 1 нс), высокой устойчивостью к электромагнитному полю, а также широким температурным диапазоном работы (-55…125°С).

Индекс EP (ISO721M-EP, ISO7241A-EP) указывает на расширенный температурный диапазон работы -55…125°С, большинство остальных микросхем имеют диапазон -40…125°С. В ближайшем будущем в продаже появятся ISO7221-HT; индекс HT означает высокотемпературное и высоконадежное применение в жестких температурных условиях, например, в нефтедобывающей отрасли. Эти изделия будут изготовлены из высокотемпературного пластика, способного выдерживать температуры -55…175°С.

Стоит обратить отдельное внимание на новое семейство двухканальных развязок для применений с малым энергопотреблением ISO7420/7421 — семейство развязок с потреблением тока порядка 1,5 мА на канал. В продаже появилась ISO7420FE, суффикс F означает, что в случае аварийного состояния входных линий, выход будет переведен в положение с низким уровнем, защищая, таким образом, выходные цепи

Вслед за Европой в России в скором времени планируется ужесточение требований безопасности для ответственных применений. Например, в Европейских странах действует постановление о двукратном запасе по напряжению пробоя изоляции для медицинских применений; таким образом, устройство должно выдерживать пробой напряжением до 5000 В RMS в течении минуты. Texas Instruments выпустила двухканальные изоляторы ISO7520 и ISO7521 с напряжением пробоя 5000 В RMS, отличающихся друг от друга направлением передачи данных второго канала.

Специальные микросхемы оптической развязки сигнала

Теперь к делу! Для начала сравним три специализированных микросхемы: il300, loc110, hcnr201. Подключенные по одной и той же схеме:

Рис.3. Тестовая схема для il300, hcnr201 и loc110.

Разница только в номиналах для il300, hcnr201 R1,R3=30k, R2=100R, а для loc110 10k и 200R соответственно (я подбирал разные номиналы чтобы добиться максимального быстродействия, но при этом не выйти за допустимые пределы, например, по току излучающего диода). Ниже приведены осциллограммы, которые говорят сами за себя (здесь и далее: синий – входной сигнал, желтый — выходной).

Рис.4. Осциллограмма переходного процесса il300.

Рис.5. Осциллограмма переходного процесса hcnr201.

Рис.6. Осциллограмма переходного процесса loc110.

Теперь рассмотрим микросхему ACPL-C87B (диапазон входного сигнала 0..2В). Честно говоря с ней я провозился достаточно долго. У меня в наличии было две микросхемы, после того как получил неожиданный результат на первой, со второй обращался очень аккуратно, особенно при пайке. Собирал всё по схеме, указанной в документации:

Рис.7. Типовая схема для ACPL—C87 из документации.

Результат один и тот же. Подпаивал керамические конденсаторы непосредственно вблизи ножек питания, менял ОУ (естественно проверял его на других схемах), пересобирал схему и т.д. В чем собственно загвоздка: выходной сигнал имеет значительные флуктуации.

Рис.8. Осциллограмма переходного процесса ACPL—C87.

Несмотря на то, что производитель обещает уровень шума выходного сигнала 0.013 mVrms и для варианта «B» точность ±0.5%. В чем же дело? Возможно ошибка в документации, поскольку с трудом верится в 0.013 mVrms. Непонятно. Но посмотрим в графу Test Conditions/Notes напротив Vout Noise и на Рис.12 документации:

Рис.9. Зависимость уровня шума от величины входного сигнала и частоты выходного фильтра.

Здесь картина немного проясняется. Видимо производитель говорит нам о том, что мы можем задушить эти шумы через ФНЧ. Ну что ж, спасибо за совет (иронично). Зачем вот только всё это таким хитрым образом вывернули. Скорее всего понятно зачем. Ниже приведены графики без и с выходным RC фильтром (R=1k, C=10nF (τ=10µS))

Рис.10. Осциллограмма переходного процесса ACPL—C87 без и с выходным фильтром.

Принцип действия

Гальваническая развязка в соответствии со своей функцией известна также под понятием гальванической изоляции. Данные системы обеспечивают электрическую изоляцию конкретной цепи по отношению к другим видам цепей, находящихся рядом. Применение гальванических развязок дает возможность бесконтактного управления, обеспечивает надежную защиту людей и оборудования от поражения электротоком.

Благодаря своим особенностям, гальваническая развязка обеспечивает обмен сигналами или энергией между цепями, исключая при этом непосредственный электрический контакт. С ее помощью образуется независимая сигнальная цепь за счет формирования независимого контура тока сигнальной цепи по отношению к токовым контурам других цепей.

Гальваническая изоляция используется во время измерений в силовых цепях и в цепях обратной связи. Данное техническое решение обеспечивает также электромагнитную совместимость, усиливает защиту от помех, повышает точность измерений. Используемый блок гальванической развязки на входе и выходе каждого устройства способствует улучшению их совместимости с другими приборами в условиях сложной электромагнитной обстановки.

Для того чтобы лучше представить себе, что такое гальваническая развязка, можно рассмотреть ее действие на примере стандартного промышленного электродвигателя. На производстве в большинстве случаев используется значение питающего напряжения, значительно превышающее 220 вольт и представляющее серьезную опасность для обслуживающего персонала.

В связи с этим, подача тока на обмотки и включение двигателя осуществляется с применением специальных устройств, обеспечивающих коммутацию силовых цепей. В свою очередь, коммутаторы также управляются, чаще всего кнопками включение и выключения. Именно на этом участке и требуется развязка, защищающая оператора от воздействия опасного напряжения. Оно не попадает на пульт управления, благодаря механическому взаимодействию конструктивных элементов пускателя с магнитным полем.

В настоящее время данные системы используются в различных вариантах технических решений: индуктивные, оптические, емкостные и электромеханические.

Итоги

Подведем итог. На мой взгляд наилучшим вариантом является схема на отечественных АДО130А (где они их только взяли?!). Ну и напоследок небольшая сравнительная таблица:

Микросхема tr+задерж. (по осцилл.), мкс tf+задерж. (по осцилл.), мкс Диап. напряж., В Напряж. изоляции, В Шум (по осцилл.) мВп-п. Цена** за шт., р (05.2018)
IL300 10 15 0-3* 4400 20 150
HCNR201 15 15 0-3* 1414 25 150
LOC110 4 6 0-3* 3750 15 150
ACPL-C87B 15 15 0-2 1230 нд 500
6N136 10 8 0-3* 2500 15 50
АОД130А 2 3 0.01-3* 1500 10 90
ADUM3190T 2 2 0.4-2.4 2500 20 210

*- приблизительно (по собранной схеме с оптимизацией по быстродействию)

**- цена средняя по минимальным.Ярослав Власов

P.S. АОД130А производства ОАО «Протон» (с гравировкой их логотипа в черном корпусе) — хороший. Старые (90х годов в коричневом корпусе) не годятся.

Гальванической развязкой или гальванической изоляцией называется общий принцип электрической (гальванической) изоляции рассматриваемой электрической цепи по отношению к другим электрическим цепям. Благодаря гальванической развязке осуществима передача энергии или сигнала от одной электрической цепи к другой электрической цепи без непосредственного электрического контакта между ними.

Гальваническая развязка позволяет обеспечить, в частности, независимость сигнальной цепи, поскольку формируется независимый контур тока сигнальной цепи относительно контуров токов других цепей, например силовой цепи, при проведении измерений и в цепях обратной связи. Такое решение полезно для обеспечения электромагнитной совместимости: повышается помехозащищенность и точность измерений. Гальваническая изоляция входа и выхода устройств зачастую улучшает их совместимость с другими устройствами в тяжелой электромагнитной обстановке.

Безусловно, гальваническая развязка обеспечивает и безопасность при работе людей с электрическим оборудованием. Это одна из мер, и изоляцию конкретной цепи необходимо всегда рассматривать в совокупности с другими мерами обеспечения электрической безопасности, такими как: защитное заземление и цепи ограничения напряжения и тока.

Для обеспечения гальванической развязки могут быть использованы различные технические решения:

индуктивная (трансформаторная) гальваническая развязка, которая применяется в и для изоляции цифровых цепей;

оптическая развязка посредством оптрона (оптопара) или оптореле, применение которой является типичным для многих современных импульсных источников питания;

емкостная гальваноразвязка, когда сигнал подается через конденсатор очень маленькой емкости;

электромеханическая развязка посредством, например, .

В настоящее время очень широкое распространение получили два варианта гальванической развязки в схемах: трансформаторный и оптоэлектронный.

Построение гальванической развязки трансформаторного типа предполагает применение магнитоиндукционного элемента (трансформатора) с сердечником или без сердечника, выходное напряжение, снимаемое со вторичной обмотки которого пропорционально входному напряжению устройства

Однако, при реализации этого способа, важно учесть следующие его недостатки:. на выходной сигнал могут влиять помехи, создаваемые несущим сигналом;

на выходной сигнал могут влиять помехи, создаваемые несущим сигналом;

частотная модуляция развязки ограничивает частоту пропускания;

большие габариты.

Развитие технологии полупроводниковых устройств в последние годы расширяет возможности построения оптоэлектронных узлов развязки, основанных на оптронах.

Принцип работы оптрона прост: светодиод излучает свет, который воспринимается фототранзистором. Так осуществляется гальваническая развязка цепей, одна из которых связана со светодиодом, а другая — с фототранзистором.

Такое решение имеет ряд достоинств: широкий диапазон напряжений развязки, вплоть до 500 вольт, что немаловажно для построения систем ввода данных, возможность работы развязки с сигналами частотой до десятков мегагерц, малые габариты компонентов.

Если не применять гальваническую развязку, то максимальный ток, протекающий между цепями, ограничивается лишь относительно небольшими электрическими сопротивлениями, что может привести в результате к протеканию выравнивающих токов, способных причинить вред как компонентам цепи, так и людям, прикасающимся к незащищенному оборудованию. Обеспечивающий развязку прибор специально ограничивает передачу энергии от одной цепи к другой.