Условное обозначение гальванического элемента

Способ второй: банка с электролитом

Для сборки своими руками устройства, похожего по конструкции на первую батарейку в мире, понадобится стеклянная банка или стакан. Для материала электродов используем цинк или алюминий (анод) и медь (катод). Для увеличения эффективности элемента их площадь должна быть максимально большой. Провода лучше будет припаять, но к электроду из алюминия провод придется прикрепить заклепкой или болтовым соединением, так как паять его сложно.

Электроды погружаются внутрь банки так, чтобы они не соприкасались друг с другом, и концы их находились выше уровня банки. Лучше их зафиксировать, установив распорку или крышку с прорезями. Для электролита используем водный раствор нашатыря (50 г на 100 мл воды). Водный раствор аммиака (нашатырный спирт) – это не тот нашатырь, который используется для нашего опыта. Нашатырь (хлористый аммоний) – это порошок без запаха белого цвета, применяющийся при пайке в качестве флюса или как удобрение.

https://youtube.com/watch?v=yeWnPoQ3cSY

Второй вариант приготовления электролита – сделать 20% раствор серной кислоты. При этом нужно заливать кислоту в воду, и ни в коем случае не наоборот. Иначе вода мгновенно закипит и ее брызги вместе с кислотой попадут на одежду, лицо и глаза.

Осталось налить получившийся раствор в банку так, чтобы до краев сосуда оставалось не менее 2 мм свободного пространства. Затем при помощи тестера подобрать необходимое количество банок.

Собранный своими руками элемент питания похож по составу на солевую батарейку, так как содержит хлорид аммония и цинк.

Метод гальванического покрытия

В современном мире не редко при обработке металлических поверхностей используется гальванический метод. Гальваническое покрытие материалов заключается в нанесении, на их поверхность тонкого металлического слоя. При этом образуется пленка небольшой толщины, которая противостоит окислению отдельных металлов. Гальванический метод используется для придания изделию или материалу:

  • прочность,
  • износостойкость,
  • устойчивость к появлению коррозии,
  • привлекательные внешние качества.

В современном мире данный метод обработки металлических покрытий приобрел большую популярность, потому что к оборудованию и другим изделиям предъявляется большое количество требований. Требуется постоянно увеличивать прочность отдельных деталей и повышать их устойчивость к влиянию агрессивной внешней среды. Металлические детали на современном производстве должны обладать способностью выдерживать температурные перепады. Именно этим обусловлено то, что многие отрасли промышленности широко используют гальванический метод обработки металлических изделий.

Гальваническеи покрытия за счет своей прочности получили широкое распространение в таких промышленных отраслях, как:

  • авиастроение,
  • машиностроение,
  • строительная промышленность,
  • радиотехническая промышленность,
  • электронная промышленность.

Процесс гальванического покрытия металла

Для безошибочного проведения работ по гальванике необходимо учитывать советы экспертов. Также следует действовать согласно поэтапному руководству.

Подготовительные работы

Гальваническая металлизация производится после нескольких подготовительных мероприятий. Для начала следует очистить поверхность от ржавчины, налета, пыли и грязи, а затем отшлифовать ее с помощью наждачной бумаги. После этого необходимо обезжирить материал для удаления жировых пятен и подтеков масла.

Завершив подготовку, можно переходить к основной части работ.

Проведение гальванизации

Схема данного процесса выглядит следующим образом:

  1. В ванну опускается электролитический раствор.
  2. На анод подается напряжение через плюсовые полюсы.
  3. Смесь электролита разогревается до требуемого уровня.
  4. На детали закрепляется отрицательный контакт. Затем ее медленно опускают в резервуар.

Проведение гальванизации происходит по схеме.

Дополнительные процедуры

Чтобы сделать деталь красивой и улучшить потребительские качества, нужно воспользоваться смесителем, который будет взаимодействовать с наружной поверхностью. Это сделает образец более продаваемым.

Оценка итогового результата

Завершив обработку, следует проверить конечный результат. Если действия выполнялись специалистами, беспокоиться по поводу качества не нужно. С помощью точного оборудования можно проверить толщину нанесенного слоя, равномерность покрытия и ряд других критериев.

Препараты для гальванизации

При гальванизации в медицине и косметологи, пользуются растворами эластина и коллагена в ампулах. Все препараты назначаются косметологом индивидуально. Демонстрируют хорошее воздействие травяные сборы.

Применяются биогенные стимуляторы, приготовленные из:

  • Тканей животных организмов;
  • Экстрактов растений;
  • Лиманных грязей.

Используются кислоты:

  • Аскорбиновая. Принимает живое участие в создании проколлагена, коллагена, налаживает проницаемость в капиллярах;
  • Салициловая. Действует как отвлекающее, раздражающее и антисептическое вещество;
  • Никотиновая. Проявляет сосудорасширяющее и возбуждающее действие;
  • Кофеин. Расщепляет жиры на жирные кислоты под воздействием фермента липазы.

Применяют разные буферные растворы специального назначения, лекарства и сыворотки. Результат от таких процедур гораздо эффективнее, чем от регулярного нанесения на кожный покров косметических веществ.

Потенциал электрода. Перенапряжение (поляризация).

Металлические электроды, опущенные в раствор электролита, содержащего одноименные с металлом ионы, обладают характеристикой, называемой равновесным потенциалом.

 В гальванике равновновесный потенциал электрода характеризует динамическое равновесие между ионами металла, выходящими из кристаллической решетки электрода в раствор и одноименными ионами в растворе, стремящимися войти в кристаллическую решетку электрода. Скорость обмена характеризуется так называемым током обмена i0. Такая система реализуется в любом электролите для нанесения покрытий с использованием растворимых металлических анодов, например, когда мы загружаем медные аноды в электролит сернокислого меднения, состоящий из сульфата меди и серной кислоты.

 При использовании нерастворимых анодов или при опускании анода в раствор, в котором отсутствую одноименные ему ионы, на нем будет реализовываться стационарный потенциал.

 Равновесный потенциал привязан к величине стандартных потенциалов металлов (табличные значения) уравнением Нернста:

E = E+RT/nF*lnaOx/aRed

где:Е — Равновесный электродный потенциал, В;Е — стандартный электродный потенциал, В;R — Универсальная газовая постоянная, 8,31 Дж/(моль*К);Т — абсолютная температура, К;n- число электронов, участвующих в процессе;F — постоянная Фарадея, равная 96500 Кл*моль-1;aOx и aRed — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакциях. Если подставить в уравнение значения R и F, перейти к десятичным логарифмам и принять, что температура 298 К, то уравнение Нернста можно преобразовать в следующий вид:

E = E+0,0592/n*lgaOx/aRed

Когда мы приложим к электродам установки разность потенциалов (проще говоря подключим источник постоянного тока) потенциал электрода будет смещаться от равновесного значения. В гальванике принято считать, что смещение катодного потенциала идет в отрицательную область, а анодного — в положительную, хотя это и условно (можно принять и обратное отношение знаков).

 Смещение электродных потенциалов от равновесного значения под действием приложенного извне напряжения называется поляризацией, разница между равновесным потенциалом и потенциалом под током — перенапряжением. Поляризация и перенапряжение, по сути, синонимы. Степень зависимости плотности тока от потенциала называется поляризуемость.

 Перенапряжение обозначается как ηК и ηА соответственно для обозначения катодного и анодного процесса.Наглядно эти вопросы будут разъяснены при рассмотрении поляризационных кривых.

 Отметим, что чем выше перенапряжение выделения металла на катоде, тем более мелкокристаллическим будет покрытие. При осаждении покрытий стремятся получать как можно более мелкокристаллические осадки. Обоснование этого будет дано далее.

Следует также запомнить общее правило: на катоде идут преимущественно электроположительные процессы, на аноде — электроотрицательные.

Гальваника в домашних условиях

При небольших затратах времени и усилий можно обработать металлическую поверхность гальваникой в домашних условиях. Это производится такими путями:

  1. Совместно с ионным электролитом.
  2. С муриевой кислотой.
  3. С совместимыми металлами.

С ионным электролитом

При домашней гальванизации необходимо заранее оценить, какую реакцию ожидается получить. Это влияет на тип материала для анода и состав раствора электролита.

Необходимо оценить состав раствора электролита.

Атомы, которые постепенно присоединяются к образцу, должны присутствовать в рабочей смеси. Поэтому для получения красивого серебряного или золотого покрытия в электролит нужно включить соответствующие примеси.

С муриевой кислотой

Этот компонент является соляным веществом с формулой HCI. Обработка с применением такой смеси выглядит так:

  1. К источникам питания подключается отрезок меди и стальной образец с соблюдением полярности.
  2. В резервуар погружается электролит, созданный на основе воды и соляной кислоты, смешанных в пропорции 5:1.
  3. 2 элемента опускаются в смесь, а зажим на образце соединяется с местом гальванизации.
  4. Состав периодически размешивается. Это необходимо для поддержания равномерности слоя.

С различными металлами

Разные способы обработки одного типа металла другим посредством электрохимической реакции реализуются на одном станке в домашних условиях. Чтобы провести такие работы, необходимо определиться с технологией гальванизации и видом материала для нанесения защитного слоя.

Способы обработки металла реализуются в домашних условиях.

Меры предосторожности

Поскольку электролит является токсичным и опасным веществом, при любых домашних работах с ним нужно соблюдать ряд мер предосторожности. Опасность для организма представляют вредные пары, выделяющиеся при нагреве рабочей смеси и его химических реакциях

Кроме того, во время гальванизации есть риск поражения электрическим током, особенно если схема не заземлена. Под воздействием высоких температур пластиковые ванны подвергаются повреждениям.

История батарейки — гальванического элемента

Свое название гальванические элементы получили по имени итальянского врача и анатома Луиджи Гальвани (1737 — 1798). Проводя опыты с лягушками, Гальвани заметил, что свежепрепарированная лягушачья лапка, подвешенная на медном крючке к железному стержню, сокращается, когда к ней прикасались железом. Наблюдения были истолкованы им как проявление «животного электричества».

Объясняя это явление позже итальянский физик Александро Вольта установил, что причиной сокращения мышц служит не «животное электричество», а наличие цепи из разных проводников в жидкости. Сама лягушачья лапка играла роль чувствительного прибора.

Александро Вольта создал первый источник тока («Вольтов столб»), который можно было использовать на практике. Этот источник состоял из медных и цинковых пластин, между которыми были проложены кружочки ткани, пропитанные раствором щелочи.

Александро Вольта предложил разделить все проводники на два рода:

  1. Сухие — металлы и уголь.
  2. Влажные — электролиты(влажные).

Шведский ученый Сванте Аррениус, изучая электропроводимость растворов различных веществ, в 1877 году пришел к выводу, что причиной электропроводимости является наличие в растворе ионов, которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называется электрической диссоциацией. При диссоциации в воде электролиты диссоциируют на положительно и отрицательно заряженные ионы. Под действием электрического поля, положительно заряженные ионы движутся к отрицательному полюсу источника тока (катоду) и называются катионами, а отрицательно заряженные – к положительному полюсу (аноду) и называются анионами. Таким образом электролиты обладают электронной проводимостью.

Примеры гальванических элементов:

Название элемента Отрицательный электрод Положительный электрод Электролит
Вольтов столб Цинк Медь Раствор щелочи
Первый элемент Вольта Цинк Медь Раствор серной кислоты
Элемент Даниэля Цинк Медь Раствор сульфата цинка
Элемент Грине Цинк Угольный стержень Раствор сульфата меди и бихромата калия
Элемент Лекланше Цинковый цилиндр Угольный стержень Раствор нашатыря и оксид марганца
Сухой элемент Цинковый цилиндр Угольный стержень Густой клейстер, приготовленный из муки на растворе нашатыря

Сфера применения гальванического цинкования

Данный способ широко применяется на изделиях, изготовленных из углеродистых сталей и разных видов чугуна. Основной сортамент гальваники представлен разным инструментом, деталями машин и оборудования, всевозможными опорами и крепежными элементами, включая тонколистовой холоднокатаный металлопрокат.

Наряду с защитными свойствами, гальваническое цинкование также наделяет металл декоративными качествами. Это обусловлено равномерностью распределения покрытия по поверхности и точным повторением покрытия конфигурации детали.

Толщина цинкового покрытия составляет 6 – 9 микрометров, но при этом конструкции подвергаются пассивации в специальном хроматном растворе. Благодаря пассивации можно получить высокий эстетический эффект.

Процедура позволяет придать конструкциям такие цветовые решения, как радуга (золотистый цвет, который отлично переливается на солнце) и голубизна (цинк белого цвета приобретает голубой отлив).

Методика гальваники предполагает лишь внешнее покрытие деталей, поскольку нанести покрытие в труднодоступных местах невозможно вследствие отсутствия электропроводимости.

Металлоконструкции, оцинковка которых проводилась гальваническим способом, широко применяются в умеренной среде. Таким образом, такие конструкции могут использоваться на улице лишь периодически, при этом они не должны иметь прямой контакт с влагой.

Необходимое оборудование

Гальваническая обработка мелких изделий в домашних условиях требует наличия определённой оснастки и химических реактивов. Основной перечень оборудования включает в себя:

  • блок питания постоянного тока;
  • ёмкость;
  • электролит;
  • весы;
  • электроды «анод» и «катод»;
  • провод;
  • электроплиту.

Источник применяется с регулировкой по току. Выпрямитель, рассчитанный на выходные токи до 5 А, подойдёт для работы с объектами размером с апельсин. Для небольших элементов достаточно тока до 0,5 А. Зарядные устройства на 12 В тоже годятся для процесса гальваники. Стартерный аккумулятор может служить таким источником тока. Для снижения тока допустимо применять шунтирование, включение резистора параллельно сосуду.

Гальваническая ванна своими руками при изготовлении должна быть вместительна, прочна и термически устойчива. Хорошо подходят для этих целей готовые стеклянные изделия с толщиной стекла не менее 4-5 мм, старый аквариум или банка с широкой горловиной.

Электролит – водный раствор солей, приготавливается из химических компонентов в зависимости от желаемого покрытия.

Для точного подбора ингредиентов и соблюдения должной концентрации раствора необходимо взвешивающее устройство, желательно электронное.

В качестве электродов используются пластины из металла-донора, достаточной толщины и площади. Электроды подводят ток к электролиту, а также служат для замещения убывающего в нём металла. Провода берутся многожильные, медные в изоляции, с сечением не менее 2,5 мм2.

Требуется электроплита для подогрева электролита. Повышение температуры рабочего раствора ускоряет время реакции гальванизации. Возможность регулировки нагрева – обязательное условие выбора.

Гальваника в домашних условиях

Процесс изготовления

Берем примерно 20-сантиметровый отрезок многожильного кабеля и извлекаем из него проволоку. Защищаем изоляцию по обеим сторонам проволочки, один ее конец сгибаем под углом 90 градусов и приклеиваем к пластиковой детали мгновенным клеем. Причем клей БФ не подойдет, так как его растворит бронзовая краска.

Когда предметы высохнут, осуществляем их обезжиривание с помощью средства бытовой химии (например, стирального порошка). Далее промываем изделие в проточной воде или обрабатываем его ацетоном.

Детали достаточно крепко зафиксированы на проволоке. Теперь их можно по одной окунать в заранее подготовленную бронзовую краску или же наносить этот материал кистью. Вся поверхность должна быть равномерно окрашена. Рекомендуется использовать изолированную проволоку от кабеля, иначе медь будет попадать на голый провод, что приведет к дополнительному расходу анода.

После часового высушивания поверхности высушенные концы проводов скручиваем между собой. Детали не должны соприкасаться друг с другом. Далее присоединяем изделия к плюсовому контакту и погружаем их в ванну. Спустя несколько секунд после погружения начнется заметный невооруженным взглядом процесс омеднения.

Толщина медного покрытия может колебаться в зависимости от обстоятельств, но для мелких предметов она составит примерно 0,05 миллиметра. В ванне детали находятся в течение 15 часов. Регулировку тока осуществляем перемещением контакта по нихромовому реостату в рамках 0,8-1,0 Ампер. После омеднения повышаем ток до 2 Ампер. Когда срок выдержки деталей истечет, промываем предметы в проточной воде, высушиваем их, а проволоку отрезаем. Зачищаем проволоку и подготавливаем ее к следующей процедуре.

Металлизация завершена. Далее берем серную мазь (можно приобрести в аптеке), наносим ее на поверхность и проносим деталь на огнем газовой плиты. При этом медь сразу потемнеет.

Следующий этап — полировка. Для этого пригодится двигатель, оснащенный металлической круглой щеткой. Эта работа требует определенного умения. В результате у нас должна получиться поверхность, выглядящая как черненая бронза с отдельными блестящими участками. Если сразу не удалось добиться нужного результата, снова наносим серную мазь, нагреваем изделие над огнем и полируем.

Для тех, кто сомневается в эффективности описанной выше процедуры, предлагаем сделать пробу. Для этого понадобится емкость для электролита, куда нужно опустить немного меди. Одну деталь окрасьте из пульверизатора 2-3 слоями в бронзовый цвет. Далее нужно подсоединиться к батарейке без использования реостата. Также подойдет адаптер от плеера.

Помимо меди, на неметаллическую поверхность можно наносить и другие металлы, в том числе золото или серебро. Серебряная гальванопластика может осуществляться одним из двух способов: химическим или электрохимическим. Химическое серебрение производится путем погружения изделия в прокипяченный раствор с серебром. Электрохимический процесс дает более надежный результат, так как покрытие получается более прочным в результате воздействия электротока. Серебряная гальванопластика широко применяется при производстве ювелирных изделий.

Итак, гальванопластика дома вполне возможна. Процесс достаточно трудоемкий и требует определенных навыков, однако конечный результат того стоит.

Что такое золото? Свойства золота.

Золото (Au от латинского Aurum) принадлежит к 11 группе периодической системы Д.И.Менделеева. Оно относится к типичным благородным металлам и имеет нехарактерный для них желтый цвет. Атомная масса и плотность золота велики: 196,97 г/моль и 19,32 г/см³ соответственно, стандартные электродные потенциалы очень положительные: Au+ = +1,83 В, Au3+  = +1,52 В.

Золото отличается высокой температурой плавления 1064,18о С, выраженной пластичностью и отличной тепло- и электропроводностью. Его удельное электрическое сопротивление в чистом виде составляет 0,024 Ом*мм.

С точки зрения химических свойств при нормальных условиях золото инертно к большинству кислот и не образует оксидов.

Золото растворяется только в царской водке, ртути, щелочных цианистых растворах, концентрированной селеновой кислоте при 200° C, хлорной и бромной воде, хлорной кислоте.

Покрытия золотом и его сплавами нашли широкое применение в электронике и художественной обработке изделий. Как антикоррозионное покрытие золото можно применять только при условии его беспористости. Его электродный потенциал столь положителен, что в паре с электроотрицательными металлами типа железа в порах покрытия будет образовываться очень жесткая коррозионная гальванопара.

Обозначение гальванического золочения — Зл.

Толщина наносимого покрытия может варьироваться от 0,025 мкм до 20 мкм в зависимости от назначения.

По своим физико-химическим свойствам гальваническое золото может отличаться от металлургического. Так, в процессе электролиза в золото могут включаться примеси. Это вызовет как изменения в части электропроводности, так и в части пластичности. Так, напряжения в покрытии могут иметь как положительный, так и отрицательный характер. Электропроводность же всегда будет снижаться.Легирование золотых покрытий никелем, кобальтом, серебром и сурьмой повышает их микротвердость,  износостойкость, коррозионную стойкость и мелкокристалличность.

Чистое золотое покрытие имеет: • микротвердость: 1046 МПа;• износостойкость: 1 (условно); • удельное электросопротивление, по разным источникам: 0,030-0,050 Ом*м;• переходное электросопротивление при Р = 0,2Н и силе тока 50А: 0,0031-0,0041.При легировании никелем можно получить: • микротвердость до 2500 МПа;• износостойкость 10 (относительно чистого золота);

• переходное электросопротивление при Р = 0,2Н и силе тока 50А: 0,0031-0,0041;

• удельное и переходное электросопротивление:

Массовая доля никеля в сплаве с золотом

Удельное электрическое сопротивление

Переходное электрическое сопротивление при Р=0,2 и силе тока 50А

5

0,150

0,0041

10

0,220

0,0017

15

0,400

0,0100

При введении кобальта: • микротвердость: до 2990 МПа;• износостойкость: до 15 (относительно чистого золота);• удельное и переходное электросопротивление:

Массовая доля кобальта в сплаве с золотом

Удельное электрическое сопротивление, Ом*м

Переходное электрическое сопротивление при Р=0,2 и силе тока 50 мА

Переходное электрическое сопротивление при Р=0,2 и силе тока 50А

1

0,040

5

0,140

0,0062

0,0042

10,1

1,150

0,0130

0,0070

17,)

1,150

0,0130

0,0076

При введении серебра:• микротвердость и износостойкость:

Массовая доля серебра в сплаве с золотом

Микротвердость, МПа

Износостойкость (относительно чистого золота)

4,8

1400

4

10

1650

16

1840

31

1850

9

• удельное и переходное электросопротивление:

Массовая доля серебра в сплаве с золотом

Удельное электрическое сопротивление, Ом*м

Переходное электрическое сопротивление при Р=0,2 и силе тока 50А

Переходное электрическое сопротивление при Р=0,5 и силе тока 50А

4,8

0,09

0,0039

0,0022

10

0,08

0,0033

0,0022

16

0,12

0,0033

31

0,125

0,0040

0,0028

При введении сурьмы:

• микротвердость:

Массовая доля сурьмы в сплаве с золотом

Микротвердость, МПа

2

2030

5

2100

10

2350

15

2600

• износостойксть 15 (относительно чистого золота).• удельное и переходное электросопротивление:

Массовая доля сурьмы в сплаве с золотом

Удельное электрическое сопротивление, Ом*м

2

0,088

5

10

0,380

15

0,520

• переходное электросопротивление при Р = 0,5Н и силе тока 50А: 0,0050.Легированные сплавы золота имеют характерные цвета, которые часто применяют в художественной отделке. Например, самые популярные: зеленое золото — сплав с серебром, розовое золото — сплав с медью.

Методы гальваники

Формирование защитной пленки посредством распределения другого металла выполняется с помощью 2 технологий:

  1. Катодное напыление. При незначительном повреждении слоя происходит образование ржавчины на основном изделии. Это связано с реакцией самого поверхностного покрытия.
  2. Анодное нанесение. Метод характеризуется большей эффективностью в сравнении с предыдущим вариантом. Если появляется угроза развития коррозийных процессов, то они происходят только в поверхностном слое. Основная часть изделия долго не теряет начальных внешних свойств. Кроме того, материал остается защищенным от негативных воздействий окружающей среды.

Путь на ощупь

Люди с древности сталкивались с электрическими явлениями, но не могли их правильно объяснить. Греческий философ VII в. до н. э. Фалес, заметив, что потёртый о шерсть янтарь притягивает лёгкие предметы, объяснил это свойством самого янтаря, не ведая, что и другие вещества могут обладать такими «способностями».

Наблюдение Фалеса, так и не получив внятного толкования, было забыто и воскресло только в 1600 г. в опытах английского физика Уильяма Гильберта. Гильберт обнаружил, что одни тела, подобно янтарю, после натирания притягивают лёгкие предметы, а другие — нет. Гильберт назвал эту притягивающую силу «электричеством» (от лат. electricus — «янтарный») и впервые твёрдо заявил о существовании в природе некого неведомого явления, требующего изучения.

Уильям Гильберт

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Читать также: Как пользоваться ультразвуковой ванночкой

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Обработка

Гальванизация происходит по следующей схеме:

  1. Ванна заполняется электролитом.
  2. На аноды подается напряжение через плюсовые контакты.
  3. Электролитический раствор нагревается до рабочей температуры.
  4. На заготовке закрепляется минусовой контакт, она медленно погружается в ванну.

Длительность проведения технологического процесса зависит от размеров изделия, его формы, требуемой толщины защитного слоя. После проведения гальванизации нужно выполняется ряд дополнительных процедур:

  • осветление поверхностей;
  • покрытие лаками или красками;
  • пассивирование;
  • полировку.

При желании гальванику можно выполнить в домашних условиях. Для этого необходимо подготовить ряд материалов, инструментов, оборудования:

  • стеклянный стакан;
  • песочную бумагу;
  • 1–2 литра воды;
  • глубокий пластиковый контейнер;
  • сульфат цинка;
  • уксус, перекись водорода;
  • кусок меди;
  • подготовленную металлическую заготовку;
  • блок питания на 3–6 вольт;
  • тканевую бумагу, провода;
  • цинк из батареек.

Проведение работ с ионным электролитом:

  1. Равные части перекиси водорода, уксуса нагреть, перемешать.
  2. Растворить кусок меди в готовом составе. Посиневшую жидкость можно использовать для проведения работ.
  3. На блоке питания закрепить зажимы с проводами.
  4. Плюсовую клемму закрепить на куске меди, лежащем в электролите, минусовую на подготовленной металлической поверхности.
  5. Включить блок питания.

Толщина слоя зависит от условий эксплуатации изделия:

  1. Легкие — кратковременное воздействие агрессивных веществ. Оптимальная толщина защитной пленки — от 7 до 15 мк.
  2. Средние — предметы подвергаются воздействию влажности, морской воды, промышленных отходов. Оптимальная толщина слоя — от 15 до 30 мк.
  3. Жесткие — изделия постоянно испытывают повышенную влажность, воздействие кислот, солей, щелочей, химических веществ. Оптимальная толщина пленки — от 30 до 45 мк.

При проведении гальваники своими руками нельзя забывать про безопасность. Работать нужно в перчатках, защитной одежде, респираторе, очках. Рабочее место должно быть очищено от воспламеняющихся жидкостей, материалов. В помещении нужно продумать система вентиляции.

Гальваническое покрытие защищает металлические поверхности от коррозии, восстанавливает поврежденные места, улучшает их вид. Для его нанесения применяются разные виды металлов. Работы проводятся на специализированном оборудовании, но при желании их можно выполнить в домашних условиях.

Разновидности гальванических элементов

Самыми распространенными считают угольно-цинковые элементы. В них применяется пассивный угольный коллектор тока, контактирующий с анодом, в качестве которого выступает оксид марганца (4). Электролитом является хлорид аммония, применяемый в пастообразном виде.

Он не растекается, поэтому сам гальванический элемент называют сухим. Его особенностью является возможность «восстанавливаться» на протяжении работы, что позитивно отражается на продолжительности их эксплуатационного периода. Такие гальванические элементы имеют невысокую стоимость, но невысокую мощность. При понижении температуры они снижают свою эффективность, а при ее повышении происходит постепенное высыхание электролита.

Щелочные элементы предполагают использование раствора щелочи, поэтому имеют довольно много областей применения.

В литиевых элементах в качестве анода выступает активный металл, что позитивно отражается на сроке эксплуатации. Литий имеет отрицательный электродный потенциал, поэтому при небольших габаритах подобные элементы имеют максимальное номинальное напряжение. Среди недостатков подобных систем можно выделить высокую цену. Вскрытие литиевых источников тока является взрывоопасным.

Применение

  • Гальванические элементы используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления, компьютерах.
  • Аккумуляторы используются для запуска двигателей машин; возможно также и применение в качестве временных источников электроэнергии в местах, удалённых от населенных пунктов.
  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Нередко, химические источники тока применяются в составе батарей (батареек).