Генератор прямоугольных импульсов на ne555

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Генератор перекрывающих импульсов

Чтобы сделать генератор импульсов своими руками, адаптер лучше всего использовать аналогового вида. Регуляторы в данном случае применять не обязательно. Связано это с тем, что уровень отрицательного сопротивления может превысить 5 Ом. В результате на резисторы оказывается довольно большая нагрузка. Конденсаторы к устройству подбираются с емкостью не менее 4 Ом. В свою очередь адаптер к ним подсоединяется только выходными контактами. Как основную проблему генератор импульсов имеет асимметричность колебаний, которая возникает вследствие перегрузки резисторов.

Смотреть галерею

Генератор напряжения пилообразной формы

Генератор треугольного напряжения, выполненный по предыдущей схеме, легко преобразуется в генератор пилообразного напряжения. Для этого достаточно обеспечить разную длительность заряда и разряда конденсатора в схеме интегратора. Такие изменения показаны на рисунке ниже

Генератор колебаний пилообразной формы.

Как нетрудно заметить внесённые изменения касаются цепи заряда-разряда конденсатора С1 в интеграторе. Диоды VD1 и VD2 позволяют выполнять заряд-разряд конденсатора разными токами. При изображённой на схеме полярности включения диодов длительность разряда конденсатора С1, а следовательно и длительность линейно-возрастающего напряжения определяется величиной сопротивления резистора R4’, а длительность заряда С1 и линейно падающего сигнала на выходе интегратора – сопротивлением R4” по следующим формулам

Все остальные аспекты работы схемы аналогичны предыдущей. Так как схема не является симметричной то резистор R5 можно удалить. Частота выходного пилообразного напряжения будет определяться суммой резисторов R4’ и R4”. Стабильность частоты в данной схеме будет ограниченна температурной нестабильностью диодов VD1 и VD2

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в магнитных двигателях. А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.

Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­H.

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Генератор прямоугольных импульсов на NE555

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Генераторы импульсов на лавинных транзисторах

Генераторы импульсов (рис. 12, 13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или аналогах динисторов и лавинных транзисторов (см. рис. 1).

Рис. 12. Схема генератора импульсов на лавинных транзисторах К101КТ1.

Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора.

Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Рис. 13. Схема генератора импульсов на лавинных транзисторах К162КТ1.

Генератор с независимой регулировкой ширины и частоты импульсов

Texas Instruments LM555

Автоколебательный мультивибратор является популярным источником прямоугольных импульсов, полезным для многих приложений, таких как схемы синхронизации и звуковые извещатели. Один из наиболее распространенных способов генерации прямоугольных сигналов основан на использовании недорогого таймера 555. Иногда возникает необходимость в прямоугольных импульсах с фиксированной частотой, но переменной шириной импульса, или наоборот. Выполнить эти требования с помощью обычной автоколебательной схемы на основе 555 достаточно трудно. На Рисунке 1 показана модификация базовой схемы мультивибратора на таймере 555. Эту схему можно использовать для формирования стабильных импульсов, ширина и частота которых не зависят друг от друга и регулируются с помощью отдельных элементов управления. Выход 3 микросхемы таймера заряжает и разряжает конденсатор C1. Диоды D1 и D2 обеспечивают индивидуальные пути для зарядного и разрядного тока, соответственно. Два времязадающих потенциометра P1 и P2 управляют постоянной времени RC1 в течение циклов заряда и разряда.

Рисунок 1. Регулируя два потенциометра, можно независимо управлять шириной и частотой импульсов.

При высоком уровне на выводе 3 микросхемы 555 конденсатор заряжается через R2 (часть P1, сопротивление которой зависит от положения движка потенциометра). Когда C1 заряжается до двух третей VCC, напряжение на выводе 3 опускается, и C1 разряжается через D2, P2 (сопротивление R1) и P1 (сопротивление R3). Когда напряжение на C1 достигает одной трети VCC, выходной уровень на выводе 3 вновь становится высоким. Процесс попеременного заряда и разряда С1 периодически повторяется, и результатом является выходной сигнал с требуемой шириной и частотой импульса. Поскольку прямое сопротивление диодов незначительно, ширина импульса равна

Период импульсов (величина, обратная частоте) равен

Таким образом, ширина импульса не зависит от положения движка потенциометра P2, а частота не зависит от положения движка потенциометра P1.

Высокоточный генератор ШИМ с кнопочным контролем

Как было сказано ранее, очень распространены аналоговые схемы ШИМ-генераторов, в частности на основе NE555

Они просты, неприхотливы, могут работать с большим диапазоном напряжений, но имеют недостаток, который в некоторых случаях может быть недопустим — параметры ШИМ-сигнала (частоту, скважность), во-первых, нельзя установить с большой точностью, а во-вторых, эти параметры могут «уплывать» при изменении температуры, влажности и т.д. Для того, чтобы построить высокоточный генератор ШИМ-сигналов не обойтись без микроконтроллера, тактируемого от точного кварца

В этом случае можно будет настраивать скважность с точностью до 1%, а также выбирать частоту из заранее заданных вариантов. Предусмотрен выбор частот между 10/20/40/80/1,25/2,5/5 кГц, этих вариантов хватит для любого применения ШИМ-генератора. Схема представлена ниже.

Управляемый генератор

Управляемый генератор прямоугольных импульсов показан на рис. 6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором.

Рис. 6. Управляемый генератор прямоугольных импульсов — схема.

Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 7, возрастает рабочая частота генерации.

Рис. 7. Как возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения.

Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов.

Для контроля работы, сигнал с генератора (рис. 6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 7). Отметим, что стабильность генераторов на RC-элементах невысока.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.

После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Управляемый генератор

Управляемый генератор прямоугольных импульсов показан на рис. 6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором.

Рис. 6. Управляемый генератор прямоугольных импульсов — схема.

Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 7, возрастает рабочая частота генерации.

Рис. 7. Как возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения.

Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов.

Для контроля работы, сигнал с генератора (рис. 6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 7). Отметим, что стабильность генераторов на RC-элементах невысока.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

ОТВЕТЫ НА ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ (FAQ)

Можете ли Вы изменить или доработать программу под мои пожелания?

Можем. Цена такой доработки будет определена в зависимости от её сложности; для больших партий некоторые доработки можем выполнить и бесплатно. Воспользуйтесь формой заказа выше и опишите желаемые доработки в поле «Примечания».

Пригодно ли устройство для прецизионных задач?

Нет. Встроенный тактовый генератор PIC12F675 не слишком точный, лучше рассчитывать на погрешность до 2% (обычно намного меньше). При задании периода с помощью потенциометра предпочтительна настройка частоты с помощью осциллографа на выходе, а не вольтметра на входе.

Можете ли Вы отправить изделие на Украину и другие страны ближнего зарубежья?

Да, мы можем отправить заказ в другие страны Почтой РФ, но доставка может стоить очень дорого (подробнее см. «Доставка заказов»). Если Вы готовы оплачивать дорогостоящую доставку, оформите заявку с сайта обычным путём (через форму выше), указав страну и город. Мы рассчитаем и сообщим Вам её точную стоимость.

Работа схемы

Схема генератора сигналов на основе платы Arduino представлена на следующем рисунке.

Схема запитывается от USB кабеля Arduino. Необходимые соединения в схеме представлены в следующей таблице.

Контакт платы Arduino Куда подключен
D14 контакт RS ЖК дисплея
D15 контакт RN ЖК дисплея
D4 контакт D4 ЖК дисплея
D3 контакт D5 ЖК дисплея
D6 контакт D6 ЖК дисплея
D7 контакт D7 ЖК дисплея
D10 to Rotary Encoder 2
D11 to Rotary Encoder 3
D12 to Rotary Encoder 4
D9 выход прямоугольного сигнала
D2 контакт D9 платы Arduino
D5 выход SPWM сигнала

В схеме мы будем формировать прямоугольную волну (сигнал прямоугольной формы) на контакте D9 платы Arduino. Его частоту мы будем регулировать с помощью углового кодера. Для формирования синусоидального сигнала мы будем формировать SPWM сигнал (синусоидальный ШИМ (широтно-импульсной модуляции) сигнал) на контакте D5, его частота будет зависеть от частоты сигнала прямоугольной формы, которая будет подаваться на контакт D2 и будет действовать как прерывание и затем мы с помощью процедуры обработки (обслуживания) прерывания будем управлять частотой синусоидального сигнала.

Вы можете собрать схему проекта на макетной или даже на печатной плате, но мы решили спаять ее на перфорированной плате, в результате у нас получилась конструкция, показанная на следующих рисунках:

Тестирование работы генератора сигналов

Соберите аппаратную часть проекта и загрузите программу в плату Arduino. В идеале тестировать работу данного генератора нужно с помощью осциллографа, но если у вас его нет, то можно использовать простой светодиод – им можно оценить работу схему на частотах, которые видит человеческий глаз.

Подключите зонд к выходу прямоугольной и синусоидальной волны в схеме. Подключите к этим двум контактам светодиоды если у вас нет осциллографа. Подайте питание на схему и вы увидите приветственное сообщение на экране ЖК дисплея. Затем, вращая ручку углового кодера, вы можете установить желаемое значение частоты сигнала. Формируемые сигналы будет наглядно видно на экране осциллографа. Если вы используете для проверки схемы светодиоды, то вы увидите что частота их мигания будет изменяться с вращением ручки углового кодера.

Более подробно работу проекта вы можете посмотреть на видео, приведенном в конце статьи.

NE555 – модуль генератора импульсов

Москва и МО: Самовывоз Курьерская доставка Россия и СНГ: Почта РФ СДЭК / Boxberry

  • Описание
  • Характеристики
  • Отзывы (0)

Купить NE555 — модуль генератора импульсов в Москве или с доставкой по России и СНГ очень просто! До покупки осталось всего 3 клика:

  • Добавьте товар в корзину
  • Оформите заказ, выбрав наиболее удобный способ доставки и оплаты
  • Дождитесь подтверждения от менеджеров или позвоните самостоятельно
  • Оплатите заказ удобным способом и получите его в ближайшее время

Модуль генератора импульсов на базе NE555

При помощи перемычки, имеющей четыре положения, можно настраивать частоту выходных импульсов в 4 диапазонах:

  • 0.5 – 50 Гц;
  • 35 Гц – 3.5 кГц;
  • 650 Гц – 65 кГц;
  • 50 кГц – 600 кГц.

Данные приведены для питания в 12 В. Когда вы изменяете частоту, всегда выключайте генератор! Питаться генератор может как от внешнего источника, так и от контроллера, которые могут обеспечить от 5 до 15 В постоянного тока. Генератор имеет красный светодиод, который начинает моргать при малой частоте на выходе.

В схеме есть два резистора: R1 и R2

Первый резистор «отвечает» за длительность паузы импульсов, а второй – за скважность

Если требуется управлять нагрузкой, которая превышает на выходе 35 мА, используйте усилитель тока выходного каскада. Максимальная нагрузка, которую выдерживает генератор, равна 200 мА.

Цифровой ШИМ генератор на дискретной логике

Однажды мне в голову пришла идея сделать генератор сигнала ШИМ на дискретной логике с кнопочным управлением.

Да, я знаю, что существует не один десяток схем простых генераторов ШИМ сигналов, в том числе и на дискретной логике. Я понимаю, что взяв простенький МК (уже не говорю об arduino) можно было бы за 5 минут и меньше проблем сделать схему гораздо круче. Просто смотря на свои микросхемы дискретной логики мне хочется пускать их в дело. Мне кажется безумно интересным, соединяя несколько микросхем создавать работающие алгоритмы. Так что если вам эта тема так же нравится, то думаю и моя статья вам будет интересна.

Я решил придерживаться принципа генерации ШИМ сигнала используемого в микроконтроллере.

Некоторый счетчик считает от 0 до максимума и в момент обнуления генерирует сигнал сброса

В регистре хранится значение скважности ШИМ и каждый такт система сравнивает текущее значение счетчика с значением из регистра. Если они равны, то генерируется сигнал установки

В итоге получаем ШИМ сигнал.

Для начала необходим тактовый генератор. Так как в схеме будет кнопочное управление, для кнопки было решено применить схему подавления дребезга на триггере Шмидта, К155ТЛ2 или 7414. А значит тактовый генератор логичней всего собрать по следующей схеме.