Мех характеристики двигателя постоянного тока

§5.6. Двигатели постоянного тока. Основные характеристики

Двигатели независимого и параллельного возбуждения. Схема включения двигателя независимого возбуждения показана на рис. 5.19. Рис. 5.19.

В цепь якоря может быть включено добавочное сопротивление Rд, например пусковой реостат. Для регулирования тока возбуждения в цепь обмотки возбуждения может быть включен регулировочный реостат Rр. У двигателя параллельного возбуждения обмотки якоря и возбуждения подключены к одному источнику питания, и напряжение на них одинаковое. Следовательно, двигатель параллельного возбуждения можно рассматривать как двигатель независимого возбуждения при Uя= Uв.

Механические характеристики. Механические характеристики двигателей принято подразделять на естественные и искусственные. Естественная характеристика соответствует номинальному напряжению питания и отсутствию добавочных сопротивлений в цепях обмоток двигателя. Если хотя бы одно из перечисленных условий не выполняется, характеристика называется искусственной. Уравнения электромеханической &#969=f(I я) и механической &#969=f(M эм.) характеристик могут быть найдены из уравнения равновесия ЭДС и напряжений для якорной цепи двигателя, записанного на основании второго закона Кирхгофа:

где R я – активное сопротивление якоря. Преобразуя (5.35) с учетом (5.6), получим уравнение электромеханической характеристики

В соответствии с (5.10) ток якоря I я=M эм./kФ и выражение (5.36) преобразуется в уравнение механической характеристики:

Это уравнение можно представить в виде ω= ω о.ид.— Δ ω, где

ω о.ид — угловая скорость идеального холостого хода ( при Iя=0 и, соответственно, Мэм.=0 ); Δ ω= Мэм. [(Rя+Rд)/(kФ) 2 ]– уменьшение угловой скорости, обусловленное нагрузкой на валу двигателя и пропорциональное сопротивлению якорной цепи. Семейство механических характеристик при номинальном напряжении на якоре и потоке возбуждения и различных добавочных сопротивлениях в цепи якоря изображено на рис. 5.20,а.

Рис.5.20

Механические характеристики двигателей принято оценивать по трем показателям: устойчивости, жесткости и линейности. Естественная механическая характеристика, соответствующая (5.37) при Rд=0, изображена прямой линией 1. Механическая характеристика линейная; отклонение от линейного закона может быть вызвано реакцией якоря, приводящей к изменению потока Ф. Эта характеристика жесткая, так как при изменении момента нагрузки и соответственно скорости поток возбуждения не изменяется. Жесткость характеристики уменьшается при введении добавочного сопротивления в цепь якоря (прямые линии 2 и 3 – искусственные реостатные характеристики). Характеристики устойчивые, так как dω/dMэм. Мст. Если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. Ввиду того, что ротор обладает моментом инерции, разгоняется он не мгновенно – нарастание скорости происходит по закону, близкому к экспоненте. Пуск двигателя постоянного тока осложняется тем, что при ω=0 ЭДС Eя=0 и пусковой ток якоря Iяп= Uя/ Rя может в 10 – 20 раз превышать номинальный ток, что опасно как для двигателя (усиление искрения, динамические перегрузки), так и для источника питания. Поэтому важнейшими показателями пускового режима являются кратность пускового тока Kiп= Iп/ Iном и кратность пускового момента Кмп= Мп/ Мном. При пуске необходимо обеспечить требуемую кратность пускового момента при возможно меньшей кратности пускового тока. Прямой пуск применяют обычно при кратности пускового тока K iп?6. При большем значении Kiп применяют способы пуска, обеспечивающие снижение тока Iяп либо за счет подачи пониженного напряжения на обмотку якоря, либо за счет введения добавочного сопротивления в цепь якоря. Первый способ применяется в основном при работе двигателей в системах автоматического регулирования с якорным способом управления. Второй способ, называемый реостатным, распространен наиболее широко в нерегулируемом приводе. Сопротивление пускового реостата Rп= Rд (см. рис. 5.19) выбирают таким, чтобы ограничить Iяп до (1,4 – 1,8) Iя.ном у двигателей средней мощности и до (2,0 – 2,5) Iя.ном у двигателей малой мощности. По мере разгона якоря ток якоря уменьшается и пусковой реостат постепенно выводится.

Виды электродвигателей: какой лучше

Описаны только основные виды электродвигателей и даны краткие характеристики, очень сжато описано устройство и принцип работы. Тем не менее, уже можно сделать выводы о том, что идеального решения, причём для всех случаев, просто нет. Есть наиболее подходящее для каждого конкретного случая.

  • Асинхронный электродвигатель без частотного регулирования – лучший выбор для насосов.
  • Коллекторный двигатель с его регулируемыми скоростями вне конкуренции для дрелей и пылесосов. И то, в последнее время стали делать с вентильными, они без щеток, что делает работу тише, срок службы дольше, хотя цену выше. Так что, тут, как посмотреть.

    Выбирать вид электродвигателя надо под каждый конкретный случай

  • Для вентиляторов с длительным режимом работы выбирать приходится между асинхронных и вентильных. Но только если они не слишком мощные. Для мощных важным является возможность разделения на секции, а это проще реализовать у вентильных. И даже на кулерах стали в последнее время использовать вентильные с магнитным ротором.

В общем, чтобы ответить какой лучше, надо рассматривать совокупность условий и характеристик работы

Принимать во внимание достоинства и недостатки, перебирать все виды электродвигателей и только так можно найти оптимальный

Модели смешанного возбуждения

Для смешанного возбуждения свойственно расположение между параметрами устройств параллельного и последовательного возбуждения, чем легко обеспечивается значительность пускового момента и полностью исключается любая возможность «разноса» движкового механизма в условиях холостого хода.

В условиях смешанного типа возбуждения:

Двигатель смешанного возбуждения

Регулировка частоты моторного вращения при наличии возбуждения смешанного типа осуществляется по аналогии с двигателями, имеющими параллельное возбуждение, а варьирование МДС-обмоток способствует получению практически любой промежуточной механической характеристики.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (), Вт
  • При этом

потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

7.5. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

В соответствии с принципом обратимости машина постоянного тока может
работать как в качестве генератора, так и в качестве двигателя. Уравнение
ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом
направления ЭДС:

откуда

Ток в цепи якоря:

В соответствии о формулой Еа = Се Ф n частота вращения определяется
выражением:

Подставим значение Е из уравнения U = Е — IЯ RЯ, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному
напряжению и обратно пропорциональна магнитному потоку возбуждения.

Из этой формулы видно, что возможны пути регулирования частоты вращения
двигателя постоянного тока:
1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети
можно менять частоту вращения.
2. Включением в цепь якоря добавочного сопротивлению (R’Я = RЯ + RДОБ).
Изменяя сопротивление RДОБ, меняют частоту вращения.
3. Изменением магнитного потока Ф. Машины с постоянными магнитами не
регулируются. Машины с электромагнитами позволяют регулировать поток
Ф путем изменения тока возбуждения IB.
На рис. 7.5.1. показана схема включения в сеть двигателя постоянного
тока.

По закону электромагнитной индукции при прохождении тока по обмотке
якоря происходит взаимодействие ее проводников с магнитным полем полюсов.
На каждый проводник обмотки будет действовать электромагнитная сила
Рэм = ВСРLI, пропорциональная магнитной индукции полюсов
В, длине проводника L и току I, протекающему по проводнику.
Направление действия этой силы определяется правилом правой руки.
Не повторяя рассуждений, проведенных для генератора постоянного тока,
запишем выражение для вращающего момента:


M=CMФ IЯ

где CM — коэффициент пропорциональности.
Вращающий момент у двигателей с независимым и параллельным возбуждением
с увеличением нагрузки может как расти, так и уменьшаться, поскольку
с ростом потребляемого тока I и размагничивания полюсов, уменьшается
магнитный поток Ф.

Двигатели с последовательным возбуждением имеют отличные от вышеприведенных
двигателей характеристики.
Из схемы, приведенной на рис. 7.2.1 в, видно, что магнитный поток в
машине создается обмоткой возбуждения, включенной последовательно с
обмоткой якоря. Следовательно, IB = IЯ и выражение для вращающего момента
будет иметь вид:

Последняя формула показывает, что чем больше нагрузка на двигатель,
тем большим будет вращающий момент. Это обстоятельство делает двигатель
с последовательным возбуждением незаменимым на электротранспорте (трамвае,
троллейбусе и т.д.).
Реверсирование или изменение направления вращения двигателей постоянного
тока может осуществляться изменением полярности тока либо в обмотке
якоря, либо в обмотке возбуждения.

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:

  • ротор особой конструкции;
  • статор с основными и возбуждающими обмотками;
  • коллекторный узел с комплектом щеток.

Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.

Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.

Преимущества и недостатки.

К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.

Недостатки этих агрегатов представлены ниже:

  • повышенный уровень шумности;
  • низкий по сравнению с бесколлекторными конструкциями кпд;
  • необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
  • потребность в обновлении и регулировки щеток;
  • высокий уровень радиопомех.

К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.

Области применения.

Область применения коллекторных двигателей определяется особенностью их конструкции.

При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.

Это:

  • стиральные машины;
  • электромясорубки, кофемолки и миксеры;
  • электроинструмент (дрели, болгарки, перфораторы и т. п.).

Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.

С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.

Техническая версия происхождения названия

По поводу происхождения этого термина, существует две версии, каждая из которых вполне правдоподобна. Согласно первой, наиболее распространенной, брно – аббревиатура, расшифровывающаяся как «блок расключения (или распределения) начал обмоток». Такая расшифровка выглядит вполне приемлемой, так как термином «брно двигателя», обозначается клеммная коробка, установленная на его корпусе, и в ней действительно соединяются определенным образом (расключаются) выводы концов обмоток электродвигателя.

Возможно, что причиной появления столь странного для русского языка названия, стало чрезмерное увлечение аббревиатурами в 20 30 х годах, когда и происходила «электрификация всей страны». Название «ГОЭЛРО», кстати, тоже аббревиатура – «Государственный план электрификации России».

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

Классификация электроприводов

По количеству и связи исполнительных, рабочих органов:

  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

Советуем изучить — Электромагнитная совместимость при использовании преобразователей частоты

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.

По роду тока:

  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Плюсы и минусы электродвигателя

Преимуществ перед ДВС у электродвигателя много:

  • малый вес и достаточно компактные размеры. К примеру, инженеры Yasa Motors разработали мотор весом 25 кг, который может выдавать до 650 Нм;
  • долговечность, простая эксплуатация;
  • экологичность;
  • максимальный крутящий момент доступен уже с 0 об/мин;
  • высокий КПД;
  • нет необходимости в коробке передач. Хотя, по мнению специалистов, электромобилю она не помешает;
  • возможность рекуперации.

Как выглядит роторОбратите внимание! Существенных недостатков у самого электродвигателя нет. Но есть большие сложности в его питании

Несовершенство источников тока не дают пока что массово использовать электродвигатели в автомобилестроении.

Модели последовательного возбуждения

ДПТ с ПТВ представляют собой устройство электрического типа с постоянными токовыми величинами, имеющими обмотку возбуждения, последовательно подключенную к якорной обмотке. Данный тип движков характеризуется справедливостью следующего равенства: током, протекающим в обмотке якоря, равным током обмоточного возбуждения, или I=Iв=Iя.

При использовании последовательного типа возбуждения:

  • n — показатели частоты вращения вала в условиях холостого хода;
  • Δn — показатели изменения частоты вращения в условиях механической нагрузки.

Смещение механических характеристик вдоль оси ординат позволяет им оставаться в полностью параллельном расположении друг другу, благодаря чему регулирование вращательной частоты при изменении данного напряжения U, подведенного к якорной цепи, становится максимально благоприятным.

7.7. ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ

Для преобразования переменного тока в постоянный, как известно, используют
выпрямители. Преобразование постоянного тока в переменный можно осуществить
электромашинными преобразователями. Каскад из двух машин: (асинхронный
двигатель переменного тока и генератор постоянного тока) вполне решают
эту задачу.
Но бывает ситуация, когда необходимо преобразовать постоянный ток низкого
напряжения в постоянный ток повышенного напряжения. Делается это в одной
комбинированной машине, состоящей из двигателя и генератора постоянного
тока с общей магнитной системой. Со стороны низкого напряжения это электродвигатель,
а со стороны повышенного напряжения — генератор постоянного тока с независимым
возбуждением.
В одних и тех же пазах якоря преобразователя заложены самостоятельные
обмотки низкого и повышенного напряжения. Концы обмоток присоединены
к соответствующему коллектору (рис. 7.7.1), причем обмотка повышенного,
напряжения имеет значительно большее число проводников, чем обмотка
низкого напряжения.
Одноякорные преобразователи широко применяются в авиационной технике,
а также в общепромышленных установках, где первичным источником постоянного
тока является аккумулятор.
Одноякорные преобразователи постоянного тока в трехфазный переменный
отличается от рассмотренного тем, что обмотка повышенного напряжения
состоит из

трех секций, смещенных друг от друга на 120°. Выводы секционных обмоток припаяны
к трем контактным кольцам и с помощью токосъемных щеток переменный ток
передается к потребителю.