Оглавление
Public Methods Description
The Constructor
// simpleHC12 constructor simpleHC12 (const unsigned int txPin, const unsigned int rxPin, const unsigned int setPin, const unsigned long baudRate, const size_t messageLen, const boolean useChecksum=false, const unsigned int transferDelay=, char startChar='<', char endChar='>', char checksumDelim=',')
- , and are the Arduino pins to which the HC12 module’s read/transmit/set pins are connected.
- is the baudrate at which the HC12 modules are communicating (I did not manage to get it working above 19200)
- length of the message to be transmitted. For instance, assume the user wants to transmit , then the message lenght would be because the message has 5 .
- boolean flag to indicate whether the user wants to use the checksum functionality
- and characters that indicate the start/end of a data package. Cannot be the same. Also the message itself should not include any of these two.
- if the user decides to use the checksum functionality, the checksum integer will be appended to the original message and delimited by this character
safeSetBaudRate
void safeSetBaudRate();
Convenience function to set baudrate (as given in constructor). Also works if the user does not know the current HC12 baudrate setting.
Changing the HC12 module configuration
boolean cmd(const char[], boolean printSerial=false);
Let’s say the user wants to change to high power transmission mode, then he would execute
HC12.cmd("AT+P8"); // with HC12 being the simpleHC12 object
Setting to will print the response of the HC12 module to the serial port.
Print routine
// print routine for char arrays void print(char[], boolean printSerial=false); // print routine for ints void print(int, boolean printSerial=false);
Transmits a char array or an integer via the HC12 module.
Setting to will also print the transmitted message to the serial port.
Reading data
void read();
Reads RF data and writes it to the buffer. The user cannot directly access this buffer but has to use the following accessor routine instead
char* getRcvData();
The data can then be copied into a user-specified array like that
// +1 for \0 termination char data; strncpy(data, HC12.getRcvData(), messageLength); // with HC12 being the simpleHC12 object
Checksum
boolean checksumOk();
Compares the received checksum value to the one calculated from the received data.
will always return if is set to .
boolean isReadyToSend();
Indicates when the HC12 module is ready to send a new data package.
boolean dataIsReady();
Indicates when the HC12 module has finished reading a data package.
setReadyToReceive
void setReadyToReceive();
Resets the flag to . Must be used after data is read and processed. See receiver code example above.
void baudDetector();
Detects baudrate setting of the HC12 module and prints it to the serial port.
begin and end routines
void begin(); void end();
These are basically just wrappers around SoftwareSerial’s and methods.
Not needed if user calls .
Reset module to defaults
void bruteSetDefault();
Sets HC12 module to default state across all baudrates. Therefore also works if user does not know the current HC12 baudrate setting.
Описание методов библиотеки DHT12.zip
begin(uint8_t, uint8_t)
Инициализация DHT12 на ESP8266
void begin(uint8_t sda, uint8_t scl);
1 | voidbegin(uint8_tsda,uint8_tscl); |
begin()
Инициализация DHT12
void begin();
1 | voidbegin(); |
read()
Читает, преобразовывает и сохраняет данные с DHT12. Возвращает статус , если всё прошло нормально или , , в случае ошибки.
int8_t read();
1 | int8_tread(); |
getHumidity()
Возвращает относительную влажность. Данные обновляются при вызове метода .
float getHumidity();
1 | floatgetHumidity(); |
getTemperature()
Возвращает температуру. Данные обновляются при вызове метода .
float getTemperature();
1 | floatgetTemperature(); |
Элементы платы
Дисплей
Дисплей MT-16S2H-I умеет отображать все строчные и прописные буквы латиницы и кириллицы, а также типографские символы. Для любителей экзотики есть возможность создавать собственные иконки.
Экран выполнен на жидкокристаллической матрице, которая отображает 2 строки по 16 символов. Каждый символ состоит из отдельного знакоместа 5×8 пикселей.
Контроллер дисплея
Матрица индикатора подключена к встроенному чипу КБ1013ВГ6 с драйвером расширителя портов, которые выполняют роль посредника между экраном и микроконтроллером.
Контроллер КБ1013ВГ6 аналогичен популярным чипам зарубежных производителей HD44780 и KS0066, что означает совместимость со всеми программными библиотеками.
I²C-расширитель
Для экономии пинов микроконтроллера на плате дисплея также распаян дополнительный преобразователь интерфейсов INF8574A: микросхема позволит общаться экрану и управляющей плате по двум проводам через интерфейс I²C.
Контакты подключения
На плате дисплея выведено 18 контактов для подведения питания и взаимодействия с управляющей электроникой.
Вывод | Обозначение | Описание |
---|---|---|
1 | GND | Общий вывод (земля) |
2 | VCC | Напряжение питания (5 В) |
3 | VO | Управление контрастностью |
4 | RS | Выбор регистра |
5 | R/W | Выбор режима записи или чтения |
6 | E | Разрешение обращений к индикатору (а также строб данных) |
7 | DB0 | Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме) |
8 | DB1 | Шина данных (8-ми битный режим) |
9 | DB2 | Шина данных (8-ми битный режим) |
10 | DB3 | Шина данных (8-ми битный режим) |
11 | DB4 | Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме) |
12 | DB5 | Шина данных (8-ми и 4-х битные режимы) |
13 | DB6 | Шина данных (8-ми и 4-х битные режимы) |
14 | DB7 | Шина данных (8-ми и 4-х битные режимы) |
15 | LED+ | Питания подсветки (+) |
16 | LED– | Питания подсветки (–) |
17 | SDA | Последовательная шина данных |
18 | SCL | Последовательная линия тактированния |
Обратите внимания, что физические контакты подсветки экрана и , также интерфейс шины I²C и расположены не в порядком соотношении с другими пинами экрана.
Питание
Экран совместим со всеми контроллерами с логическим напряжением от 3,3 до 5 вольт. Но для питания самого индикатора (пин VCC) необходимо строго 5 вольт
Если в вашем проекте нет линии 5 вольт, обратите внимание на дисплей текстовый экран 16×2 / I²C / 3,3 В.
Интерфейс передачи данных
Дисплей может работать в трёх режимах:
- 8-битный режим — в нём используются и младшие и старшие биты (-)
- 4-битный режим — в нём используются только младшие биты (-)
- I²C режим — данные передаются по протоколу I²C/TWI. Адрес дисплея .
Использовать восьмибитный и четырёхбитный режим в данном дисплее не целесообразно. Ведь главное достоинство этой модели именно возможность подключения через I²C.
Если всё-таки есть необходимость использовать 4-битный или 8-битный режим, читайте документацию на текстовый экран 16×2.
Объединение питания
Для подключения питания к дисплею необходимо пять контактов:
Вывод | Обозначение | Описание |
---|---|---|
1 | GND | Общий вывод (земля) |
2 | VCC | Напряжение питания (5 В) |
3 | VO | Управление контрастностью |
15 | LED+ | Питания подсветки (+) |
16 | LED– | Питания подсветки (–) |
Но если запаять перемычки и на обратной стороне дисплея, количество контактов питания можно сократить до трёх, объединив цепь питания и подсветки дисплея.
Мы взяли этот шаг на себя и спаяли перемычки самостоятельно.
Выбор адреса
Используя шину можно подключить несколько дисплеев одновременно, при этом количество занятых пинов останется прежним.
Для общения с каждым дисплеем отдельно, необходимо установить в них разные адреса. Для смены адреса на обратной стороне дисплея установлены контактные площадки , и .
Капнув припоем на контактные площадки, мы получим один из семи дополнительных адресов:
- нет припоя, соответственно нет электрического контакта.
- есть припой, соответственно есть электрический контакт.
J2 | J1 | J0 | Адрес |
---|---|---|---|
L | L | L | 0x38 |
L | L | H | 0x39 |
L | H | L | 0x3A |
L | H | H | 0x3B |
H | L | L | 0x3C |
H | L | H | 0x3D |
H | H | L | 0x3E |
H | H | H | 0x3F |
Как подключить датчик движения к Ардуино
Для этого занятия нам потребуется:
- плата Arduino Uno / Arduino Nano / Arduino Mega;
- PIR датчик движения HC-SR501;
- беспаечная макетная плата;
- 1 светодиод и резистор 220 Ом;
- провода «папа-папа», «папа-мама».
Схема подключения PIR датчика к Ардуино Уно
Распиновка датчиков движения Ардуино у разных производителей может отличаться, но рядом с контактами есть надписи (см. фото выше). Поэтому, перед подключением внимательно изучите модуль. Один выход идет к GND, второй к питанию 5 Вольт (VCC), а третий выход (OUT) выдает цифровой сигнал с PIR сенсора. Соберите схему, как на фото выше, подключите светодиод к пину 12 на Ардуино и загрузите следующий скетч.
Скетч для датчика движения Ардуино
#define PIR 2 #define LED 12 void setup() { pinMode(PIR, INPUT); pinMode(LED,OUTPUT); } void loop() { int pirVal = digitalRead(PIR); if (pirVal == HIGH) { digitalWrite(LED, HIGH); delay(2000); } else { digitalWrite(LED,LOW); delay(2000); } }
Пояснения к коду:
- с помощью директивы для портов 2 и 12 мы назначили соответствующие имена PIR и LED. Это сделано лишь для нашего удобства;
- в условном операторе if использовано двойное равенство: . Согласно языку программирования Ардуино, двойное равенство является оператором сравнения.
Скетч для светильника с PIR датчиком движения
#define LED 3 // назначаем порт для светодиода #define PIR 2 // назначаем порт для PIR sensor unsigned long counttime; // выделение памяти для счетчика void setup() { pinMode(LED, OUTPUT); pinMode(PIR, INPUT); } void loop() { // если есть движение включаем светодиод if (digitalRead(PIR) == HIGH) { digitalWrite(LED, HIGH); } // включаем счетчик на 1 минуту counttime = millis(); // если нет движения и прошла 1 минута if (digitalRead(PIR) == LOW && millis() - counttime > 60000) { // если нет движения в течении 1 минуты выключаем светодиод digitalWrite(LED, LOW); } }
Пояснения к коду:
- с помощью функции мы начинаем отсчет времени. При этом, в отличие от функции , которая полностью прерывает программу, микроконтроллер может продолжать остальные вычисления в скетче.
- мы изменили время выключения светильника. Если в первом скетче светодиод выключался сразу после сигнала LOW с датчика. То сейчас мы даем 1 минуту до выключения светильника, на случай если человек не вышел из комнаты.
Схема подключения DHT12 к Arduino
Подключается датчик температуры и влажности DHT12 к Arduino достаточно просто. Схема подключения показана на рисунке.
Не нужно забывать про подтягивающие резисторы на 10кОм на линии SDA и SCL.
Arduino | DHT12 |
---|---|
VCC | VCC |
A4 | SDA |
GND | GND |
A5 | SCL |
Пример скетча
В приведенном ниже скетче мы будем измерять и отсылать данные о состоянии температуры и влажности на компьютер через последовательный порт.
/*
Добавляем необходимые библиотеки
*/
#include <DHT12.h>
/*
Создаём экземпляр класса DHT12
*/
DHT12 dht12;
void setup() {
/*
Инициализируем DHT12
*/
dht12.begin();
Serial.begin(9600);
delay(2000);
}
void loop() {
/*
Читаем данные с DHT12 и получаем статус
*/
int status = dht12.read();
switch (status) {
case DHT12_OK:
/*
Выводим данные в терминал
*/
Serial.println(F(«Status : OK»));
Serial.print(F(«T = «));
Serial.print(dht12.getTemperature());
Serial.println(F(«*C»));
Serial.print(F(«H = «));
Serial.print(dht12.getHumidity());
Serial.println(F(» %»));
break;
case DHT12_ERROR_CHECKSUM:
Serial.print(F(«Checksum error»));
break;
case DHT12_ERROR_CONNECT:
Serial.print(F(«Connect error»));
break;
case DHT12_MISSING_BYTES:
Serial.print(F(«Missing bytes»));
break;
default:
Serial.print(F(«Unknown error»));
break;
}
delay(2000);
}
1 |
/* DHT12dht12; voidsetup(){ /* Инициализируем DHT12 dht12.begin(); Serial.begin(9600); delay(2000); } voidloop(){ /* Читаем данные с DHT12 и получаем статус intstatus=dht12.read(); switch(status){ caseDHT12_OK /* Выводим данные в терминал Serial.println(F(«Status : OK»)); Serial.print(F(«T = «)); Serial.print(dht12.getTemperature()); Serial.println(F(«*C»)); Serial.print(F(«H = «)); Serial.print(dht12.getHumidity()); Serial.println(F(» %»)); break; caseDHT12_ERROR_CHECKSUM Serial.print(F(«Checksum error»)); break; caseDHT12_ERROR_CONNECT Serial.print(F(«Connect error»)); break; caseDHT12_MISSING_BYTES Serial.print(F(«Missing bytes»)); break; default Serial.print(F(«Unknown error»)); break; } delay(2000); } |
Датчик расстояния в проектах Arduino
Способность ультразвукового датчика определять расстояние до объекта основано на принципе сонара – посылая пучок ультразвука, и получая его отражение с задержкой, устройство определяет наличие объектов и расстояние до них. Ультразвуковые сигналы, генерируемые приемником, отражаясь от препятствия, возвращаются к нему через определенный промежуток времени. Именно этот временной интервал становится характеристикой помогающей определить расстояние до объекта.
Описание датчика HC SR04
Датчик расстояния Ардуино является прибором бесконтактного типа, и обеспечивает высокоточное измерение и стабильность. Диапазон дальности его измерения составляет от 2 до 400 см. На его работу не оказывает существенного воздействия электромагнитные излучения и солнечная энергия. В комплект модуля с HC SR04 arduino также входят ресивер и трансмиттер.
Ультразвуковой дальномер HC SR04 имеет такие технические параметры:
- Питающее напряжение 5В;
- Рабочий параметр силы т ока – 15 мА;
- Сила тока в пассивном состоянии -6 с.
Датчик оснащен четырьмя выводами (стандарт 2, 54 мм):
- Контакт питания положительного типа – +5В;
- Trig (Т) – выход сигнала входа;
- Echo (R) – вывод сигнала выхода;
- GND – вывод «Земля».
Схема взаимодействия с Arduino
Для получения данных, необходимо выполнить такую последовательность действий:
- Подать на выход Trig импульс длительностью 10 микросек;
- В ультразвуковом дальномере hc sr04 подключенном к arduino произойдет преобразование сигнала в 8 импульсов с частотой 40 кГц, которые через излучатель будут посланы вперед;
- Когда импульсы дойдут до препятствия, они отразятся от него и будут приняты приемником R, что обеспечит наличие входного сигнала на выходе Echo;
- На стороне контроллера полученный сигнал при помощи формул следует перевести в расстояние.
При делении ширины импульса на 58.2, получим данные в сантиметрах, при делении на 148 – в дюймах.
Подключение HC SR04 к Arduino
Выполнить подключение ультразвукового датчика расстояния к плате Arduino достаточно просто. Схема подключения показана на рисунке.
Контакт земли подключаем к выводу GND на плате Arduino, выход питания соединяем с 5V. Выходы Trig и Echo подсоединяем к arduino на цифровые пины. Вариант подключения с помощью макетной платы:
Библиотека для работы с HC SR04
Для облегчения работы с датчиком расстояния HC SR04 на arduino можно использовать библиотеку NewPing. Она не имеет проблем с пинговыми доступами и добавляет некоторые новые функции.
К особенностям библиотеки можно отнести:
- Возможность работы с различными ультразвуковыми датчиками;
- Может работать с датчиком расстояния всего через один пин;
- Отсутствие отставания на 1 секунду при отсутствии пинга эха;
- Для простой коррекции ошибок есть встроенный цифровой фильтр;
- Максимально точный расчет расстояния.
Скачать бибилотеку NewPing можно здесь
Точность измерения расстояния датчиком HC SR04
Точность датчика зависит от нескольких факторов:
- температуры и влажности воздуха;
- расстояния до объекта;
- расположения относительно датчика (согласно диаграммы излучения);
- качества исполнения элементов модуля датчика.
В основу принципа действия любого ультразвукового датчика заложено явление отражения акустических волн, распространяющихся в воздухе. Но как известно из курса физики, скорость распространения звука в воздухе зависит от свойств этого самого воздуха (в первую очередь от температуры). Датчик же, испуская волны и замеряя время до их возврата, не догадывается, в какой именно среде они будут распространяться и берет для расчетов некоторую среднюю величину. В реальных условиях из-за фактора температуры воздуха HC-SR04 может ошибаться от 1 до 3-5 см.
Фактор расстояния до объекта важен, т.к. растет вероятность отражения от соседних предметов, к тому же и сам сигнал затухает с расстоянием.
Также для повышения точности надо правильно направить датчик: сделать так, чтобы предмет был в рамках конуса диаграммы направленности. Проще говоря, “глазки” HC-SR04 должны смотреть прямо на предмет.
Для уменьшения ошибок и погрешности измерений обычно выполняются следующие действия:
- усредняются значения (несколько раз замеряем, убираем всплески, потом находим среднее);
- с помощью датчиков (например, DHT11 или DHT22) определяется температура и вносятся поправочные коэффициенты;
- датчик устанавливается на серводвигатель, с помощью которого мы “поворачиваем голову”, перемещая диаграмму направленности влево или вправо.
Примеры работы для Espruino
В качестве примера подключим дисплей к управляющей плате Iskra JS.
Подключение к Iskra JS
Для коммуникации понадобится Breadboard Half и соединительные провода «папа-папа».
Вывод | Обозначение | Пин Iskra JS |
---|---|---|
1 | GND | GND |
2 | VCC | 5V |
3 | VO | GND |
4 | RS | P11 |
5 | R/W | GND |
6 | E | P12 |
7 | DB0 | — |
8 | DB1 | — |
9 | DB2 | — |
10 | DB3 | — |
11 | DB4 | P5 |
12 | DB5 | P4 |
13 | DB6 | P3 |
14 | DB7 | P2 |
15 | VCC | 5V |
16 | GND | GND |
Вывод текста
Для вывода программы приветствия, воспользуйтесь скриптом:
- hello-amperka.js
-
// создаём переменную для работы с дисплеем // HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2); // печатем первую строку lcd.print("Hello world"); // устанавливаем курсор в колонку 0, строку 1 // на самом деле это вторая строка, т.к. нумерация начинается с нуля lcd.setCursor(, 1); // печатаем вторую строку lcd.print("Do It Yourself");
Кирилица
Вывод кирилицы на дисплей с помощью платформы Iskra JS доступен через встроенную в дисплей таблицу знакогенератора.
Таблица знакогенератора
Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв.
Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.
Так букве соответствует код в шестнадцатеричной системе. Чтобы передать на экран строку «Яndex», необходимо в явном виде с помощью последовательности встроить в строку код символа:
lcd.print("\xB1ndex");
Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона и следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две строки записанные рядом склеиваются.
Сравните две строки кода для вывода надписи «Яeee»:
lcd.print("\xB1eee"); // ошибка lcd.print("\xB1"+"eee"); // правильно
Используя полученную информацию выведем на дисплей сообщение «Привет, Амперка!»:
- hello-amperka-rus.js
-
// создаём переменную для работы с дисплеем // HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2); // устанавливаем курсор в колонку 5, строку 0 // на самом деле это первая строка, т.к. нумерация начинается с нуля lcd.setCursor(5, ); // печатаем первую строку lcd.print("\xA8"+"p"+"\xB8\xB3"+"e\xBF"); // устанавливаем курсор в колонку 3, строку 1 // на самом деле это вторая строка, т.к. нумерация начинается с нуля lcd.setCursor(3, 1); // печатаем вторую строку lcd.print("o\xBF"+" A\xBC\xBE"+"ep\xBA\xB8");;
Переключение страниц знакогенератора
Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:
// переключение с нулевой страницы на первую command(0x101010); // переключение с первой страницы на нулевую command(0x101000);
Дисплей не может одновременно отображать символы разных страниц.
Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.
- change-page.js
-
// создаём переменную для работы с дисплеем // HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2); // создаём переменную состояния var state = false; // устанавливаем курсор в колонку 5, строку 0 // на самом деле это первая строка, т.к. нумерация начинается с нуля lcd.setCursor(5, ); // печатаем первую строку lcd.print("\x9b\x9c\x9d\x9e\x9f"); setInterval(function() { // каждую секунду меняем переменую состояния state = !state; // вызываем функцию смены адреса страницы lcdChangePage(); }, 1000); function lcdChangePage () { if (state) { // устанавливаем 0 станицу знакогенератора (стоит по умолчанию) lcd.write(0b101000, 1); } else { // устанавливаем 1 станицу знакогенератора lcd.write(0b101010, 1); } }
Полную таблицу символов с кодами можно найти в документации к экрану.
Описание модуля Bluetooth HC 06
Все существующие типы модулей Bluetooth имеют свои особенности, но по функциям и действию они похожи. Одним из видов модулей является Bluetooth HC 06. Со стороны Ардуино модуль выглядит как обычный последовательный интерфейс, поэтому можно сразу наладить взаимодействие с устройством на компьютере.
Основные характеристики модуля:
- Питание 3,3В – 6 В;
- Максимальное входное напряжение 5 В;
- Максимальный ток 45 мА;
- Скорость передачи данных 1200–1382400 бод;
- Рабочие частоты 2,40 ГГц – 2,48ГГц;
- Поддержка спецификации bluetooth версии 2.1;
- Малое потребление энергии;
- Высокий уровень защиты данных;
- Дальность связи 30 м;
- Для подключения к смартфону используются следующие данные – пароль «1234», скорость передачи данных 9600, имя модуля HС-06.
Модуль имеет следующие контакты:
- VCC , GND – плюс и минус питания;
- RX и TX – приемник и передатчик;
- MCU-INT – выводит статус;
- Clear (Reset) – сбрасывание и перезагрузка модуля. Последние два вывода обычно не задействованы в работе, поэтому сейчас производятся модули без этих контактов.
Модуль HC-06 используется только в режиме slave, то есть он не может самостоятельно подключаться к другим устройствам Bluetooth. Все настройки для подключения «пароль, скорость передачи данных» можно изменить при помощи АТ-команд.
В комплектацию модуля не входят соединительные провода.
“Универсальное” электромагнитное реле
Электромагнитное реле является по сути управляемым механическим выключателем: подали на него ток – оно замкнуло контакты, сняли ток – разомкнуло. Контакты являются именно контактами: металлическими “пятаками”, которые прижимаются друг к другу. Именно поэтому такое реле может управлять как нагрузкой постоянного, так и переменного тока.
Сама катушка реле является неслабой индуктивной нагрузкой, что приводит к дополнительным проблемам (читай ниже), поэтому для управления “голым” реле нам понадобится дополнительная силовая и защитная цепь.
После изучения данного урока вы сами сможете её составить (транзистор и диод), а сейчас мы поговорим о модулях реле: готовая плата, на которой стоит само реле, а также цепи коммутации, защиты и даже оптическая развязка. Такие модули бывают “семейными” – с несколькими реле на борту. Спасибо китайцам за это! Смотрите варианты у меня в каталоге ссылок на Али.
Такое реле сделано специально для удобного управления с микроконтроллера: пины питания VCC (Vin, 5V) и GND подключаются к питанию, а далее реле управляется логическим сигналом, поданным на пин IN. С другой стороны стоит клеммник для подключения проводов, обычно контакты подписаны как NO, NC и COM. Это общепринятые названия пинов кнопок, переключателей и реле:
- COM – Common, общий. Реле является переключающим, и пин COM является общим.
- NO – Normal Open, нормально открытый. При неактивном реле данный контакт не соединён с COM. При активации реле он замыкается с COM.
- NC – Normal Closed, нормально закрытый. При неактивном реле данный контакт соединён с COM. При активации реле он размыкается с COM.
Подключение нагрузки через реле думаю для всех является очевидным:
Важный момент: катушка реле в активном режиме потребляет около 60 мА, то есть подключать больше одного модуля реле при питании платы от USB не рекомендуется – уже появятся просадки по напряжению и помехи:
Такие модули реле бывают двух типов: низкого и высокого уровня. Реле низкого уровня переключается при наличии низкого сигнала (GND) на управляющем пине . Реле высокого уровня соответственно срабатывает от высокого уровня . Какого типа вам досталось реле можно определить экспериментально, а можно прочитать на странице товара или на самой плате. Также существуют модули с выбором уровня:
На плате, справа от надписи High/Low trigger есть перемычка, при помощи которой происходит переключение уровня. Электромагнитное реле имеет ряд недостатков перед остальными рассмотренными ниже способами, вы должны их знать и учитывать:
- Ограниченное количество переключений: механический контакт изнашивается, особенно при большой и/или индуктивной нагрузке.
- Противно щёлкает!
- При большой нагрузке реле может “залипнуть”, поэтому для больших токов нужно использовать более мощные реле, которые придётся включать при помощи… маленьких реле. Или транзисторов.
- Необходимы дополнительные цепи для управления реле, так как катушка является индуктивной нагрузкой, и нагрузкой самой по себе слишком большой для пина МК (решается использованием китайского модуля реле).
- Очень большие наводки на всю линию питания при коммутации индуктивной нагрузки.
- Относительно долгое переключение (невозможно поставить детектор нуля, читай ниже), при управлении индуктивными цепями переменного тока можно попасть на большой индуктивный выброс, необходимо ставить искрогасящие цепи.
Важный момент связан с коммутацией светодиодных светильников и ламп, особенно дешёвых: у них прямо на входе стоит конденсатор, который при резком подключении в цепь становится очень мощным потребителем и приводит к скачку тока. Скачок может быть настолько большим, что 15-20 Ваттная светодиодная лампа буквально сваривает контакты реле и оно “залипает”! Данный эффект сильнее выражен на дешёвых лампах, будьте с ними аккуратнее (за инфу спасибо DAK). При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека. Не забываем, что реле противно щёлкает и изнашивается, поэтому для таких целей лучше подходит твердотельное реле, о котором мы поговорим ниже.
Заключение
В этой статье мы рассмотрели варианты подключения и работы с одними из самых распространенных Ардуино модулей Bluetooth HC05, HC06. Никаких особенных сложностей с этими модулями у вас быть не должно – просто подключайте его к пинам с аппаратным или программным UART, после чего используйте традиционные библиотеки (Serial для модуля, подключенного к 0, 1 пинам, SoftwareSerial в случае присоединения к другим).
Подключение Bluetooth к вашему Arduino-проекту может существенно увеличить ваши возможности по взаимодействию с другими устройствами. Вы сможете контролировать состояния датчиков и изменять параметры системы без перезагрузки контроллера. И. конечно же, вы сможете без проблем создать роботы и машинки на ардуино, управляемые через bluetooth со смартфона. Будем надеяться, что вы сможете сделать свой первый проект после прочтения этой статьи.