Avr: подключаем lcd hd44780

Генерация пользовательских символов для LCD

Если вы находите символы на дисплее неподходящими и неинтересными, вы можете создать свои собственные символы (глиф) для своего ЖК-дисплея. Пользовательские символы чрезвычайно полезны в том случае, когда вы хотите отобразить символ, который не является частью стандартного набора символов ASCII.

Как мы уже обсуждали ранее в этом руководстве, символ на дисплее формируется в матрице 5×8 пикселей, поэтому вам нужно определить свой пользовательский символ в этой матрице. Для определения символа необходимо использовать функцию createChar() библиотеки LiquidCrystal.

Для использования  createChar()  сначала необходимо назначить массив из 8 байт. Каждый байт (учитывается только 5 бит) в массиве определяет одну строку символа в матрице 5×8. В то время как нули и единицы в байте указывают, какие пиксели в строке должны быть включены, а какие-выключены.

Генератор символов LCD

Создание собственного символа до сих пор было непросто! Поэтому было создано небольшое приложение под названием «Генератор пользовательских символов» для LCD.

Вы видите синюю сетку ниже? Вы можете нажать на любой из 5 × 8 пикселей, чтобы установить/очистить этот конкретный пиксель. И когда вы нажимаете на пиксели, код для символа генерируется рядом с сеткой. Этот код может быть непосредственно использован в вашем скетче Arduino.

Единственным ограничением является то, что библиотека LiquidCrystal поддерживает только восемь пользовательских символов.

Следующий скриншот демонстрирует, как вы можете использовать эти пользовательские символы на дисплее.

//  подключаем библиотеку LiquidCrystal:
#include <LiquidCrystal.h>

// Создаем LCD объект. Выводы: (rs, enable, d4, d5, d6, d7)
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// создадим несколько пользовательских символов
byte Heart = {
0b00000,
0b01010,
0b11111,
0b11111,
0b01110,
0b00100,
0b00000,
0b00000
};

byte Bell = {
0b00100,
0b01110,
0b01110,
0b01110,
0b11111,
0b00000,
0b00100,
0b00000
};


byte Alien = {
0b11111,
0b10101,
0b11111,
0b11111,
0b01110,
0b01010,
0b11011,
0b00000
};

byte Check = {
0b00000,
0b00001,
0b00011,
0b10110,
0b11100,
0b01000,
0b00000,
0b00000
};

byte Speaker = {
0b00001,
0b00011,
0b01111,
0b01111,
0b01111,
0b00011,
0b00001,
0b00000
};


byte Sound = {
0b00001,
0b00011,
0b00101,
0b01001,
0b01001,
0b01011,
0b11011,
0b11000
};


byte Skull = {
0b00000,
0b01110,
0b10101,
0b11011,
0b01110,
0b01110,
0b00000,
0b00000
};

byte Lock = {
0b01110,
0b10001,
0b10001,
0b11111,
0b11011,
0b11011,
0b11111,
0b00000
};

void setup() 
{
  // инициализируем LCD и устанавливаем количество столбцов и строк: 
  lcd.begin(16, 2);

  // создание нового символа
  lcd.createChar(0, Heart);
  // создание нового символа
  lcd.createChar(1, Bell);
  // создание нового символа
  lcd.createChar(2, Alien);
  // создание нового символа
  lcd.createChar(3, Check);
  // создание нового символа
  lcd.createChar(4, Speaker);
  // создание нового символа
  lcd.createChar(5, Sound);
  // создание нового символа
  lcd.createChar(6, Skull);
  // создание нового символа
  lcd.createChar(7, Lock);

  // Очищаем LCD дисплей 
  lcd.clear();

  // Печатаем сообщение на LCD.
  lcd.print("Custom Character");
}

// Печатаем все пользовательские символы
void loop() 
{ 
  lcd.setCursor(0, 1);
  lcd.write(byte(0));

  lcd.setCursor(2, 1);
  lcd.write(byte(1));

  lcd.setCursor(4, 1);
  lcd.write(byte(2));

  lcd.setCursor(6, 1);
  lcd.write(byte(3));

  lcd.setCursor(8, 1);
  lcd.write(byte(4));

  lcd.setCursor(10, 1);
  lcd.write(byte(5));

  lcd.setCursor(12, 1);
  lcd.write(byte(6));

  lcd.setCursor(14, 1);
  lcd.write(byte(7));
}

После включения библиотеки нам нужно инициализировать пользовательский массив из восьми байтов.

byte Heart = {
0b00000,
0b01010,
0b11111,
0b11111,
0b01110,
0b00100,
0b00000,
0b00000
};

В настройках мы должны создать пользовательский символ, используя функцию createChar(). Эта функция принимает два параметра. Первый — это число от 0 до 7, чтобы зарезервировать один из 8 поддерживаемых пользовательских символов. Второй параметр — это имя массива байтов.

// создание нового символа
lcd.createChar(0, Heart);

Далее в цикле для отображения пользовательского символа мы используем функцию write(), а в качестве параметра мы используем номер символа, который мы зарезервировали.

// byte(0) покажет символ Heart (сердце).
lcd.write(byte(0));

Different LCD Panel Sizes

Setting the type field in the TextLCD constructor allows configuration for the different display panel sizes:

TextLCD::LCD16x2     16x2 LCD panel (default) 
TextLCD::LCD16x2B    16x2 LCD panel alternate addressing 
TextLCD::LCD20x2     20x2 LCD panel 
TextLCD::LCD20x4     20x4 LCD panel 

Note: There is now also support for

TextLCD::LCD8x1    8x1 LCD panel
TextLCD::LCD8x2    8x2 LCD panel
TextLCD::LCD16x1  16x1 LCD panel
TextLCD::LCD16x4  16x4 LCD panel
TextLCD::LCD24x2  24x2 LCD panel
TextLCD::LCD24x4  24x4 LCD panel (for KS0078 controller)
TextLCD::LCD40x2  40x2 LCD panel
TextLCD::LCD40x4  40x4 LCD panel (two controllers)

You can find the new lib here

For example:

#include "mbed.h"
#include "TextLCD.h"

TextLCD lcd(p15, p16, p17, p18, p19, p20, TextLCD::LCD20x4); // rs, e, d4-d7

int main() {
    lcd.printf("Hello World!\n");
}

Другие полезные функции библиотеки LiquidCrystal

Есть несколько полезных функций, которые вы можете использовать с объектом LiquidCrystal. Немногие из них перечислены ниже:

  • Если вы просто хотите расположить курсор в верхнем левом углу дисплея без очистки дисплея, используйте home().
  • Существует много приложений, таких как turbo C++ или notepad ++, в которых нажатие клавиши «insert» на клавиатуре меняет курсор. Точно так же вы можете изменить курсор на ЖК-дисплее с помощью blink() или lcd.Cursor().
  • Функция blink() отображает мигающий блок размером 5 × 8 пикселей, а lcd.Cursor() подчеркивание (линия) на позиции, в которую будет записан следующий символ.
  • Вы можете использовать функцию noblink(), чтобы отключить мигающий курсор на дисплее и lcd.noCursor() чтобы скрыть курсор.
  • Вы можете прокрутить содержимое дисплея на один пробел вправо, используя lcd.scrollDisplayRight() или один пробел влево используя lcd.scrollDisplayLeft(). Если вы хотите непрерывно прокручивать текст, вам нужно использовать эти функции внутри цикла for.

Исходный код программы

Чтобы в программе подключить ЖК дисплей к ARDUINO UNO, необходимо сделать следующие несколько вещей:

Arduino

#include <LiquidCrystal.h>
lcd.begin(16, 2);
LiquidCrystal lcd(0, 1, 8, 9, 10, 11);
lcd.print(«hello, world!»);

1
2
3
4

#include <LiquidCrystal.h>

lcd.begin(16,2);

LiquidCrystallcd(,1,8,9,10,11);

lcd.print(«hello, world!»);

В первую очередь мы должны подключить заголовочный файл (‘#include <LiquidCrystal.h>’), в котором находятся все необходимые инструкции для взаимодействия с ЖК дисплеем, что значительно упростит взаимодействие с ним в 4 битном режиме. Используя этот заголовочный файл нам не нужно будет передавать в ЖК дисплей бит за битом и нам не нужно будет самим программировать какие-либо функции для взаимодействия с ЖК дисплеем.

Во второй строчке мы должны сказать плате ARDUINO UNO какой тип ЖК дисплея мы собираемся использовать, поскольку существует достаточно большое число типов подобных дисплеев, например, 20×4, 16×2, 16×1 и т.д. В нашем проекте мы собираемся подключать к ARDUINO UNO ЖК дисплей 16х2, поэтому мы и должны записать команду ‘lcd.begin(16, 2);’. А если бы мы подключали ЖК дисплей 16х1, то в этом случае изменилась бы и команда соответствующим образом — ‘lcd.begin(16, 1);’.

В следующей инструкции мы сообщаем плате ARDUINO UNO к каким контактам мы подсоединили ЖК дисплей. В нашем случае мы использовали контакты ЖК дисплея “RS, En, D4, D5, D6, D7”, которые подсоединены к контактам «0, 1, 8, 9, 10, 11» ARDUINO UNO, поэтому и приведенная команда выглядит следующим образом — “LiquidCrystal lcd(0, 1, 8, 9, 10, 11);”.

Для того, чтобы напечатать на экране дисплея строку символов, мы использовали команду lcd.print(«hello, world!»), которая выводит на экран дисплея строку ‘hello, world!’.

Как мы видим из представленного кода, нам не нужно заботиться больше ни о каких аспектах взаимодействия с ЖК дисплеем, нам нужно просто инициализировать ЖК дисплей в программе и тогда плата ARDUINO UNO будет готова к отображению информации на экране дисплея.

Далее представлен исходный код программы (с комментариями) для взаимодействия платы ARDUINO UNO с ЖК дисплеем 16х2.

Arduino

#include <LiquidCrystal.h> // инициализируем библиотеку для взаимодействия с ЖК дисплеем
LiquidCrystal lcd(0, 1, 8, 9, 10, 11); /// сообщаем Arduino номера контактов, к которым подключен ЖК дисплей — REGISTER SELECT PIN,ENABLE PIN,D4 PIN,D5 PIN, D6 PIN, D7 PIN
void setup()
{
// устанавливаем число столбцов и строк для ЖК дисплея
lcd.begin(16, 2);
}

void loop()
{
// устанавливаем курсор в нулевой столбец первой строки
lcd.print(» CIRCUIT DIGEST»); //печатаем строку
lcd.setCursor(0, 1); // устанавливаем курсор в нулевой столбец второй строки
lcd.print(«http://www.circuitdigest.com/»);//печатаем строку
delay(750); //задержка на 0.75 сек
lcd.scrollDisplayLeft();// переключаем данные на ЖК дисплее
lcd.setCursor(0, 0);// устанавливаем курсор в нулевой столбец первой строки
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include <LiquidCrystal.h> // инициализируем библиотеку для взаимодействия с ЖК дисплеем

LiquidCrystallcd(,1,8,9,10,11);/// сообщаем Arduino номера контактов, к которым подключен ЖК дисплей — REGISTER SELECT PIN,ENABLE PIN,D4 PIN,D5 PIN, D6 PIN, D7 PIN

voidsetup()

{

// устанавливаем число столбцов и строк для ЖК дисплея  

lcd.begin(16,2);

}

voidloop()

{

// устанавливаем курсор в нулевой столбец первой строки  

lcd.print(»   CIRCUIT DIGEST»);//печатаем строку

lcd.setCursor(,1);// устанавливаем курсор в нулевой столбец второй строки  

lcd.print(«http://www.circuitdigest.com/»);//печатаем строку

delay(750);//задержка на 0.75 сек

lcd.scrollDisplayLeft();// переключаем данные на ЖК дисплее

lcd.setCursor(,);// устанавливаем курсор в нулевой столбец первой строки  

}

Элементы платы

Дисплей

Дисплей MT-16S2H-I умеет отображать все строчные и прописные буквы латиницы и кириллицы, а также типографские символы. Для любителей экзотики есть возможность создавать собственные иконки.

Экран выполнен на жидкокристаллической матрице, которая отображает 2 строки по 16 символов. Каждый символ состоит из отдельного знакоместа 5×8 пикселей.

Контроллер дисплея

Матрица индикатора подключена к встроенному чипу КБ1013ВГ6 с драйвером расширителя портов, которые выполняют роль посредника между экраном и микроконтроллером.

Контроллер КБ1013ВГ6 аналогичен популярным чипам зарубежных производителей HD44780 и KS0066, что означает совместимость со всеми программными библиотеками.

I²C-расширитель

Для экономии пинов микроконтроллера на плате дисплея также распаян дополнительный преобразователь интерфейсов INF8574A: микросхема позволит общаться экрану и управляющей плате по двум проводам через интерфейс I²C.

Контакты подключения

На плате дисплея выведено 18 контактов для подведения питания и взаимодействия с управляющей электроникой.

Вывод Обозначение Описание
1 GND Общий вывод (земля)
2 VCC Напряжение питания (5 В)
3 VO Управление контрастностью
4 RS Выбор регистра
5 R/W Выбор режима записи или чтения
6 E Разрешение обращений к индикатору (а также строб данных)
7 DB0 Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8 DB1 Шина данных (8-ми битный режим)
9 DB2 Шина данных (8-ми битный режим)
10 DB3 Шина данных (8-ми битный режим)
11 DB4 Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12 DB5 Шина данных (8-ми и 4-х битные режимы)
13 DB6 Шина данных (8-ми и 4-х битные режимы)
14 DB7 Шина данных (8-ми и 4-х битные режимы)
15 LED+ Питания подсветки (+)
16 LED– Питания подсветки (–)
17 SDA Последовательная шина данных
18 SCL Последовательная линия тактированния

Обратите внимания, что физические контакты подсветки экрана и , также интерфейс шины I²C и расположены не в порядком соотношении с другими пинами экрана.

Питание

Экран совместим со всеми контроллерами с логическим напряжением от 3,3 до 5 вольт. Но для питания самого индикатора (пин VCC) необходимо строго 5 вольт

Если в вашем проекте нет линии 5 вольт, обратите внимание на дисплей текстовый экран 16×2 / I²C / 3,3 В.

Интерфейс передачи данных

Дисплей может работать в трёх режимах:

  • 8-битный режим — в нём используются и младшие и старшие биты (-)
  • 4-битный режим — в нём используются только младшие биты (-)
  • I²C режим — данные передаются по протоколу I²C/TWI. Адрес дисплея .

Использовать восьмибитный и четырёхбитный режим в данном дисплее не целесообразно. Ведь главное достоинство этой модели именно возможность подключения через I²C.
Если всё-таки есть необходимость использовать 4-битный или 8-битный режим, читайте документацию на текстовый экран 16×2.

Объединение питания

Для подключения питания к дисплею необходимо пять контактов:

Вывод Обозначение Описание
1 GND Общий вывод (земля)
2 VCC Напряжение питания (5 В)
3 VO Управление контрастностью
15 LED+ Питания подсветки (+)
16 LED– Питания подсветки (–)

Но если запаять перемычки и на обратной стороне дисплея, количество контактов питания можно сократить до трёх, объединив цепь питания и подсветки дисплея.

Мы взяли этот шаг на себя и спаяли перемычки самостоятельно.

Выбор адреса

Используя шину можно подключить несколько дисплеев одновременно, при этом количество занятых пинов останется прежним.

Для общения с каждым дисплеем отдельно, необходимо установить в них разные адреса. Для смены адреса на обратной стороне дисплея установлены контактные площадки , и .

Капнув припоем на контактные площадки, мы получим один из семи дополнительных адресов:

  • нет припоя, соответственно нет электрического контакта.
  • есть припой, соответственно есть электрический контакт.
J2 J1 J0 Адрес
L L L 0x38
L L H 0x39
L H L 0x3A
L H H 0x3B
H L L 0x3C
H L H 0x3D
H H L 0x3E
H H H 0x3F

Технические параметры

Описание дисплея

LCD 1602A представляет собой электронный модуль основанный на драйвере HD44780 от Hitachi. LCD1602 имеет 16 контактов и может работать в 4-битном режиме (с использованием только 4 линии данных) или 8-битном режиме (с использованием всех 8 строк данных), так же можно использовать интерфейс I2C. В этой статье я расскажу о подключении в 4-битном режиме.

Назначение контактов:
► VSS:   «-» питание модуля
► VDD:  «+» питание модуля
► VO:    Вывод управления контрастом
► RS:     Выбор регистра
► RW:   Выбор режима записи или чтения (при подключении к земле, устанавливается режим записи)
► E:       Строб по спаду
► DB0-DB3: Биты интерфейса
► DB4-DB7: Биты интерфейса
► A:      «+» питание подсветки
► K:      «-»  питание подсветки

На лицевой части модуля располагается LCD дисплей и группа контактов.

На задней части модуля расположено два чипа в «капельном» исполнении (ST7066U и ST7065S) и электрическая обвязка, рисовать принципиальную схему не вижу смысла, только расскажу о резисторе R8 (100 Ом), который служит ограничительным резистором для светодиодной подсветки, так что можно подключить 5В напрямую к контакту A. Немного попозже напишу статью в которой расскажу как можно менять подсветку LCD дисплея с помощью ШИП и транзистора.

Описание протокола I2C

Прежде чем обсуждать подключение дисплея к ардуино через i2c-переходник, давайте вкратце поговорим о самом протоколе i2C.

I2C / IIC(Inter-Integrated Circuit) – это протокол, изначально создававшийся для связи интегральных микросхем внутри электронного устройства. Разработка принадлежит фирме Philips. В основе i2c  протокола является использование 8-битной шины, которая нужна для связи блоков в управляющей электронике, и системе адресации, благодаря которой можно общаться по одним и тем же проводам с несколькими устройствами. Мы просто передаем данные то одному, то другому устройству, добавляя к пакетам данных идентификатор нужного элемента.

Самая простая схема I2C может содержать одно ведущее устройство (чаще всего это микроконтроллер Ардуино) и несколько ведомых (например, дисплей LCD). Каждое устройство имеет адрес в диапазоне от 7 до 127. Двух устройств с одинаковым адресом в одной схеме быть не должно.

Плата Arduino поддерживает i2c на аппаратном уровне. Вы можете использовать пины A4 и A5 для подключения устройств по данному протоколу.

В работе I2C можно выделить несколько преимуществ:

  • Для работы требуется всего 2 линии – SDA (линия данных) и SCL (линия синхронизации).
  • Подключение большого количества ведущих приборов.
  • Уменьшение времени разработки.
  • Для управления всем набором устройств требуется только один микроконтроллер.
  • Возможное число подключаемых микросхем к одной шине ограничивается только предельной емкостью.
  • Высокая степень сохранности данных из-за специального фильтра подавляющего всплески, встроенного в схемы.
  • Простая процедура диагностики возникающих сбоев, быстрая отладка неисправностей.
  • Шина уже интегрирована в саму Arduino, поэтому не нужно разрабатывать дополнительно шинный интерфейс.

Недостатки:

  • Существует емкостное ограничение на линии – 400 пФ.
  • Трудное программирование контроллера I2C, если на шине имеется несколько различных устройств.
  • При большом количестве устройств возникает трудности локализации сбоя, если одно из них ошибочно устанавливает состояние низкого уровня.

Примеры работы для Espruino

В качестве примера подключим дисплей к управляющей плате Iskra JS.

Подключение к Iskra JS

Для коммуникации понадобится Breadboard Half и соединительные провода «папа-папа».

Вывод Обозначение Пин Iskra JS
1 GND GND
2 VCC 5V
3 VO GND
4 RS P11
5 R/W GND
6 E P12
7 DB0
8 DB1
9 DB2
10 DB3
11 DB4 P5
12 DB5 P4
13 DB6 P3
14 DB7 P2
15 VCC 5V
16 GND GND

Вывод текста

Для вывода программы приветствия, воспользуйтесь скриптом:

hello-amperka.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2);
// печатем первую строку
lcd.print("Hello world");
// устанавливаем курсор в колонку 0, строку 1
// на самом деле это вторая строка, т.к. нумерация начинается с нуля
lcd.setCursor(, 1);
// печатаем вторую строку
lcd.print("Do It Yourself");

Кирилица

Вывод кирилицы на дисплей с помощью платформы Iskra JS доступен через встроенную в дисплей таблицу знакогенератора.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв.

Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Так букве соответствует код в шестнадцатеричной системе. Чтобы передать на экран строку «Яndex», необходимо в явном виде с помощью последовательности встроить в строку код символа:

lcd.print("\xB1ndex");

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона и следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две строки записанные рядом склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

lcd.print("\xB1eee"); // ошибка
lcd.print("\xB1"+"eee"); // правильно

Используя полученную информацию выведем на дисплей сообщение «Привет, Амперка!»:

hello-amperka-rus.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2);
// устанавливаем курсор в колонку 5, строку 0
// на самом деле это первая строка, т.к. нумерация начинается с нуля
lcd.setCursor(5, );
// печатаем первую строку
lcd.print("\xA8"+"p"+"\xB8\xB3"+"e\xBF");
// устанавливаем курсор в колонку 3, строку 1
// на самом деле это вторая строка, т.к. нумерация начинается с нуля
lcd.setCursor(3, 1);
// печатаем вторую строку
lcd.print("o\xBF"+" A\xBC\xBE"+"ep\xBA\xB8");;

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

// переключение с нулевой страницы на первую
command(0x101010);
// переключение с первой страницы на нулевую
command(0x101000);

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

change-page.js
// создаём переменную для работы с дисплеем
// HD44780 — контроллер монохромных жидкокристаллических знакосинтезирующих дисплеев
var lcd = require("HD44780").connect(P11,P12,P5,P4,P3,P2);
// создаём переменную состояния
var state = false;
// устанавливаем курсор в колонку 5, строку 0
// на самом деле это первая строка, т.к. нумерация начинается с нуля
lcd.setCursor(5, );
// печатаем первую строку
lcd.print("\x9b\x9c\x9d\x9e\x9f");
 
setInterval(function() {
  // каждую секунду меняем переменую состояния
  state = !state;
  // вызываем функцию смены адреса страницы
  lcdChangePage();
}, 1000);
 
function lcdChangePage () {
  if (state) {
    // устанавливаем 0 станицу знакогенератора (стоит по умолчанию) 
    lcd.write(0b101000, 1);
  } else {
    // устанавливаем 1 станицу знакогенератора
    lcd.write(0b101010, 1);
  }
}

Полную таблицу символов с кодами можно найти в документации к экрану.

Распиновка 16х02 символов

Перед тем, приступить к сборке и написанию кода, давайте сначала взглянем на распиновку LCD 1602.

Профессиональный цифровой осциллограф
Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее

  • GND — должен быть подключен к земле Arduino.
  • VCC — это вывод питание для ЖК-дисплея, к которому мы подключаем 5-вольтовый контакт Arduino.
  • Vo (LCD Contrast) — вывод контролирует контрастность и яркость ЖК-дисплея. Используя простой делитель напряжения с потенциометром, мы можем точно отрегулировать контрастность.
  • RS (Register Select) — этот вывод позволяет Arduino сообщать ЖК-дисплею, отправляются команды или данные. В основном этот вывод используется для дифференциации команд от данных. Например, когда на выводе RS установлено значение LOW, мы отправляем команды на ЖК-дисплей (например, установить курсор в определенном месте, очистить дисплей, сдвинуть дисплей вправо и т. д.). Когда вывод RS установлено значение  HIGH, мы отправляем данные/символы на ЖК-дисплей.
  • R/W (Read/Write) — вывод предназначен для контроля того, что необходимо сделать — считать данные или передать их на ЖК-дисплй. Поскольку мы просто используем этот ЖК-дисплей в качестве устройства вывода, то достаточно на этот вывод подать HIGH уровень, тем самым мы перейдем в режим записи.
  • EN (Enable) — вывод используется для включения дисплея. Это означает, что когда на этом выводе  установлено значение LOW ЖК-дисплей не реагирует на то, что происходит с R/W, RS и линиями шины данных. Когда же на этом выводе HIGH ЖК-дисплей обрабатывает входящие данные.
  • D0-D7 (Data Bus) — это выводы, по которым передаются 8-битные данные на дисплей. Например, если мы хотим отобразить символ «A» в верхнем регистре, мы отправляем на LCD дисплей 0100 0001 (в соответствии с таблицей ASCII) .
  • AK (Anode & Cathode) используются для управления подсветкой LCD дисплея.

Custom Characters

Most HD44780 compatible LCDs have 8 memory locations that can be used for creating user defined characters. You create a custom character by putting the character data in to a byte array then passing the array to the library using createChar() command. Each character occupies a 5×8 grid

If you use binary when defining the array you can see the character you are creating. For example, a smily face 🙂 and a sad face 🙁

// Custom characters
 
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
 
//                    ADDR, EN,RW,RS,D4,D5,D6,D7,BL,POLARITY
LiquidCrystal_I2C lcd(0x27, 2, 1, , 4, 5, 6, 7, 3, POSITIVE);  
 
void setup() 
{
    lcd.begin(20, 4);   
    byte chr18 =  { 
                        B00000,
                        B10001,
                        B00000,
                        B00000,
                        B10001,
                        B01110,
                        B00000,
                        B00000
                    };  
    byte chr28 =  { 
                        B00000,
                        B10001,
                        B00000,
                        B00000,
                        B01110,
                        B10001,
                        B00000,
                        B00000
                    };   
 
 
   lcd.createChar(1, chr1);
   lcd.createChar(2, chr2);
 
   lcd.setCursor(, ); lcd.write(1);
   lcd.setCursor(2, ); lcd.write(2);
}
 
void loop() 
{
  ;
}

lcd.createChar(1, chr1); creates character 1 using the data in the array named chr1.
To display this character simply use lcd.write(1);

Although only 8 characters can be created at any one time, the characters can be redefined at anytime and creating new characters on the fly can give the appearance that more than 8 exist, although only 8 can be displayed at any one time.
If you redefine a character while it is being displayed on screen then the character will change to the newly created character.

Online Custom Character Generator

Omer Kilic has created a nice custom character generator that automatically produces the Arduino code.

maxpromer has another, similar, generator here.

Large FontsUsing custom characters it is possible to create large fonts. These were created by digimike on the Arduino forum

Over at AVR Freaks, china92 posted an Excel based design guide.

There are many many more and googling “Arduino LCD large font” will give you a lot of places to look.

Further information & links

Francisco Malpartida’s New LiquidCrystal wiki and download.

Good information about LCDs with I2C adapters at Arduino Info. The I2C LCD page also has information about other types of adapters. It is worth while checking out the whole site. Lots of good information about Arduino and Arduino compatible modules.

Reducing Arduino Pins: If you don’t have a I2C adaptor but have a 74HC595 and want to use less pins have a look at Juan Hernandez’s library that uses SPI and a 74HC595.

A new HD44780 LCD library by Bill Perry looks very promising. Extensible hd44780 LCD library can be downloaded from github. The library covers all the regular commands and includes a dianostic sketch in the examples. Have a HD44780 LCD but not sure how to initialise the library, run the diag sketch and it will tell you.

Programming Electronics Academy has a good beginner guide to LCD character displays that covers character positions.

Arduino forum post about back light brightness.

Want to really get to understand how these screens work? The 8-Bit Guy has an excellent video showing how to build a non microprocessor control box for an HD44780 LCD. I remember programming 6800 based boards like this many many years ago.

Notes

Pin number TextLCD pins mbed pins
1 GND 0V
2 VCC 3.3V
3 VO 0V, via 1k resistor
4 RS p15
5 RW 0V
6 E p16
7 D0 not connected
8 D1 not connected
9 D2 not connected
10 D3 not connected
11 D4 p17
12 D5 p18
13 D6 p19
14 D7 p20

Warning

The contrast VO pin seems to have different behaviour on different displays, so you may need to experiment for your display to see anything. I think I’ve seen some work tied to 0V, some to 3.3V, or with a different resistor.

Adjustable contrast can be achieved with a 10k trim-pot in a voltage divider configuration: one side to Vcc, other side to GND, wiper to VO. Adjust until you see a line of solid squares, then back off until they just disappear.

Some displays need a negative voltage at VO. One side of the trimpot is connected to the negative voltage instead of GND in that case. F.i. a Maxim MAX1044 can be used to generate the negative voltage.

Different LCD Panel Sizes

Setting the type field in the TextLCD constructor allows configuration for the different display panel sizes:

TextLCD::LCD16x2     16x2 LCD panel (default) 
TextLCD::LCD16x2B    16x2 LCD panel alternate addressing 
TextLCD::LCD20x2     20x2 LCD panel 
TextLCD::LCD20x4     20x4 LCD panel 

Note: There is now also support for

TextLCD::LCD8x1    8x1 LCD panel
TextLCD::LCD8x2    8x2 LCD panel
TextLCD::LCD16x1  16x1 LCD panel
TextLCD::LCD16x4  16x4 LCD panel
TextLCD::LCD24x2  24x2 LCD panel
TextLCD::LCD24x4  24x4 LCD panel (for KS0078 controller)
TextLCD::LCD40x2  40x2 LCD panel
TextLCD::LCD40x4  40x4 LCD panel (two controllers)

You can find the new lib here

For example:

#include "mbed.h"
#include "TextLCD.h"

TextLCD lcd(p15, p16, p17, p18, p19, p20, TextLCD::LCD20x4); // rs, e, d4-d7

int main() {
    lcd.printf("Hello World!\n");
}

Reference

The underlying HD44780 chip is a driver used in many LCD character displays. It might sometimes be referred to as Hitachi HD44780U. There are also several compatible clones of this chip in use (eg Samsung KS0066).

  • http://mbed.org/forum/mbed/topic/195/ covered lots of our discovery