Источники электрической энергии: описание, виды и особенности

Оглавление

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина

(Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Виды источников электрического тока

Существует много видов источников электрического тока, однако в любом источнике производится работа по переносу зарядов между специальными клеммами, называемыми полюсами. Теперь, если к полюсам подключить электрическую цепь, то в ней возникнет непрекращающееся движение зарядов – возникнет электрический ток.

Силы, которые перемещают заряды между полюсами внутри источника, имеют природу отличную от электрической, и называются сторонними. В зависимости от природы этих сторонних сил существуют различные источники электрического тока.

Химические источники

Сторонние силы химической природы используются в гальванических элементах – батарейках и аккумуляторах. Химическое взаимодействие определяется поведением электронов внешних оболочек атомов, его энергетический порядок невелик, поэтому и электрическое поле (и напряжение), получаемое с помощью одного химического элемента невысоко. Для получения высоких напряжений химические элементы соединяются последовательно. Но получаемая энергия все равно будет относительно небольшой. Химические источники удобны там, где при не очень высоких требованиях к энергетическим параметрам требуется автономность.

Рис. 1. Химические источники тока батареи аккумуляторы.

Электромеханические источники

Сторонние силы механической природы используются в генераторах различных конструкций. Например, в лабораторной электрической машине заряды создаются с помощью трения. В промышленных генераторах заряды создаются с помощью перемещения взаимодействующих магнитных полей (здесь используется явление электромагнитной индукции). При этом можно получить очень высокие энергетические показатели. Это наиболее широко используемые источники электрического тока для промышленных целей.

Рис. 2. Электромеханические источники тока.

Тепловые источники

Сторонние силы тепловой природы используются в термоэлементах – при нагревании спаянных разнородных проводников на концах спая возникает небольшая разность потенциалов, которую можно использовать. Однако, энергия при этом получается очень небольшой. Поэтому термоэлементы используются в основном как датчики температуры в составе специальных измерительных схем.

Рис. 3. Термоэлектрические источники тока.

Фотоэлектрические источники

Сторонние силы световой природы используются в солнечных батареях. Здесь используется явление фотоэффекта – при освещении некоторых веществ световая энергия начинает выбивать из атомов электроны, тем самым, создавая электрическое поле, которое может быть использовано. Солнечные батареи способны давать относительно небольшую энергию, однако, они очень удобны там, где кроме солнечного света очень мало других видов энергии – например, в удаленных уголках Земли или в космосе.

Рис. 4. Солнечные батареи.

Что мы узнали?

Действие источника электрической энергии постоянного тока заключается в поддержании электрического поля на выводах-полюсах. Для этого используется энергия сторонних сил, природа которых отлична от электрической. По видам этих сил источники делятся на химические, электромеханические, тепловые, фотоэлектрические.

Тест по теме

  1. Вопрос 1 из 5

    Действие химического источника постоянного тока заключается в том чтобы …

    • с помощью химических реакций создавать на полюсах постоянное электрическое поле.
    • с помощью химических реакций создавать на полюсах равные потенциалы
    • использовать тепловые явления для выработки электроэнергии
    • использовать явление фотоэффекта для получения электроэнергии.

Начать тест(новая вкладка)

Электричество. Основные понятия

2013-05-13

Теория 3 комментария

В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды «

». Основными параметрами переменного тока являются период, амплитуда и частота.

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+. Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона — до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол — достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Аккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Батарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Механический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройствоВажно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Принцип работы катушки с магнитом

Протекающий ток через катушку вызывает появление переменного магнитного потока. Он, в свою очередь, оказывает на магниты выталкивающую силу, которая заставляет рамку с двумя разнополярными магнитами крутиться. Таким образом, источники электрической энергии служат узлом для движения авто.

Обратный процесс, когда рамка с магнитом вращается внутри обмоток, за счет кинетической энергии позволяет преобразовывать переменный магнитный поток в ЭДС катушек. Далее в цепи установлены стабилизаторы напряжения, обеспечивающие требуемые показатели питающей сети. По этому принципу вырабатывается электричество в гидроэлектростанциях, теплоэлектростанциях.

ЭДС в цепи появляется и в обычной замкнутой цепи. Она существует до тех пор, пока к проводнику приложена разность потенциалов. Электродвижущая сила нужна для описания характеристики источника энергии. Физическое определение термина звучит так: ЭДС в замкнутой цепи пропорциональна работе сторонних сил, осуществляющих перемещение одиночного положительного заряда через всё тело проводника.

Формула E = I*R — сопротивление учитывается полное, складывающееся из внутреннего сопротивления источника питания и результатов сложения сопротивления питаемого участка цепи.

Некоторые виды химических источников тока[править | править код]

Гальванические элементыправить | править код

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

См. также Категория: Гальванические элементы.
Тип Катод Электролит Анод Напряжение,В
Литий-железо-дисульфидный элемент FeS2 Li 1,50 — 3,50
Марганцево-цинковый элемент MnO2 KOH Zn 1,56
Марганцево-оловянный элемент MnO2 KOH Sn 1,65
Марганцево-магниевый элемент MnO2 MgBr2 Mg 2,00
Свинцово-цинковый элемент PbO2 H2SO4 Zn 2,55
Свинцово-кадмиевый элемент PbO2 H2SO4 Cd 2,42
Свинцово-хлорный элемент PbO2 HClO4 Pb 1,92
Ртутно-цинковый элемент HgO KOH Zn 1,36
Ртутно-кадмиевый элемент HgO2 KOH Cd 1,92
Окисно-ртутно-оловянный элемент HgO2 KOH Sn 1,30
Хром-цинковый элемент K2Cr2O7 H2SO4 Zn 1,8 — 1,9

Другие типы:

  • Свинцово-плавиковый элемент
  • Медно-окисный гальванический элемент
  • Висмутисто-магниевый элемент
  • Ртутно-висмутисто-индиевый элемент
  • Литий-хромсеребряный элемент
  • Литий-висмутатный элемент
  • Литий-окисномедный элемент
  • Литий-йодсвинцовый элемент
  • Литий-йодный элемент
  • Литий-тионилхлоридный элемент
  • Литий-оксидванадиевый элемент
  • Литий-фторомедный элемент
  • Литий-двуокисносерный элемент
  • Диоксисульфатно-ртутный элемент
  • Серно-магниевый элемент
  • Хлористосвинцово-магниевый элемент
  • Хлорсеребряно-магниевый элемент
  • Хлористомедно-магниевый элемент
  • Иодатно-цинковый элемент
  • Магний-перхлоратный элемент
  • Магний-м-ДНБ элемент
  • Цинк-хлоросеребряный элемент
  • Хлор-серебряный элемент
  • Бром-серебряный элемент
  • Йод-серебряный элемент
  • Магний-ванадиевый элемент
  • Кальций-хроматный элемент

Электрические аккумуляторыправить | править код

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

См. также Категория: Аккумуляторы.
  • Железо-воздушный аккумулятор
  • Железо-никелевый аккумулятор
  • Лантан-фторидный аккумулятор
  • Литий-железо-сульфидный аккумулятор[источник не указан 935 дней]
  • Литий-ионный аккумулятор
  • Литий-полимерный аккумулятор
  • Литий-фторный аккумулятор
  • Литий-хлорный аккумулятор
  • Литий-серный аккумулятор
  • Марганцево-оловянный элемент
  • Натрий-никель-хлоридный аккумулятор
  • Натрий-серный аккумулятор
  • Никель-кадмиевый аккумулятор
  • Никель-металл-гидридный аккумулятор
  • Никель-цинковый аккумулятор
  • Свинцово-водородный аккумулятор
  • Свинцово-кислотный аккумулятор
  • Серебряно-кадмиевый аккумулятор
  • Серебряно-цинковый аккумулятор
  • Цинк-бромный аккумулятор
  • Цинк-воздушный аккумулятор
  • Цинк-хлорный аккумулятор

Топливные элементыправить | править код

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

См. также Категория: Топливные элементы.
  • Прямой метанольный топливный элемент.
  • Твердооксидный топливный элемент.
  • Щелочной топливный элемент.

Как распределяются виды энергии в каждой системе

Различные виды энергии используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.

Почти все ядерное топливо используется в электроэнергетической системе для выработки электроэнергии. Её доля в России составляет 18% от первичной энергии. Во Франции – 75%, Венгрии – 52% , Украине – 56%. В среднем в мире порядка 10%.

Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет 92% от общего объема первичного энергопотребления.

Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие альтернативных видов топлива.

Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.

Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).

Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

Литиевые аккумуляторы для автомобилей

Многие автомобилисты задаются вопросом, есть ли смысл заменять кислотный АКБ на щелочной, литиевый. Уже есть прецеденты, Toyota Prius C, Ford Fusion Hybrid сходят с конвейера со стартовыми АКБ нового поколения. Литиевые стартовые аккумуляторы легче, имею большую емкость, но стоят дорого и есть особенности, мешающие их широкому внедрению. Тяговые литиевые аккумуляторы успешно работают на карах, подъемниках и другой аккумуляторной технике.

Литиевый аккумулятор 12 вольт для автомобиля

Что представляет ионно-литиевые аккумуляторы для автомобилей? В корпусе упаковано определенное количество элементов одного вида, соединенных между собой для обеспечения нужной емкости и напряжения батареи.

Для этого можно взять аккумуляторы с разными активными компонентами. Все они содержат ионы лития в разных химических соединениях, меняющих характеристики изделия.

Все литий-ионные элементы представляют призматические или цилиндрические герметичные упаковки, в которых внутри имеется катод, в виде графитового слоя на подложке из металлической фольги. На другой ленте расположен активный состав. Прокладка, сепаратор, пропитана неводным раствором литиевой соли. Она проницаемая, ион лития внедряется в структуру графита или уходит из нее, создавая разность потенциалов.

Состав и свойства разных литий-ионных аккумуляторов:

Параметр LiCoO2 Li MnO4 LiFePO4
Уд. плотность энергии, Втч/кг 150-190 100-135 90-120
Жизненный цикл 500-1000 500-1000 1000-2000
Время быстрой зарядки, ч 2-4 Менее 1 Менее 1
Терпимость к перезарядке отсутствует отсутствует отсутствует
Номинальное напряжение V 3,6 3,8 3,3
Максимальное V 4,2 4,2 3,6
Минимальное V 2,5-3,0 2,5-3,0 2,5-2,8
Миним. t работы -10 -10 -30

Однако кобальтовый состав больше склонен к возгоранию. Температура ниже +10 способствует резкой потере емкости.

Самыми нетребовательными считают ферритные аккумуляторы. Они не склонны к взрыву, работают на морозе до -30 градусов и легче справляются с восстановлением после глубокой посадки, но не ниже, чем до 2 В. Именно они могут обеспечить пусковой ток в 60С.

Все батареи собираются из отдельных аккумуляторов, используя последовательное и параллельное подключение. Это позволяет создать напряжение 12 В поставив последовательную цепь из 4 групп с параллельным включением 6 элементов. При этом обязательно требуется использовать балансиры и MBS для обеспечения равномерной зарядки до номинала всех банок, и специальная зарядная станция.

Преимущества и минусы стартовых литиевых АКБ для авто

Что для автомобилиста лучше, поставить на автомобиль аккумулятор нового поколения, стоящий около 120 000 рублей или купить дорогой (120$), но привычный кислотный АКБ?

К преимуществам литиевого аккумулятора относят его малый вес

Но так ли важно десять лишних килограмм для многосильного мотора? Да, зарядная емкость у литиевого аккумулятора выше раза в 2, циклов перезарядки он выдержит раза в 3 больше. Пусковой импульс стартер будет получать безотказно и стабильно, если выполнить условия эксплуатации

  1. В первую очередь, новый аккумулятор нельзя заряжать напрямую от генератора. Вспомните, он не терпит перезаряд и очень быстро выйдет из строя. Значит, потребуется конвертор, который будет преобразовывать ток от генератора для питания аккумулятора.
  2. Характеристики любых литиевых аккумуляторов резко падают при понижении температуры и в этом они уступают свинцовым АКБ.
  3. Еще более опасна для батареи температура выше +60 0 С. Перегрев может привести к пожару и взрыву.
  4. В бортовой системе не должно быть высоких токовых нагрузок. И стартер, и лебедка и другие инструменты должны принять условия работоспособности аккумулятора. А это выльется в дорогостоящую модернизацию электрической схемы.
  5. Моторесурс аккумулятора зависит от равномерности заряда банок, постоянной вибрации, разрушающей контакты и способствующие коррозии корпуса. Емкость банок в таких условиях резко уменьшается.

Адаптация автомобиля под литиевый-литиевый аккумулятор выльется в сумму, больше стоимости самого источника энергии. Однако рассчитывать на длительную работу АКБ не приходится – максимум 3 года.

Вывод

Как тяговый, на транспорте литиевый аккумулятор уже занял рабочую нишу. Как стартовый – еще не находит широкого применения из-за высокой стоимости и адаптации к условиям эксплуатации. Посмотрите видео, почему нельзя ставить литиевый аккумулятор на неприспособленные автомобили.

batts.pro

Химические источники электрического тока

Химические источники тока – это устройства, работа которых обусловлена преобразованием выделяемой при окислительно-восстановительном процессе химической энергии в энергию электрическую.

К преимуществам химических источников тока относится универсальность их применения.

Источником питания многих бытовых устройств, а также приборов, используемых в научных лабораториях или на производстве, являются именно химические источники питания.

Востребованность химических источников тока в обеспечении функционирования аппаратуры связи или портативной электронной аппаратуры заслуживает особого внимания, так как в этом случае они являются незаменимыми.

Химические источники электротока

Конструктивно химические источники тока представляют собой два металлических электрода, разделенных электролитом. Электроды изготавливаются из металла, который является проводником электронов (электронная проводимость), а электролит изготавливается из жидкого или твердого вещества, являющегося проводником ионов (ионная проводимость).

Если для питания, какого либо потребителя, требуется высокое напряжение, то электрические аккумуляторы соединяются последовательно. В случае, когда для электропитания требуется большой ток, электрические аккумуляторы соединяются параллельно и носят название аккумуляторной батареи.

Советуем изучить Термосопротивление

Последовательное соединение (согласное включение)

Еобщ = Е1 + Е2 + Е3

Смешанное соединение (встречное)

Еобщ = Е1 – Е2 + Е3

  • Параллельное соединение источников питания. ( Такое соединение применяется
  • для увеличения тока в цепи. )

Еобщ = Е1 = Е2 = Е3

В зависимости от характера работы различные типы химических источников питания носят название гальванических элементов либо электрических аккумуляторов.

К отличительной особенности химических источников тока, называемых гальваническими элементами, относится возможность одноразового применения, так как их выделяющие электрическую энергию активные вещества подлежат полному распаду в процессе химической реакции. При полном разряде гальванического элемента его дальнейшее применение невозможно.

Особенностью таких химических источников тока, как электрические аккумуляторы, является их многоразовое использование за счет обратимости основных действующих процессов.

Разряженный электрический аккумулятор обладает способностью регенерировать свои дающие электрическую энергию активные вещества за счет процесса пропускания через него постоянного тока, источником которого служит другое устройство.

При заряде электрического аккумулятора постоянный тока другого источника должен протекать в направлении, противоположном разрядному току. Такое условие способствует замене реакции окисления на реакцию восстановления на положительном электроде, и наоборот, на отрицательном электроде реакция окисления заменяется на реакцию восстановления.

К химическим источникам тока предъявляется ряд общих и специальных технических требований. Все требования оговорены в соответствующей нормативной документации.

Общими являются требования: к габаритно-массовым характеристикам; к надежности; к отсутствию вредного влияния на окружающую среду; к безопасному использованию обслуживающим персоналом; к сроку службы; к минимальному саморазряду.

Специальными техническими условиями являются требования к удельным характеристикам, к механической прочности, к температурному диапазону рабочего режима, к невысокому значению внутреннего сопротивления, к работоспособности в любом положении, к удобству в эксплуатации.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Рис. 5. Две проволоки из различных металлов могут создавать ток в цепи при нагревании

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Классификация

Самые распространенные виды — гальванические элементы и аккумуляторы. С ними знаком практически каждый. Но классификация таких приспособлений более широкая и предполагает еще и существование топливных элементов.


Схема классификации источников тока

Гальванические элементы

Гальванический элемент получил свое название в честь ученого Гальвано, который и открыл чудесную возможность получения электрического тока посредством создания простой конструкции из электролита и электродов. Они считаются первыми прототипами современных устройств для получения электроэнергии благодаря химическим реакциям.

Вам это будет интересно Особенности расчета делителя напряжения


Химические источники тока — гальванические элементы и аккумуляторы

Обратите внимание! В настоящее время это приспособление имеет более компактный и безопасный для использования вид, это обычная батарейка. Особенность работы такого устройства заключается в том, что использование его одноразовое

После окончательного разложения электролита на вещества, повторно зарядить их для следующих реакций невозможно.

Электрические аккумуляторы

Электрический аккумулятор — это более универсальный вариант устройства, который можно заряжать несколько раз после потери заряда электролита. Такая особенность объясняется регенерацией веществ, которые образуют электролит.


Устройство аккумулятора

В данном случае зарядка производится от постороннего (внешнего) источника тока. Часто с такой потребностью в восстановлении реагента в аккумуляторах сталкиваются автомобилисты, производя зарядку аккумулятора.

Топливные элементы

Электрохимический топливный элемент является перспективным источником, который достаточно важен для создания комфортных и в некоторых ситуациях жизненно необходимых условий существования.


Тепловой химический источник

Особенность работы такого элемента заключается в следующем. К электродам каждый раз поступает определенная порция электролита, которая после разрядки выводится из конструкции. Например, резервный генератор тока благодаря такому принципу работы может производить электроэнергию в течение 10-15 лет.

Обратите внимание! После истечения срока эксплуатацию можно продлить, если восстановить питание