Явление электромагнитной индукции тока: суть, кто открыл

Как изменить магнитный поток

Формула (6) показывает лишь связь между электромагнитными процессами в дросселе, но не предусматривает возможности изменения ни токов в обмотках, ни магнитного потока. И значит, пришло время вспомнить открытый Фарадеем закон электромагнитной индукции, связывающий электродвижущую силу е с изменением магнитного потока:

(9)

где N – количество витков обмотки.

Подобно рассмотренной выше теореме о циркуляции вектора напряженности магнитного поля, закон Фарадея также связывает две части единого целого. Закон электромагнитной индукции работает «в обе стороны»: любое изменение магнитного потока, например, из-за перемещения постоянного магнита возле обмотки, приводит к появлению на ее выводах ЭДС, а появление стороннего напряжения на выводах – к изменению магнитного потока. Таким образом, прикладывая к обмотке произвольное напряжение u(t) на протяжении некоторого интервала времени tНАЧ. tКОН можно изменить магнитный поток на величину ΔФ:

(10)

На протяжении первого этапа преобразования к обмотке W1 через открытый ключ S1 прикладывается напряжение конденсатора С1, равное напряжению на входе преобразователя UВХ. Для обеспечения нормальной работы схемы количество энергии в конденсаторах С1 и С2 должно быть как минимум на порядок больше количества энергии, накапливаемой в дросселе L1. Это означает, что изменением напряжения на конденсаторе С1 за время первого этапа преобразования можно пренебречь, приняв uW1(t) = UВХ = const. Это позволяет вынести uW1(t) в формуле (10) за знак интеграла и определить величину изменения магнитного потока на первом этапе преобразования ΔФ1:

(11)

где t1 – длительность первого этапа преобразования.

Таким образом, к следующей коммутации ключей S1 и S2 магнитный поток станет равным ФКОН1 = ФНАЧ1 + ΔФ1, которому будет соответствовать ток IW1_КОН в обмотке W1:

(12)

После окончания первого этапа преобразования, начинается второй, на протяжении которого ключ S1 находится в разомкнутом, а ключ S2 – в замкнутом состоянии. Очевидно, что все процессы на втором этапе полностью идентичны и отличаются только активными элементами схемы: дроссель L1 через обмотку W2 и ключ S2 обменивается энергией с конденсатором С2, а элементы С1, W1 и S1 не принимают участия в работе. Как и на первом этапе, в момент замыкания ключа S2 магнитный поток ФНАЧ2 в дросселе может быть отличен от нуля, и ему будет соответствовать ток IW2_НАЧ в обмотке W2:

(13)

Точно так же, за время второго этапа магнитный поток изменится на величину ΔФ2, поскольку к его обмотке W2 через открытый ключ S2 приложено напряжение uW2(t), равное напряжению на конденсаторе С2, которое на протяжении второго этапа длительностью t2 практически не меняется, и значит его можно считать постоянным и равным выходному напряжению преобразователя UВЫХ, поэтому

(14)

А к концу второго этапа магнитный поток достигнет величины ФКОН2 = ФНАЧ2 + ΔФ2, которому будет соответствовать ток IW2_КОН:

(15)

Поскольку в моменты коммутации ключей S1 и S2 магнитный поток Ф остается неизменным, мы имеем полное право записать:

(16)

Ну и для того, чтобы преобразователь выполнял свою непосредственную функцию, должно выполняться последнее условие:

(17)

иначе магнитопровод дросселя после нескольких циклов достигнет насыщения, его параметр AL за счет уменьшения μЭКВ уменьшиться, а токи обмоток, определяемые (8), (12), (13) и (15) резко возрастут, что приведет к перегрузке и выходу из строя силовых элементов. Да и схема работать не будет, поскольку при совпадении знаков ΔФ1 и ΔФ2 магнитопровод дросселя, будет только накапливать энергию.

Графики зависимости индукционного тока от времени рамка

. одновременно в одну или в противоположные стороны. Укажите, как это можно осуществить.

При раскачивании первой катушки в ней возникает индукционный ток, который проходит по виткам второй катушки, находящейся в магнитном поле, и раскачивает ее. Направление движения второй катушки зависит от направления тока в ней и расположения полюсов магнита.

  • 1
  • 2
  • 3
  • 4
  • 5

Она также будет раскачиваться, но в стороны, противоположные направлению отклонения стрелки первого гальванометра.

  • 1
  • 2
  • 3
  • 4
  • 5

См. рисунок 355.

  • 1
  • 2
  • 3
  • 4
  • 5

При сближении цепей ток направлен от С к D; при удалении — от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

Не будет, так как не изменяется поток магнитной индукции, пронизывающий рамку.

  • 1
  • 2
  • 3
  • 4
  • 5

. наибольшая и наименьшая ЭДС. Индукцией магнитного поля Земли пренебречь.

ЭДС будет иметь наименьшее значение, когда рамка будет расположена в плоскости, проходящей через прямолинейный провод. Наибольшая ЭДС будет возникать тогда, когда рамка будет перпендикулярна к этой плоскости.

  • 1
  • 2
  • 3
  • 4
  • 5

Нет. Магнитное поле индукционного тока противодействует перемещению проводника. Энергия сторонних сил, затраченная на выполнение работы по преодолению этого сопротивления, и обращается в энергию электрического тока. Причины размагничивания постоянных магнитов, например, в электрических машинах — тепловое движение молекул и механические толчки.

  • 1
  • 2
  • 3
  • 4
  • 5

Ток будет направлен от ртути к оси диска.

  • 1
  • 2
  • 3
  • 4
  • 5

. В каком месте диска — в центре или на окружности — потенциал будет больше?

В северном полушарии — на окружности, в южном — в центре.

  • 1
  • 2
  • 3
  • 4
  • 5


От А к В и от D к С.

  • 1
  • 2
  • 3
  • 4
  • 5

ЭДС будет возникать, так как при внесении провода в пространство между полюсами магнита будет изменяться магнитный поток, пронизывающий площадь контура.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

Магнитный поток не меняется, он остается равным нулю. В кольце индуцируется ток, магнитный поток которого таков, что в сумме с потоком индукции самого магнита через кольцо дает нуль.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

За счет какой энергии происходит нагревание цилиндра и воды?

Нагревание воды вызвано токами Фуко, возникающими в стенках цилиндра при его вращении в магнитном поле. Действие поля на стенки цилиндра тормозит его вращение. При наличии поля необходимо приложить к цилиндру больший вращающий момент, т. е. затратить большую энергию, чем при отсутствии поля. Эта дополнительная энергия и расходуется на нагревание цилиндра и воды.

  • 1
  • 2
  • 3
  • 4
  • 5

но это опасно для стеклянного баллона лампы. Каким способом можно нагреть электроды лампы, не нагревая баллона?

Токами высокой частоты.

  • 1
  • 2
  • 3
  • 4
  • 5

Качающаяся стрелка создает переменное магнитное поле, индуцирующее в медном футляре вихревые токи, направление которых согласно правилу Ленца таково, что они препятствуют движению стрелки.

  • 1
  • 2
  • 3
  • 4
  • 5

При замене медного диска стеклянным или деревянным магнит оставался неподвижным. Магнит также оставался неподвижным, когда в медном диске были сделаны разрезы по направлению его радиусов. Когда разрезы были запаяны, магнит опять приходил в движение. Объясните эти опыты.

При вращении диска в нем возникали вихревые токи, направленные так, что поле магнита тормозит вращение диска. По третьему закону Ньютона равная и противоположно направленная сила действует на магнит и заставляет его вращаться вслед за диском. Если в диске сделать радиальные разрезы, то в нем индуцируются небольшие вихревые токи, оказывающие слабое действие на магнит.

  • 1
  • 2
  • 3
  • 4
  • 5

Энергия колебаний в значительной степени расходуется на возбуждение вихревых токов в алюминиевом каркасе катушки и в цепи самой замкнутой катушки прибора.

  • 1
  • 2
  • 3
  • 4
  • 5


. от времени, чтобы прибор отвечал своему назначению?

Силы, действующие на металлические опилки, возникают вследствие появления в опилках индукционных токов при изменении магнитного поля электромагнита. При нарастании тока в электромагните опилки в соответствии с правилом Ленца будут выталкиваться из поля, а при убывании тока — притягиваться. Эти силы пропорциональны скорости изменения магнитного поля и соответственно тока. Поэтому ток в электромагните должен медленно нарастать, а затем очень быстро падать до нуля. Примерная зависимость силы тока от времени изображена на рисунке 356.

Источник



Направление действия магнитного поля

Согласно проверенному на практике правилу (его называют правилом буравчика), определить направление действия вектора поля можно очень просто, если воспользоваться следующим простым пояснением.

Если вворачивать мнимый буравчик в сторону протекания тока в проводе, то вращающий импульс укажет искомое направление (эту закономерность называют иногда правилом «правой руки»).

Для данного эффекта справедливо и обратное утверждение: если правой рукой вращать буравчик в сторону действия магнитного потока, то вектор его вворачивания укажет направление потока электронов, который инициируется этим полем.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов.

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей.

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Опыты, выполненные этим учёным, выглядят следующим образом:

Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов.

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения.

Физика. 11 класс

Конспект урока

Физика, 11 кл

Урок 5. Электромагнитная индукция

Перечень вопросов, рассматриваемых на этом уроке

  1. Знакомство с явлением электромагнитной индукции.
  2. Изучение законов, описывающих явление электромагнитной индукции.
  3. Решение задач, практическое использование электромагнитной индукции.

Глоссарий по теме

Явление электромагнитной индукции

заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром, меняется со временем.Магнитный поток Ф – графически величина пропорциональная числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единица измерения магнитного потока:

магнитный поток в один вебер создаётся однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Правило Ленца

: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Сила индукционного тока

пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

ЭДС индукции в замкнутом контуре

равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Основная и дополнительная литература по теме:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс. — М.: Дрофа,2009. Стр. 28-29

ЕГЭ 2021. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2021.

Теоретический материал для самостоятельного изучения

Электрические и магнитные поля создаются одними и теми же источниками – электрическими зарядами. Отсюда естественнее было предположить, что между этими полями имеется связь. Экспериментально это предположение было доказано в 1831 г. английским учёным М. Фарадеем, открывшим явление электромагнитной индукции. Все опыты Фарадея по изучению явления электромагнитной индукции объединял один признак – магнитный поток пронизывающий замкнутый контур проводника менялся. При всяком изменении магнитного потока через замкнутый контур, в нем возникал индукционный ток.

Сила индукционного тока

пропорциональна ЭДС индукции.

Направление индукционного тока менялось в зависимости от направления движения магнита относительно катушки. Это направление тока, можно найти используя правило Ленца.

М. Фарадеем экспериментально было установлено, что при изменении магнитного потока, в проводящем контуре возникает электродвижущая сила индукции

, которая равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Знак минус в этой формуле отражает правило Ленца.

Закон электромагнитной индукции формулируется для ЭДС индукции.

ЭДС индукции в замкнутом контуре

равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

ЭДС индукции в движущихся проводниках

Джеймс Максвелл в 1860 году сделал вывод что переменное со временем магнитное поле всегда порождает вихревое электрическое поле, а переменное во времени электрическое поле в свою очередь порождает магнитное поле. Следовательно, существует единая теория электромагнитного поля.

Разбор типового контрольного задания

На рисунке изображен момент демонстрационного эксперимента по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца влево кольцо будет

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 527

«Физика – 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Следующая страница «Электромагнитное поле. Электродинамический микрофон»

Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса – Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δинд можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B→ направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1.20.3. Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ→. Модуль этой сторонней силы равен:

FЛ=eυ→B.

Работа силы FЛ на пути l равна:

A=FЛ·l=eυBl.

По определению ЭДС: 

δинд=Ae=υBl.

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δинд можно записать другой вариант формулы. Площадь контура с течением времени изменяется на ΔS=lυΔt. Соответственно, магнитный поток тоже будет с течением времени изменяться: ΔΦ=BlυΔt.

Следовательно, 

δинд=∆Φ∆t.

Знаки в формуле, которая связывает δинд и ∆Φ∆t, можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n→ и положительного направления обхода контура l→ можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R, то по ней будет протекать индукционный ток, который равен Iинд=δиндR. За время Δt на сопротивлении R выделится джоулево тепло:

∆Q=RIинд2∆t=υ2B2l2R∆t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера FА→.

Для рассмотренного выше примера модуль силы Ампера равен FA =IBl. Направление силы Ампера таково, что она совершает отрицательную механическую работу Aмех. Вычислить эту механическую работу за определенный период времени можно по формуле:

Aмех=-Fυ∆t=-IBlυ∆t=-υ2B2l2R∆t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δинд в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δинд нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δинд обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1.20.4. Модель электромагнитной индукции

Рисунок 1.20.5. Модель опытов Фарадея

Рисунок 1.20.6. Модель генератора переменного тока

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Обоснование правила Ленца

Для объяснения правила Ленца достаточно вспомнить закон сохранения энергии.

Возникающий в контуре ток, проходя по сопротивлению контура, совершает работу, которая тратится на нагревание провода катушки. Энергия для этого как раз и возникает при движении магнита. И, поскольку магнит должен при этом совершать положительную механическую работу – магнитное поле катушки должно быть направлено против поля самого магнита, в какую бы сторону он не двигался.

Только в этом случае магнит будет совершать положительную работу, энергия которой будет двигать заряды внутри контура, порождая индукционный ток, а индукционный ток, в свою очередь, будет совершать работу по нагреванию провода катушки (и отклонения стрелки гальванометра).

Рис. 3. Направление индукционного тока.

Что мы узнали?

Для определения направления индукционного тока используется правило, открытое Э. Ленцем. Индукционный ток всегда имеет такое направление, чтобы сопротивляться причине, его порождающей. Это правило является следствием законов сохранения.

  1. /5

    Вопрос 1 из 5