Оглавление
Основные уравнения
Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.
(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).
В магнитостатике
В магнитостатическом пределе наиболее важными являются:
-
Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
- B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
- B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
-
Теорема Ампера о циркуляции магнитного поля:
- ∮∂SB→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
- rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}
В общем случае
Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:
Три из четырех уравнений Максвелла (основных уравнений электродинамики)
-
- divE→=ρε, rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
- divB→=, rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
- а именно:
Закон отсутствия монополя:
-
- divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}
Закон электромагнитной индукции Фарадея:
-
- rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}
Закон Ампера — Максвелла:
-
- rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}
Формула силы Лоренца:
-
- F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
-
- Следствия из неё, такие как
Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)
-
- dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
- dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}
выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):
-
- M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}
выражение для потенциальной энергии магнитного диполя в магнитном поле:
-
- U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
- а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
- Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
-
- F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}
(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
Выражение для плотности энергии магнитного поля
-
- w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}
Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).
Магнитное поле проводника с током
Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.
Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.
Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.
При изменении направления тока линии магнитного поля также изменяют свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.
Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.
Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.
В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.
Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.
Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.
Направление линий магнитной индукции катушки с током находят по правилу правой руки:
если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.
Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:
если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.
Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.
Конспект
Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.
Учение об электромагнетизме основано на двух положениях:
- магнитное поле действует на движущиеся заряды и токи;
- магнитное поле возникает вокруг токов и движущихся зарядов.
Опыт Эрстэда. Магнитное поле тока
В начале XIX в
датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты
Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4).
Это можно было объяснить возникновением вокруг проводника магнитного поля.
Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5). Направление линий определяется правилом правого винта:
Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике.
Силовой характеристикой магнитного поля является вектор магнитной индукции B. В каждой точке он направлен по касательной к линии поля.
Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке.
Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис.
6, аналогична таковой для плоского магнита (рис. 3). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками.
Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).
Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:
Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8)
Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6, северным полюсом служит правый его конец, а южным — левый.
Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.
Сила, действующая в магнитном поле на проводник с током
Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.
Направление силы определяется правилом левой руки:
Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9).
Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.
Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.
Отношение не зависит от свойств проводника и характеризует само магнитное поле.
В системе СИ единицей индукции магнитного поля служит тесла (Тл):
Магнитное поле
Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!. Магнит
Магнит
У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).
Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.
Картина магнитного поля
Математическое представление[править | править код]
Термин магнитное поле применяется к двум различным векторным полям, обозначаемым как H\mathbf{H}
и B\mathbf{B}
. Величина H\mathbf{H}
называется напряженностью магнитного поля. Термин «магнитное поле» исторически относится к H\mathbf{H}
, в то время как B\mathbf{B}
называется магнитной индукцией. Магнитная индукция B\mathbf{B}
является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B\mathbf B
и E\mathbf E на самом деле являются компонентами единого тензора электромагнитного поля. Аналогично, в единый тензор объединяются величины H\mathbf H
и D\mathbf D. В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B\mathbf B
и E\mathbf E
должны рассматриваться совместно.
Единицы измеренияправить | править код
Величина B\mathbf{B}
в системе единиц СИ измеряется в теслах, в системе СГС в гауссах.
Векторное поле H\mathbf{H}
измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС. Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.
Записи учёных
Первое действительное измерение было фактически сделано в 1963 году , но область исследований начала расширяться только после того, как в 1970 году была разработана технология с низким уровнем шума. Сегодня сообщество исследователей биомагнетиков не имеет официальной организации, но международные конференции проводятся каждые два года, в ней находятся около 600 человек. Большая часть деятельности конференции сосредоточена на МЭГ (магнитоэнцефалограмме), измерении магнитного поля мозга.
МЭГ показывает дополнительные сведения к электроэнцефалограмме (ЭЭГ) и дает ценную новую информацию о состоянии человеческого мозга. Это также показывает перспективы в клинической диагностике отклонений в головном мозге. Таким образом, биомагнетизм является перспективным новым решением для организма человека в целом и в частности, мозга. Инженерная школа Тайер в Дартмуте на данный момент приобретает систему МЭГ, и ожидаются новые захватывающие разработки.
Советскую разработку “СКВИД” стали часто применять для измерения магнитных полей, что стало причиной для создания новых исследований в той же области, опираясь на информацию, полученную из созданного прибора.
Но ранее учёные не уделяли особого внимания исследованию магнитных полей, так как оно оказалось недостаточно сильным, да и измерение его без разработки было достаточно трудной задачей. Само магнитное поле состоит из множества шумов, исходящих из него в окружающее пространство. Кроме того, магнитное поле имеет энергетические опасности и электромагнитные поля. Это основано на энергии, излучающейся из магнитного поля, она может быть как положительной, так и отрицательной.
Поэтому, чтобы углубиться в познания, необходимо принять специальные защитные меры и приобрести соответствующие приспособления.
Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
где \( q \) – заряд частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( \alpha \) – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции \( B_\perp \) входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Если заряд частицы отрицательный, то направление силы изменяется на противоположное.
Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы
В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.
Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:
где \( m \) – масса частицы, \( v \) – скорость частицы, \( B \) – модуль вектора магнитной индукции, \( q \) – заряд частицы.
В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:
Угловая скорость движения заряженной частицы:
Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы. Если вектор скорости направлен под углом \( \alpha \) (0°
Если вектор скорости направлен под углом \( \alpha \) (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.
В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, \( \vec{v}_2 \), параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – \( T \).
Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом \( h=v_2T \).
Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:
Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».
Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:
- сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
- изобразить силы, действующие на заряженную частицу;
- определить вид траектории частицы;
- разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
- составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
- выразить силы через величины, от которых они зависят;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Природа магнитного поля Земли
Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году, предложив концепцию ]]>динамо]]>, согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды.
Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма.
А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теорем.
Даже Альберт Эйнштейн скептически относился к осуществимости такого динамо при условии невозможности существования простых (симметричных) решений. Лишь гораздо позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х годах. несимметричные решения были найдены.
С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами.
Необходимые условия создаются в ядре Земли: в жидком внешнем ядре, состоящем в основном из железа при температуре порядка 4–6 тысяч кельвинов, которое отлично проводит ток, создаются ]]>конвективные]]> потоки, отводящие от твердого внутреннего ядра тепло (генерируемое благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты).
]]>Силы Кориолиса]]> закручивают эти потоки в характерные спирали, образующие так называемые ]]>столбы Тейлора]]>. Благодаря трению слоев они приобретают электрический заряд, формируя контурные токи. Таким образом, создается система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в ]]>]]>.
Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений.
Высказывались предположения, что динамо может возбуждаться за счет прецессии или приливных сил, то есть что источником энергии является вращение Земли, однако наиболее распространена и разработана гипотеза о том, что это все же именно термохимическая конвекция.
История развития представлений о магнитном поле
Способность некоторых материалов притягивать (отталкивать) себе подобные и металлические предметы известна многие сотни лет. Первые документированные научные исследования по данной теме проведены в середине 13 века. С помощью стальных иголок ученый из Франции смог получить реалистичное линейное распределение силовых потоков и схождение их в двух точках на противоположных сторонах сферического образца. Эти места были названы «полюсами».
Почти три столетия понадобилось для формулировки соответствия данных точек полюсам планеты (северному и южному). В середине 18 века определена обратная квадратичная зависимость силового потенциала.
Толчком для последующего развития теорий стало расширенное использование электричества для решения практических задач. Ниже перечислены важнейшие тематические открытия (авторы):
- образование магнитного поля вокруг проводника с электрическим током (Х. К. Эрстед);
- притяжение двух таких проводников при одинаковой полярности подключения к источнику, теория магнетизма в замкнутых контурах (Ампер);
- создание электрического тока переменным магнитным полем и формулировка индукции (М. Фарадей);
- определение векторных параметров поля (Э. Нейман);
- создание уравнений, объединяющих магнетизм и электричество (Д. К. Максвелл);
- формулировка единства электрических и магнитных полей (А. Эйнштейн).
Инверсия геомагнитного поля
Аномально высокая скорость движения северного геомагнитного полюса и уменьшение интенсивности геомагнитного поля в последние годы порождают спекуляции на тему скорой инверсии геомагнитного поля. Инверсией геомагнитного поля называют процесс перестановки местами южного и северного геомагнитного полюсов. В нормальном состоянии геомагнитного поля северный геомагнитный полюс находится вблизи северного географического полюса. В обратном состоянии же наблюдается противоположная картина: северный геомагнитный полюс находится вблизи южного географического полюса.
Во времени наступления инверсий не обнаружено никакой периодичности (в отличие от, к примеру, 22-летней периодичности в инверсиях магнитного поля Солнца, которая равна двухкратному периоду солнечной активности).
Типичное время между инверсиями составляет от 0.1 до 1 миллиона лет, сами инверсии длятся между 1 и 10 тысячами лет. Предполагается, что во время инверсий происходит очень сильное ослабление геомагнитного поля, и, следовательно, создаётся нешуточная угроза земной жизни (частицы солнечного ветра в больших количествах проникают в земную атмосферу). В тоже время не отмечено никакой корреляции между массовыми вымираниями земных видов и периодами инверсий геомагнитного поля.
Последняя достоверная инверсия геомагнитного поля случилась 780 тысяч лет назад. Её длительность составила от 1200 до 10000 лет в зависимости от географического положения изученных пород с остаточной намагниченностью. С другой стороны изучается возможность более свежей кратковременной инверсии геомагнитного поля, которая случилась всего 41 тысячу лет назад. Событие получило название Laschamp, так как впервые было обнаружено в 60х годах 20 века в остаточной намагниченности лавового потока с таким названием во Франции. Позже следы этой инверсии были обнаружены и в других местах Земли. Длительность инверсии составила 250-440 лет, во время неё геомагнитное поле было ослаблено на 75%.
Схема движения геомагнитных полюсов во время этой инверсии
В тоже время в спокойные периоды геомагнитные полюсы испытывают лишь хаотичный дрейф вблизи географических полюсов.
Пример вероятного движения северного геомагнитного полюса после 200 года нашей эры
Кроме того можно отметить, что текущее ослабление геомагнитного поля за последние 180 лет на 10% не является уникальным. Изучение остаточной намагниченности пород в Ливане показывает, что 2500 лет назад геомагнитное поле было в 2.5 раза сильнее, чем сейчас, после чего оно ослабло сразу почти на 30% всего за 180 лет.
Магнитное поле. Формулы ЕГЭ
3.3 МАГНИТНОЕ ПОЛЕ
3.3.1 Механическое взаимодействие магнитов
Около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем. Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.
Магнитное поле. Вектор магнитной индукции
Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).
Магнитная индукция B — векторная физическая величина, являющаяся силовой характеристикой магнитного поля.
Принцип суперпозиции магнитных полей — если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности
Линии магнитного поля. Картина линий поля полосового и подковообразного постоянных магнитов
3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током
Магнитное поле существует не только вокруг магнита, но и любого проводника с током. Опыт Эрстеда демонстрирует действие электрического тока на магнит. Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.
3.3.3 Сила Ампера, её направление и величина:
Сила Ампера — сила, действующая на проводник с током в магнитном поле. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.
где I — сила тока в проводнике;
B — модуль вектора индукции магнитного поля;
L — длина проводника, находящегося в магнитном поле;
α — угол между вектором магнитного поля и направлением тока в проводнике.
3.3.4 Сила Лоренца, её направление и величина:
Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца. Сила Лоренца определяется соотношением:
где q — величина движущегося заряда;
V — модуль его скорости;
B — модуль вектора индукции магнитного поля;
α — угол между вектором скорости заряда и вектором магнитной индукции.
Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно
Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного, например электрона), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца Fл.
Движение заряженной частицы в однородном магнитном поле
При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса R:
R=mv/qB