Как можно определить направление линий магнитной индукции

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Источник



Направление линий магнитной индукции

– определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки ( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Самоиндукция

Как уже известно, если по катушке идет переменный ток, то магнитный поток, который пронизывает катушку, будет изменяться. При этом, в этом же самом проводнике возникает ЭДС индукции. Это явление называется самоиндукция.

Во время самоиндукции контур, через который проходит ток, выполняет сразу две функции. Переменный ток в проводнике вызовет появление магнитного потока, через поверхность ограниченную контуром. Магнитный поток будет изменяться с течением времени, следовательно, в контуре будет возникать ЭДС индукции.

Напряженность возникающего вихревого поля будет направлена против тока. То есть, вихревое поле будет препятствовать нарастанию тока. Если бы ток уменьшался, то вихревое поле поддерживало бы ток. Явление самоиндукции можно наблюдать, например, на следующем опыте.

Рассмотрим следующую принципиальную электрическую схему. 

Параллельно источнику питания подключены две одинаковые лампочки. В цепь одной из них последовательно включено сопротивление, а в цепь другой – катушка индуктивности. При замыкании ключа, первая лампочка вспыхнет почти мгновенно.

Вторая лампочка включится только спустя некоторое время. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Теперь рассмотрим следующую схему.

Здесь при размыкании ключа в катушке возникнет ЭДС самоиндукции, которая будет стараться поддерживать ток. В момент размыкания ключа через гальванометр будет протекать ток, обратно направленный по отношению к первоначальному. Сила тока при размыкании может даже превысить силу тока, который был первоначально. Следовательно, ЭДС самоиндукции будет больше ЭДС батареи.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Вектор магнитной индукции

Действие магнитного поля проявляется в том, что оно влияет на проводник с током, создавая силу Ампера.

Рис. 1. Действие магнитного поля на проводник с током.

Сила Ампера зависит как от величины магнитной индукции, так и от взаимной ориентации линий магнитного поля и проводника с током. Следовательно, магнитная индукция должна характеризоваться модулем и направлением, то есть, быть векторной.

Направление индукции

Поскольку первым замеченным проявлением магнитного поля было действие на стрелку компаса, направление линий магнитного поля было принято за направление северной стрелки. Таким образом, линии, определяющие магнитный поток Земного магнитного поля, выходят из Южного полюса, тянутся вокруг земного шара, и входят в Северный полюс.

Для проводников и контуров с током были установлены специальные мнемонические правила, определяющие направление возникающего магнитного поля.

Правило буравчика: если направление поступательного движения острия буравчика при ввинчивании совпадает с направлением тока в проводнике, то направление вращательного движения буравчика в каждой точке совпадает с направлением вектора индукции магнитного поля.

Рис. 2. Правило буравчика.

Правило обхвата правой рукой для проводника с током: если большой палец правой руки указывает направление тока, то остальные пальцы будут показывать направление магнитных линий.

Правило обхвата правой рукой для катушки: если четыре пальца направляются вдоль витков катушки, в направлении тока в них, то большой палец укажет направление вектора магнитной индукции.

В правиле обхвата в обоих случаях большой палец укажет прямую линию, а остальные пальцы – охватывающую.

Рис. 3. Правило обхвата правой рукой.

Приведенные правила эквивалентны. Более удобным для определения направления вектора индукции магнитного поля является правило обхвата правой рукой. Однако, в большинстве классических источников приводится правило буравчика, поэтому знать его тоже желательно.

Модуль индукции

Модуль вектора индукции магнитного поля можно получить, используя закон Ампера:

$$\big|\overrightarrow F \big| =I{\big|\overrightarrow B\big|}Δl\thinspace sin\thinspace\alpha$$

Физический смысл магнитной индукции – это максимальная сила, которая может действовать на проводник единичной длины с единичным током.

Сила будет максимальной при условии $sin \alpha = 1$. Следовательно:

$$\big| B \big|={\big|F_{max}\big|\over IΔl}$$

Что мы узнали?

Магнитная индукция – это векторная величина. Ее модуль равен отношению максимальной силы, действующей со стороны поля на проводник с единичным током единичной длины, а для определения направления вектора используются мнемонические правила буравчика и обхвата правой рукой.

  1. /5

    Вопрос 1 из 5

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Основные формулы и методические рекомендации по решению задач на электромагнитную индукцию

«Превратить магнетизм в электричество…»

Майкл Фарадей

Данная тема будет посвящена рассмотрению основных формул и методических рекомендаций по решению задач на электромагнитную индукцию

Рассмотрим основные понятия электромагнитной индукции. Магнитныйпоток – это скалярная физическая величина, численно равная произведению модуля вектора магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и направлением линий магнитной индукцией.

Изменение магнитного потока влечет за собой такое явление, как электромагнитнаяиндукция . Чем быстрее изменяется магнитный поток, тем большая сила тока возникает в замкнутом контуре.

В результате явления электромагнитной индукции, в контуре возникает электродвижущая сила – она так и называется ЭДСиндукции .

Поскольку сила тока связана с индукцией порождаемого им магнитного поля, а магнитная индукция, в свою очередь, связана с магнитным потоком, возникает явление самоиндукции. Самоиндукция

– это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. То есть, при изменении силы тока, в цепи возникает индукционный ток, который стремится препятствовать этому изменению. В связи с этим, вводится такая величина, какиндуктивность – коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур. Иными словами, индуктивность характеризует способность проводника влиять на быстроту установления тока в цепи. Она, конечно, обнаруживает себя только при изменении силы тока в цепи.

Сведём в таблицу основные формулы по рассматриваемой теме.

Формула Описание формулы
Магнитный поток через контур площадью S

, гдеB – модуль вектора магнитной индукции,a – угол между направлением вектора магнитной индукции и нормалью к плоскости контура.

ЭДС индукции, возникающая в контуре при изменении магнитного потока на величину DF за промежуток времени Dt
ЭДС индукции, возникающая в движущемся со скоростью проводнике длиной , где a

– угол между направлением вектора магнитной индукции и направлением вектора скорости.

Коэффициент самоиндукции (индуктивность) контура.
ЭДС самоиндукции, возникающая в контуре при изменении силы тока на величину DI

за промежуток времени Dt .

Индуктивность соленоида объёмом V

, гдеm – магнитная проницаемость среды,m 0 – магнитная постоянная Гн/м,n – число витков на единицу длины.

Энергия магнитного поля катушки с индуктивностью L

, гдеI – сила тока, F – магнитный поток.

Энергия магнитного поля соленоида объёмом V

, гдеB — модуль вектора магнитной индукции.

Методические рекомендации по решению задач на электромагнитную индукцию

1. Установить причину изменения магнитного потока через контур. Исходя из формулы, причиной может стать либо изменение магнитной индукции поля, либо изменение площади контура, а также угла между направлением линий магнитной индукции и нормалью к плоскости контура (чаще всего, это поворот рамки с током).

2. Записать закон электромагнитной индукции (закон Фарадея).

3. Если речь идет о поступательном движении проводника, применить формулу, по которой вычисляется ЭДС индукции в движущемся проводнике.

4. Определить изменение магнитного потока, рассматривая его в выбранные моменты времени t

1 иt 2 (как правило, это должны быть те моменты времени, которые описываются в задаче).

5. Подставить найденное выражение для изменения магнитного потока в закон Фарадея. При необходимости, используя дополнительные уравнения, составить систему и решить её относительно искомых величин.

Что такое магнитный поток?

Магнитным потоком называется физическая величина пропорциональная количеству силовых линий магнитного поля на определённой площади пространства. Так как силовые линии являются абстрактным понятием, то, следовательно, магнитный поток характеризует интенсивность магнитного поля, то есть магнитную индукцию на данной площади. Магнитный поток обозначается Ф и имеет размерность Вб (Вебер).

Таким образом, магнитный поток можно выразить следующим выражением

где В – магнитная индукция,

S – площадь поверхности, для которой рассчитывается магнитный поток.

На рисунке изображены силовые линии магнитного поля, которые перпендикулярны к поверхности S, то есть угол между вектором магнитной индукции В и поверхностью S равен 90°. Однако часто бывает, что необходимо вычислит магнитный поток на плоскости не перпендикулярной вектору магнитной индукции. Для определения такого магнитного потока необходимо привести вектор магнитной индукции к нормали

Таким образом, итоговое выражение для нахождения магнитного потока будет иметь вид

где В – вектор магнитной индукции,

S – площадь поверхности, на которой находят магнитный поток,

α – угол между вектором магнитной индукции и нормалью к поверхности S.

Советуем изучить Заземляющий контур

Открытия Лоренца

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:

(1.3.)

Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд.

(1.4.)

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

Модуль вектора магнитной индукции. Сила Ампера

Подробности
Просмотров: 760

«Физика — 11 класс»

Магнитное поле действует с некоторой силой на проводник с током, а точнее на все элементы этого проводника.

В 1820 г. А. А м п е р сумел установить выражение для силы, действующей на отдельный элемент тока.

Модуль вектора магнитной индукции

От чего зависит сила, действующая на проводник с током в магнитном поле?
Пусть свободно подвешенный горизонтально проводник находится в поле постоянного подковообразного магнита.

Поле магнита сосредоточено в основном между его полюсами, поэтому магнитная сила действует практически только на часть проводника длиной , расположенную между полюсами.
Сила направлена горизонтально, перпендикулярно проводнику и линиям магнитной индукции.

m

Модуль вектора магнитной индукции определяется отношением максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока на длину этого отрезка:

Итак, в каждой точке магнитного поля можно определить направление вектора магнитной индукции и его модуль, если измерить силу, действующую на отрезок проводника с током.

Модуль силы Ампера.

В общем случае вектор магнитной индукции ожет составлять угол α с направлением отрезка проводника с током (с направлением тока).
Вектор магнитной индукции можно разложить на две составляющие.

Модуль силы зависит лишь от модуля составляющей вектора , перпендикулярной проводнику, т. е. от В = В sin α, и не зависит от составляющей В, направленной вдоль проводника.

Закон Ампера для силы, действующей на участок проводника с током в магнитном поле:

F = I | | Δl sin α

Модуль силы Ампера равен произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока.

Направление силы Ампера.

Направление силы Ампера определяется правилом левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец укажет направление силы, действующей на отрезок проводника.

Единица магнитной индукции.

За единицу модуля вектора магнитной индукции можно принять магнитную индукцию однородного поля, в котором на отрезок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила Fm = 1 Н.

Единица магнитной индукции равна

Единица магнитной индукции получила название тесла (Тл) в честь сербского ученого-электротехника Н. Тесла (1856—1943).

Следующая страница «Электроизмерительные приборы. Громкоговоритель»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы

Магнитное поле и его графическое изображение

На прошлых уроках мы выяснили, что причиной возникновения магнитной силы является наличие магнитного поля. Магнитное поле порождается движущимися электрическими зарядами и, в частности, электрическим током, поскольку это упорядоченный поток заряженных частиц. Например, магнитное поле образуется вокруг проводника с током. Каким же образом можно пояснить наличие магнитного поля у постоянных магнитов, у которых никаких видимых токов нет? Согласно гипотезе великого французского физика Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах такие кольцевые токи ориентируются одинаково. Магнитные поля, которые они образуют, направлены одинаково и усиливают друг друга. В результате образуется магнитное поле внутри и вблизи постоянного магнита. Когда мы ранее сталкивались с понятием «поле», то возникала проблема понимания, что же это такое. Если сравнивать с понятием «вещество», этой проблемы, очевидно, нет, так как из вещества созданы все окружающие нас тела, мы их можем потрогать, мы их можем увидеть. Что же касается магнитного поля, то это особый вид материи, который проявляется через взаимодействие с определенными телами. Вспомним, что гравитационное поле взаимодействует с телами, имеющими массу, то есть со всеми телами. При этом электрическое поле взаимодействует с телами, имеющими заряд, что же касается поля магнитного, то оно будет взаимодействовать с телами, в которых есть подвижные заряды. Из этого возникает вопрос: если поле нельзя увидеть, можно ли его как-то изобразить? Проведем эксперимент, возьмем обыкновенный полосовой магнит, положим его на стол и накроем обыкновенной прозрачной пластиковой накладкой. Сверху на поверхность накладки над магнитом аккуратно посыпаем железные опилки, в процессе посыпания мы можем увидеть интересный эффект: опилки будут распределяться неравномерным образом, образуя так называемые дорожки, и картина этих дорожек получается упорядоченной. Что же мы увидели и почему так происходит?

Рис. 4. Силовые линии магнитного поля в опыте  железными опилками

Наш опыт позволяет наглядно продемонстрировать так называемые силовые линии магнитного поля (или, как их еще именуют, просто магнитные линии). Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. В нашем эксперименте в роли магнитных стрелок выступают железные опилки. Они имеют очень простое свойство намагничиваться во внешнем магнитном поле и выстраиваться вдоль магнитных линий, причем по правилу взаимодействия магнитов, то есть противоположными полюсами друг к другу. Стоит отметить, что магнитные линии могут быть как прямолинейными, так и криволинейными, при этом правило их построения очень простое: в любой точке нахождения магнитной стрелки касательная, проведенная через нее должна быть и касательной к магнитной линии.

Для того чтобы правильно изображать магнитное поле, не проводя постоянных экспериментов с железными опилками и магнитами, необходимо знать правило его построени.

Во-первых, силовые линии магнитного поля являются замкнутыми либо уходят на бесконечность. Кроме этого, следует помнить, что они выходят из северного полюса магнита и входят в южный. Во-вторых, наиболее сильное магнитное поле является у полюсов магнитов, что изображается как более плотное расположение магнитных линий, в областях же с менее сильным магнитным полем магнитные линии изображают на большем расстоянии друг от друга.

Какие же выводы мы можем сделать из этих правил?

Магнитные линии позволяют изображать направление поля в данной точке. Магнитные линии позволяют определять силу действия этого поля.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.


Соленоидальный тип катушки Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника. Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1
2) 2
3) 3
4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.