Магнетизм для чайников: основные формулы, определение, примеры

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения

. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Описание

Изобретение относится к магнитометрии, а именно, к методам компонентных измерений геомагнитного поля вблизи ферромагнитных масс, например с борта объектов, имеющих собственное магнитное поле, и предназначено для определения угловых компонент геомагнитного поля.Известен способ определения направления вектора магнитной индукции (ВМИ), при котором определяют поправки на девиацию и затем используют их для коррекции результатов измерений компонент ВМИ геомагнитного поля на объекте (носителе), имеющем собственное магнитное поле. Однако использование таких методов возможно только при относительно небольшом (порядка 100-200 нТ) уровне собственного магнитного поля носителя (СПН).Известен также способ определения направления вектора магнитной индукции геомагнитного поля, включающий формирование дополнительных магнитных полей, каждое из которых равно по величине и противоположно по направлению проекции составляющих СПИ на направление ВМИ геомагнитного поля.При этом способе также определяют параметры суммарного магнитного поля (СМП) при фиксированных положениях носителя.Однако для осуществления данного способа носитель должен двигаться определенными магнитными курсами и совершать только определенные виды крена, причем отклонение от заданных эволюций вносит погрешности в определение составляющих СПН. Кроме того, эволюции должны совершаться в районе, где известны величина модуля ВМИ геомагнитного поля и его наклонение, что не всегда возможно.С целью повышения точности при определении направления вектора магнитной индукции геомагнитного поля способом, включающим определение параметров суммарного магнитного поля при фиксированных положениях носителя и формирование дополнительных магнитных полей, формируют два взаимно ортогональных дополнительных магнитных поля, каждое из которых равно по величине соответствующей составляющей суммарного магнитного поля и противоположно ей по направлению, определяют величину составляющей суммарного магнитного поля, ортогональной направлениям дополнительных магнитных полей, одновременно определяют магнитный курс, а также углы продольного и поперечного кренов носителя.На чертеже приведена блок-схема устройства, реализующего способ.Модульный преобразователь 1 расположен в системе 2 компенсации составляющих СМП. Он имеет также измеритель 3 углов поперечного крена, измеритель 4 углов продольного крена, измеритель 5 магнитного курса носителя. Работу модульного преобразователя 1 и измерителей 3-5, координирует синхронизатор 6. Выходы модульного преобразователя 1 и измерителей 3-5 подключены к вычислителю 7.Способ реализуется следующим образом.С помощью системы 2 компенсации компенсируют две любые компоненты суммарного магнитного поля в выбранной системе координат. Для примера выберем систему координат, жестко связанную с носителем. Модульный преобразователь 1 определяет компоненту суммарного магнитного поля, ортогональную направлениям магнитных полей системы 2. Одновременно с измерением этого поля (одновременность измерений достигается с помощью синхронизатора 6) определяют угол продольного крена, угол поперечного крена и магнитный курс носителя. Эти углы определяют с помощью измерителей углов 4, 3, 5 соответственно. Величина определенной компоненты магнитного поля и соответствующие ей значения углов запоминаются в вычислителе 7. После определенного количества измерений вычислитель решает систему уравнений. В результате ее решения определяют истинный магнитный курс носителя и магнитное наклонение. По истинному магнитному курсу определяется направление геомагнитного меридиана. По полученным данным судят о направлении ВМИ геомагнитного поля.Полная компенсация составляющих СПН позволяет системам стабилизации работать в разгруженном режиме, что повышает точность измерений и снижает габариты. Кроме того, используется изменение ориентации носителя, присущее любому объекту (судну, самолету). При этом отсутствует необходимость движения носителя определенными магнитными курсами.

Магнитное поле Земли

Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения

. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.

Магнитное поле

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами(северный и южный) . Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B

. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции ). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать «видимым» с помощью железных опилок.

Магнитное поле. Магнитная индукция. Правила буравчика и правой руки. Сила Ампера. Правило левой руки

Подробности
Просмотров: 532

– это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства стационарного магнитного поля

Постоянное (или стационарное) магнитное поле – это магнитное поле, неизменяющееся во времени .

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое, т.е. не имеет источника.

Магнитные силы

– это силы, с которыми проводники с током действуют друг на друга.

………………

Магнитная индукция

– это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

– это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле – это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

или

где

– направление тока в проводнике на нас перпендикулярно плоскости листа,

– направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

– аналогично магнитному полю соленоида.

Свойства линий магнитной индукции

– имеют направление;
– непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
– не пересекаются;
– по их густоте судят о величине магнитной индукции.

Направление линий магнитной индукции

– определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки

( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила Ампера

– это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Примеры:

или

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.
Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Следующая страница «Действие магнитного поля на движущийся заряд.Магнитные свойства вещества»

Назад в раздел «10-11 класс»

Электромагнитное поле – Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках —
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Тест по физике Правило левой руки 9 класс

Тест по физике Правило левой руки. Обнаружение магнитного поля по его действию на электрический ток для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.1. Направление тока в магнетизме совпадает с направлением движения

1) электронов 2) отрицательных ионов 3) положительных частиц 4) среди ответов нет правильного

2. Квадратная рамка расположена в однородном магнитном поле так, как показано на рисунке. Направление тока в рамке указано стрелками.

Сила, действующая на нижнюю сторону рамки, направлена

3. Электрическая цепь, состоящая из четырех прямолинейных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и ис­точника постоянного тока, находится в однородном магнит­ном поле, силовые линии которого направлены вертикально вверх (см. рис., вид сверху).

Сила, действующая на проводник 4-1, направлена

1) горизонтально вправо 2) горизонтально влево 3) вертикально вверх 4) вертикально вниз

4. Электрическая цепь, состоящая из четырех прямолиней­ных горизонтальных проводников (1-2, 2-3, 3-4, 4-1) и источника постоянного тока, находится в однородном магнитном поле, линии которого направлены горизонтально вправо (см. рис., вид сверху).

Сила, действующая на проводник 1-2, направлена

5. В основе работы электродвигателя лежит

1) действие магнитного поля на проводник с электрическим током 2) электростатическое взаимодействие зарядов 3) явление самоиндукции 4) действие электрического поля на электрический заряд

6. Основное назначение электродвигателя заключается в преобразовании

1) механической энергии в электрическую энергию 2) электрической энергии в механическую энергию 3) внутренней энергии в механическую энергию 4) механической энергии в различные виды энергии

7. Магнитное поле действует с ненулевой по модулю силой на

1) покоящийся атом 2) покоящийся ион 3) ион, движущийся вдоль линий магнитной индукции 4) ион, движущийся перпендикулярно линиям магнитной индукции

8. Выберите верное(-ые) утверждение(-я).

А. для определения направления силы, действующей на по­ложительно заряженную частицу, следует четыре паль­ца левой руки располагать по направлению скорости ча­стицы Б. для определения направления силы, действующей на от­рицательно заряженную частицу, следует четыре пальца левой руки располагать против направления скорости частицы

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

9. Положительно заряженная частица, имеющая горизонтально направлен­ную скорость v, влетает в область поля перпендикулярно магнитным ли­ниям. Куда направлена дей­ствующая на частицу сила?

1) Вертикально вниз 2) Вертикально вверх 3) На нас 4) От нас

10. Отрицательно заряженная частица, имеющая горизонтально направлен­ную скорость v, влетает в область поля перпендикулярно магнитным ли­ниям. Куда направлена дей­ствующая на частицу сила?

1) К нам 2) От нас 3) Горизонтально влево в плоскости рисунка 4) Горизонтально вправо в плоскости рисунка

Ответы на тест по физике Правило левой руки Обнаружение магнитного поля по его действию на электрический ток 1-3 2-4 3-2 4-3 5-1 6-2 7-4 8-3 9-4 10-2

Источник

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила

Правило часовой стрелки

.Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта

.Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:
    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
    rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца

Здесь важно о, так на неподвижные заряды магнитное поле не действует

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Модуль вектора магнитной индукции. Сила Ампера

Подробности
Просмотров: 760

«Физика — 11 класс»

Магнитное поле действует с некоторой силой на проводник с током, а точнее на все элементы этого проводника.

В 1820 г. А. А м п е р сумел установить выражение для силы, действующей на отдельный элемент тока.

Модуль вектора магнитной индукции

От чего зависит сила, действующая на проводник с током в магнитном поле?
Пусть свободно подвешенный горизонтально проводник находится в поле постоянного подковообразного магнита.

Поле магнита сосредоточено в основном между его полюсами, поэтому магнитная сила действует практически только на часть проводника длиной , расположенную между полюсами.
Сила направлена горизонтально, перпендикулярно проводнику и линиям магнитной индукции.

m

Модуль вектора магнитной индукции определяется отношением максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока на длину этого отрезка:

Итак, в каждой точке магнитного поля можно определить направление вектора магнитной индукции и его модуль, если измерить силу, действующую на отрезок проводника с током.

Модуль силы Ампера.

В общем случае вектор магнитной индукции ожет составлять угол α с направлением отрезка проводника с током (с направлением тока).
Вектор магнитной индукции можно разложить на две составляющие.

Модуль силы зависит лишь от модуля составляющей вектора , перпендикулярной проводнику, т. е. от В = В sin α, и не зависит от составляющей В, направленной вдоль проводника.

Закон Ампера для силы, действующей на участок проводника с током в магнитном поле:

F = I | | Δl sin α

Модуль силы Ампера равен произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока.

Направление силы Ампера.

Направление силы Ампера определяется правилом левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец укажет направление силы, действующей на отрезок проводника.

Единица магнитной индукции.

За единицу модуля вектора магнитной индукции можно принять магнитную индукцию однородного поля, в котором на отрезок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила Fm = 1 Н.

Единица магнитной индукции равна

Единица магнитной индукции получила название тесла (Тл) в честь сербского ученого-электротехника Н. Тесла (1856—1943).

Следующая страница «Электроизмерительные приборы. Громкоговоритель»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы