Наследие теслы: разработан метод безопасной беспроводной передачи электроэнергии на большие расстояния

Оглавление

Виды деятельности в электроэнергетике

Электрические компании занимаются бесперебойной доставкой электричества каждому потребителю. В энергетической сфере уровень занятости превышает этот показатель некоторых ведущих отраслей народного хозяйства государства.

Оперативно-диспетчерское управление

ОДУ играет важнейшую роль в перераспределении энергопотоков в обстановке изменяющегося уровня потребления. Диспетчерские службы направлены на то, чтобы передавать электрический ток от производителя потребителю в безаварийном режиме. В случае каких-либо аварий или сбоев в линиях электропередач ОДУ выполняют обязанности оперативного штаба по быстрому устранению этих недостатков.

Энергосбыт

В тарифах на оплату за потребление электричества включены расходы на прибыль энергокомпаний. За правильностью и своевременностью оплаты за потреблённые услуги следит служба – Энергосбыт. От неё зависит финансовое обеспечение всей энергосистемы страны. К неплательщикам применяются штрафные санкции, вплоть до отключения электроснабжения потребителя.

Энергосистема – кровеносная система единого организма государства. Производство электроэнергии является стратегической сферой безопасности существования и развития экономики страны.

Способы передачи электроэнергии

Знакомство с пиковыми и другими зонами тарификации электроэнергии

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.


Прокладка кабелей

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Сущностные особенности работы устройства

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

  1. длина 30 см ПВХ (чем больше, тем лучше);
  2. медная эмалированная проволока (вторичный провод);
  3. березовая доска для основания;
  4. 2222A транзистор;
  5. подсоединение (первичный) провод;
  6. резистор 22 кОм;
  7. переключатели и соединительные провода;
  8. аккумулятор 9 вольт.

Базовые элементы электрогенерирующей установки

Двухэлементная установка: колебательная и приемная. Первый элемент — трансформатор Тесла, который питается от микросхемы IR2153. Качер будет работать на частоте 230 килогерц, работая на микросхеме с частотой 23 килогерца. На выходе будут 2 полевых транзистора. Катушка намотана медным проводом 0,35 мм. 950 оборотов. Есть почти все подробности. Единственный недостаток — диета. В следующем видео вы можете увидеть, как получилось устройство. В этом китайском магазине продаются готовые роллы.

Другая часть диаграммы более сложна. Выйдет дороже. Используются редкие ферриты. Но игра стоит свеч. Схема полностью не соответствует привычным представлениям физики и электроники.

Принципы передачи электричества

До последнего времени наиболее оптимальной и популярной считалась магнитно-резонансная система CMRS. Ее создали еще в 2007 году. Благодаря этой технологии специалистам удавалось передавать электричество на расстояние в 2.1 метр. Однако ее не удавалось запустить в массовое производство, так как частота передачи была слишком высокой, а катушки имели сложную конфигурацию и были больших размеров.

Электроэнергия без проводов позволяет заряжать мобильный телефон

Сравнительно недавно ученые из Южной Кореи создали новый передатчик, который позволяет передавать электричество на расстояние в 5 метров. Система не имеет никаких недостатков и при необходимости ее можно будет установить в стены квартиры.

В результате проведения этого эксперимента на частоте в 20 кГц специалистам удалось передать:

  • 209 Вт на 5 метров;
  • 471 Вт на 4 метра;
  • 1403 Вт на 3 метра.

Благодаря беспроводному излучению можно будет запитать большие ЖК телевизоры, которые требуют всего 40 Вт на расстоянии в 5 метров. Сейчас существуют и другие технологии, которые позволяют передавать электроэнергию без проводов. К ним можно отнести:

  1. Лазерное излучение. Дальность действия достаточно большая. Однако необходима прямая видимость между приемником и передатчиком. Компания Lockheed Martin уже испытала беспилотный летательный аппарат Stalker, который питается от лазерного луча и способен оставаться в воздухе до 48 часов.
  2. Микроволновое излучение. Этот вид позволяет обеспечивать большую дальность действия, но стоимость оборудования достаточно высока. В качестве передатчика электроэнергии будет использоваться радиоантенна, которая создает микроволновое излучение. А приемнике устанавливают ректенну, которая преобразует электрический ток в принимаемое микроволновое излучение.

При увеличении расстояния передачи значительно увеличивается стоимость и габариты оборудования. В свою очередь микроволновое излучение может приносить вред для окружающей среды. Тут вы можете прочесть про роботов в сфере энергетики.

Как передать энергию по одному проводу

В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии. Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже.

Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм. При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах

Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 — 0.5 мм

Катушки L2 — L4 должны быть одинаковые!

Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор.

Видео с работой данной схемы

Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.

Отличие от других схем

Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров. При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи. Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.

Некоторые опыты

Опыт с лампочкой

Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.

Опыт с катушкой вокруг провода

Если сделать катушку, и продеть через нее передающий приемнику энергию провод, то на катушке появится ЭДС, как будто переменное магнитное поле направлено вдоль проводника, а не вокруг него.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

При каком напряжении выгоднее передавать электрическую энергию — Все об электричестве

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры.Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы.Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные – более 750-ти кВ.Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).

Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год

Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
Технология Переносчик электрической энергии Что позволяет передавать электрическую энергию
Индуктивная связь Магнитные поля Витки провода
Резонансная индуктивная связь Магнитные поля Колебательные контуры
Емкостная связь Электрические поля Пары проводящих пластин
Магнитодинамическая связь Магнитные поля Вращение постоянных магнитов
СВЧ излучение Волны СВЧ Фазированные ряды параболических антенн
Оптическое излучение Видимый свет / инфракрасное излучение / ультрафиолетовое излучение Лазеры, фотоэлементы

Схема передачи энергии от электростанции до потребителя

Что такое коммерческий учет электроэнергии

Главная электростанция (1) вырабатывает напряжение порядка 10-12 кВ. Затем оно повышается с помощью трансформатора (2) до более высокого уровня: 35, 110, 220, 400, 500 или 1150 кВ. После по кабельной или воздушной линии (3) энергия передаётся на расстояния от единиц до тысяч километров и попадает на понижающую подстанцию. На ней также установлен трансформатор (4), который преобразует сотни киловольт снова в 10-12 тысяч вольт. Далее следует ещё один каскад понижения до 380/220 В (5). Это напряжение является конечным и раздаётся по потребителям (6), т.е. жилым домам, больницам и т.д.


Транспортировка электрической энергии

Беспроводная передача электроэнергии, первые опыты

В 1888 году Генрих Герц экспериментально подтвердил существование электромагнитных волн, предсказанных Максвеллом. Его искровой передатчик с прерывателем на основе катушки Румкорфа мог производить электромагнитные волны частотой до 0,5 гигагерц. Которые могли быть приняты несколькими приемниками, настроенными в резонанс с передатчиком.

Генрих Герц и его творение

Приемники могли располагаться на расстоянии до 3 метров, и при возникновении искры в передатчике, искры возникали и в приемниках. Так были проведены первые опыты по беспроводной передаче электрической энергии с помощью электромагнитных волн.

В 1891 году Никола Тесла, занимаясь исследованием переменных токов высокого напряжения и высокой частоты, приходит к выводу, что крайне важно для конкретных целей подбирать как длину волны, так и рабочее напряжение передатчика, и совсем не обязательно делать частоту слишком высокой. Ученый отмечает, что нижняя граница частот и напряжений, при которых ему на тот момент удалось добиться наилучших результатов, — от 15000 до 20000 колебаний в секунду при потенциале от 20000 вольт. Советуем изучить Устройство плавного пуска

Советуем изучить Устройство плавного пуска

Никола Тесла

Тесла получал ток высокой частоты и высокого напряжения, применяя колебательный разряд конденсатора. Он заметил, что данный вид электрического передатчика пригоден как для производства света, так и для передачи электроэнергии для производства света.

В период с 1891 по 1894 годы ученый многократно демонстрирует беспроводную передачу, и свечение вакуумных трубок в высокочастотном электростатическом поле. При этом отмечая, что энергия электростатического поля поглощается лампой, преобразуясь в свет. А энергия электромагнитного поля, используемая для электромагнитной индукции с целью получения аналогичного результата, в основном отражается, и лишь малая ее доля преобразуется в свет. Даже применяя резонанс при передаче с помощью электромагнитной волны, значительного количества электрической энергии передать не удастся, утверждал ученый. Его целью в этот период работы была передача именно большого количества электрической энергии беспроводным способом.

Вплоть до 1897 года, параллельно с работой Тесла, исследования электромагнитных волн ведут: Джагдиш Боше в Индии, Александр Попов в России, и Гульельмо Маркони в Италии.

Вслед за публичными лекциями Тесла, Джагдиш Боше выступает в ноябре 1894 года в Калькутте с демонстрацией беспроводной передачи электричества, там он зажигает порох, передав электрическую энергию на расстояние.

После Боше, а именно 25 апреля 1895 года, Александр Попов, используя азбуку Морзе, передал первое радиосообщение, и эта дата (7 мая по новому стилю) отмечается теперь ежегодно в России как «День Радио».

В 1896 году Маркони, приехав в Великобританию, продемонстрировал свой аппарат, передав с помощью азбуки Морзе сигнал на расстояние 1,5 километра с крыши здания почтамта в Лондоне на другое здание. После этого он усовершенствовал свое изобретение и сумел передать сигнал по Солсберийской равнине уже на расстояние 3 километра.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.