Оглавление
- Критерии выбора вида сервопривода
- Разновидности сервоприводов для отопления
- Назначение и устройство
- Устройство и принцип работы сервомоторов
- Подключение серводвигателя к ардуино
- Основные производители
- Принцип работы
- Подключаем джойстик
- Примеры работы с Arduino
- Элементы сервопривода
- Характеристики сервопривода
- Принцип работы цифровой конструкции
- Процесс рекуперации
- Схема и типы сервоприводов
Критерии выбора вида сервопривода
В данном разделе постараемся ответить на вопрос. На чем основывается выбор приборов того или иного вида.
Если вырешили оснастить свою отопительную систему «теплый водяной пол» сервоприводами, учитывайте параметры эксплуатации вашего отопления. В каком положении большую часть времени должен находиться клапан. В той ситуации, когда для вас теплый пол является основным вариантом обогрева жилых помещений, когда горячий теплоноситель постоянно поступает в трубопровод, делайте ставку на сервомотор нормально открытый. Такой вид является идеальным в условиях длительного отопительного сезона.
Для регионов с теплым климатом подойдет сервомотор нормальный закрытый. Если вам не страшна размораживание отопительного контура, и вы периодически включаете напольный обогрев, этот прибор будет вполне справляться со своими функциями.
В большинстве случае подобные устройства в домашних системах отопления с греющими полами не используются
Поэтому при покупке, обратите внимание, требуется или нет к прибору монтаж электронного регулятора. Если в инструкции написано что такое оснащение необходимо, значит, вы имеете дело с электронным сервоприводом
Скажем сразу, такой прибор использовать в домашних условиях нецелесообразно и нерентабельно.
Обязательно прочтите: как сделать водяной пол от газового котла?
Разновидности сервоприводов для отопления
Сегодня особенно распространены определённые сервоприводы для тёплых полов. Их все разделяют на две категории, отличающиеся принципом действия и функциональными возможностями. В зависимости от конструкции выделяют:
- закрытые;
- открытые.
Уже можно догадаться, какой принцип действия у первого и второго варианта.
Закрытые сервомоторы характеризуются открытым положением без наличия питания. При подаче сигнала активизируется механическая часть и перекрывает доступ жидкости в систему.
Сервопривод нормально закрытый для теплого пола
Открытые приборы работают наоборот. В спокойном состоянии сервомотор находится в закрытом состоянии, а при подаче сигнала механическая часть начинает действовать и тем самым позволяет жидкости поступать в трубопровод.
Какой больше вид сервопривода подходит в вашей системе, решать только вам. Нужно адекватно оценить возможности своей отопительной системы, а также погодные условия.
В большинстве случаев приобретают, конечно, нормально открытые сервоприводы для коллектора тёплого водяного пола.
STOUT — электротермический компактный сервопривод нормально открытый, 230 В
Если устройство поломается, то тепловой носитель в трубопроводе продолжит свою циркуляцию и оставит пол тёплым на определённое время. Это большой плюс особенно для домов за городом, которые находятся в зоне частых холодов.
В связи со способом питания выделяют устройства, питающиеся от:
- Электричества напряжением 24 В (оснащены инверторами).
- Подключающиеся к сети переменного тока 220 В.
Известен ещё один вид прибора, однако он используется очень редко. Это устройства, выставляемые в нормальное положение исходя из технологических требований системы отопления. Их называют универсальными, они могут функционировать как в нормально открытом состоянии, так и в нормально закрытом.
К коллектору возможно подключение всех трёх сервоприводов. Главное, чтобы настройка, балансировка и эксплуатационные условия были правильными.
Как собрать коллектор для теплого пола своими руками?
Назначение и устройство
Широкое применение сервопривод нашел в робототехнике, машиностроении, автомобилестроении, автоматизации процессов в производстве. С его помощью приводятся в действие манипуляторы, выполняется открытие (полное или неполное) или закрытие (прикрытие) заслонок, в станкостроении для подачи режущего инструмента и других исполнительных механизмов.
Представляет собой устройство, состоящее их электродвигателя, редуктора, датчика положения (энкодера) или резистора и контроллера (устройства управления).
Простыми словами – это электромеханический привод, который через внутреннюю обратную связь, устанавливает точное положение вала механизма в зависимости от внешних управляющих сигналов.
На рисунке представлен разрез устройства:
Сервоприводы выпускаются различной мощности и назначения: небольшой мощности от 0,05 кВт, применяемые в автомобилестроении и робототехнике, например, sg90 и значительной мощности в 15 кВт. Последние монтируются в промышленных манипуляторах, станках с ЧПУ, для управления задвижками в нефтегазовой промышленности и т.д.
Не всегда в качестве мотора на сервопривод монтируется электродвигатель. В качестве привода может использоваться цилиндр со штоком, приводящийся в движение сжатым воздухом или жидкостью.
Устройство и принцип работы сервомоторов
Основным рабочим элементом сервопривода является сильфон. Т.е. такая же деталь, как и в трехходовом клапане. Небольшой по размерам, герметичный цилиндр с эластичным корпусом заполнен веществом, чутко реагирующим на температуру. В зависимости от того, происходит повышение или понижение температуры, происходит соответственно изменение объема вещества. Рисунок – схема наглядно демонстрирует устройство сервомотора, где основным местом занимает сильфон.
Сильфон находится в тесном контакте с электрическим нагревательным элементом. Получая сигнал с термостата, нагревательный элемент включается от сети и включается в работу. Внутри сильфона вещество подогревается и увеличивается в объеме. Таким образом, увеличившийся в размерах цилиндр начинает давить на шток, меняя его положение и перекрывая путь потоку теплоносителя. Оценивая работу сервопривода можно сделать вывод – прибор не оснащен никакими моторами, в нем нет никаких шестерней и передаточных звеньев. Обычная рабочая связь «тепловая энергия и электричество». Отсюда и распространенное название приборов, термоэлектрические регуляторы.
Для того, что бы клапан снова стал открытым, весь процесс повторяется только в обратном направлении. Отсутствие электропитания приводит к тому, что нагревательный элемент перестает работать. Следовательно, вещество внутри цилиндра остывает, уменьшаясь в объеме. Давление на шток уменьшается, он подымается, действуя на клапан, а, следовательно, открывается доступ горячей воды в систему.
Ознакомившись с принципом работы устройства, важно помнить, что для механического действия клапана необходимо определенное время. Несмотря на то, что при поступлении сигнала с термостата, нагревательный элемент начинает нагревать вещество внутри цилиндра
Время, необходимое на изменения физического состояния жидкости, составляет 2-3 минуты, поэтому клапан приводится в действие не сразу.
В отличие от нагрева, остывание жидкости проходит медленнее. На обратный процесс, т.е. на закрытие клапана потребуется уже не 2-3 минуты, а 10-15 минут. При перегреве каждый сервомотор должен автоматически отключаться. Для этого в конструкции предусмотрен механизм аварийного отключения.
Для примера: используемые в работе коллекторной группы сервоприводы не все оснащаются цилиндрами и баллонами с веществом. Ест модели, в которых эту роль играют термоэлементы, напоминающие собой пружину или пластину, которые под действием все того же нагревательного элемента нагреваются. Расширяясь, эти детали воздействуют опять же, на шток, приводя в конечном итоге в рабочее состояние клапан. Определить в каком положении находится клапан, можно по изменению внешнего вида сервопривода. Выдвигающийся элемент сигнализирует о работе прибора. Если этого не происходит, значит, ваш прибор неправильно подключен или система отопления работает с перебоями.
Подключение серводвигателя к ардуино
Сервопривод обладает тремя контактами, которые окрашены в разные цвета. Коричневый провод ведет к земле, красный – к питанию +5В, провод оранжевого или желтого цвета – сигнальный. К Ардуино устройство подключается через макетную указанным на рисунке образом. Оранжевый провод (сигнальный) подключается к цифровому пину, черный и красный — к земле и питанию соответственно. Для управления серводигателем не требуется подключение именно к шим-пинам — принцип управления серво мы уже описывали ранее.
Не рекомендуется подключать мощные серво напрямую к плате , т.к. они создают для схемы питания Arduino ток, не совместимый с жизнью — повезет, если сработает защита. Чаще всего симптомы перегрузки и неправильного питания сервопривода заключаются в «дергании» серво, неприятному звуку и перезагрузке платы. Для питания лучше использовать внешние источники, обязательно объединяя земли двух контуров.
Основные производители
На сегодняшний день в лидерах по изготовлению качественных систем водяных тёплых полов с различными характеристиками можно отметить производителей следующих торговых марок.
- Luxor.
- Valtec.
- Watts.
- Rehau.
- Neptun.
- Henco.
Luxor
Оборудование водяных тёплых полов Luxor на рынках России представлено 4-мя типами. Система на базе двух коллекторных балок (возвратной и подающей гребёнки) имеет марку CD 468 с количеством выходов от 3 до 12. Модель CD 477 оснащена расходомерами. Серия моделей CD 468 М имеет шаровые краны, оснащённые датчиками температуры. Ряд систем CD 473 М отличает наличие воздухоотоводчиков и сливных кранов. Системы Люксор чувствительны и требуют постоянного контроля техсостояния оборудования.
Valtec
Фирма полностью переключилась на использование в контурах труб из сшитого полиэтилена. В отличие от простого полиэтилена, молекулы которого не взаимосвязаны, сшитый полимер обладает тесными молекулярными связями, что придаёт изделиям высокую прочность. Недостатком является то, что трубопроводы с трудом сохраняют изгибы петли, приходится их крепить дополнительными хомутами.
Watts
Компания Watts отличается тем, что поставляет на рынок обогревательного оборудования тепловые узлы полностью укомплектованными и готовыми к подключению. Этим достигается эффект быстрого монтажа. В последних разработках компания представляет радиоволновой терморегулятор, что позволяет устанавливать его в любом месте помещения.
Rehau
Фирма Рехау поставляет оборудование высокого качества, которое отличается надёжностью, небольшими размерами и несложной установкой. Блок управления монтируют в течение короткого времени, что позволяет провести быстрое подключение сервоприводов к коммутатору. Некоторым недостатком является высокая стоимость оборудования.
Neptun
Единственная российская фирма, поставляющая системы водяных тёплых полов с гофрированными трубами из нержавеющей стали. Они отличаются от полимерных аналогов тем, что обладают практически идеальной теплоотдачей, не боятся заморозки и гидроударов. Комплект поставки оборудования включает все необходимые фитинги, теплоизоляционные маты и циркуляционный насос.
Henco
Производитель в основу напольного водяного отопления заложил многослойную конструкцию из металлопластиковых труб. Немецкая фирма гарантирует работу отопительной системы на протяжении нескольких десятилетий. В торговой сети нередко попадаются подделки с торговой маркой Хенко. Оригинальная продукция изготавливается только в Бельгии.
Автоматика для водяного тёплого пола
Watch this video on YouTube
Принцип работы
программа управления серводвигателями Mach3
Основным аспектом функционирования серводвигателей является условия его работы в рамках системы G-кодов, то есть команд управления, содержащихся в специальной программе. Если рассматривать данный вопрос на примере ЧПУ, то сервомоторы функционируют во взаимодействии с преобразователями, которые изменяют величину напряжения на якоре или на возбуждающей обмотке двигателя, исходя из уровня входного напряжения. Обычно управление всей системой производится с помощью стойки ЧПУ. При получении команды из стойки пройти определенное расстояние вдоль координатной оси Х, в субблоке цифрового аналогового преобразователя стойки создается напряжение некоторой величины, которое передается для питания привода указанной координаты. В сервомоторе начинается вращение ходового винта, с которым связан энкодер и исполнительный орган станка. В первом происходит выработка импульсов, подсчитываемых стойкой. Программа предусматривает, что некоторое количество сигналов с энкодера соответствует определенному расстоянию прохождения исполняющего механизма. При получении нужного количества импульсов аналоговый преобразователь выдает нулевое значение выходного напряжения, и сервомотор останавливается. В случае смещения под внешним воздействием рабочих элементов станка на энкодере формируется импульс, обсчитываемый стойкой, на привод подается напряжение рассогласования, и якорь двигателя поворачивается до получения нулевого значения рассогласования. В результате обеспечивается точное удержание рабочего элемента станка в заданном положении.
Подключаем джойстик
Представленная на рисунке ниже схема подключения может вас немного смутить. Но поверьте, все не так сложно как кажется на первый взгляд. Опять таки для подключения используем монтажную плату.
1. На модуле джойстика один выход U/R+ и один L/R+. Это выходы для подключения питания. Эти выходы подключаются к пину 5V на Arduino.
2. Также есть два разъема L/R и два разъема U/D. Они подключаются к аналоговым входам А3 и А4.
3. Земля на джойстике подключается к земле на Arduino.
Не забудьте перепроверить подключение. Помните, что большинство ошибок в проектах возникает именно из-за неправильного подключения. Особенно если вы используете монтажную плату, которая обрастает кучей коннекторов.
Примеры работы с Arduino
Схема подключения
Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:
Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.
Ограничение по питанию
Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.
Рассмотрим на примере подключения 12V сервопривода:
Ограничение по количеству подключаемых сервоприводов
На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.
По аналогии подключим 2 сервопривода
Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.
Альтернативная библиотека Servo2
Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками / передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.
Все методы библиотеки Servo2 совпадают с методами Servo.
Элементы сервопривода
Рассмотрим составные части сервопривода.
Электромотор с редуктором
За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.
Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.
Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.
Позиционер
Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.
Плата управления
За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.
Выходной вал
Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками.Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.
Выходной шлейф
Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:
-
Красный — питание сервомотора. Подключите к плюсовому контакту источнику питания. Значения напряжение смотрите в характеристиках конкретно вашего сервопривода.
-
Чёрный — земля. Подключите к минусовому контакту источника питания и земле микроконтроллера.
-
Жёлтый — управляющий сигнал. Подключите к цифровому пину микроконтроллера.
Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.
Характеристики сервопривода
Рассмотрим основные характеристики сервоприводов.
Крутящий момент
Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.
Скорость поворота
Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.
Форм-фактор
Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.
Форм-фактор | Вес | Размеры |
---|---|---|
Микро | 8-25 г | 22×15×25 мм |
Стандартный | 40-80 г | 40×20×37 мм |
Большой | 50-90 г | 49×25×40 мм |
Внутренний интерфейс
Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?
Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.
Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.
Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.
Коллекторные и бесколлекторные моторы
Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.
Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.
Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.
Принцип работы цифровой конструкции
Линейного движения сервопривод — что это? На самом деле указанное устройство является регулятором с обратной связью. На сегодняшний день модели очень востребованы. Для различных систем отопления они подходят идеально. Конвертеры в них чаще всего используются на три контакта. Статорные коробки устанавливаются различной мощности. Двигатели могут использоваться только синхронного типа.
ЧИТАТЬ ДАЛЕЕ: Как подарить подарок интересно и оригинально: необычные идеи вручения подарка
В противном случае блоки питания не выдерживают предельного напряжения. В качестве приводов в данной ситуации применяются редукторные коробки. Для передачи крутящего момента от двигателя используются шестерни. Да сегодняшний день на рынке представлено множество модификаций с выходным валом. В данном случае регулировать скорость оборотов можно при помощи котроллера.
Несколько лет тому назад все сервосхемы были аналоговыми. Сейчас появились и цифровые конструкции. В чем же разница их работы? Давайте обратимся к информации официального характера.
Последний виток развития — появление устройства на цифровой основе. Эти агрегаты обладают существенными преимуществами даже перед моторами коллекторного типа. Хотя имеются и некоторые минусы.
Внешне аналоговые и цифровые устройства неразличимы. Отличия фиксируются лишь на платах устройств. Вместо микросхемы на цифровом агрегате можно увидеть микропроцессор, анализирующий сигнал приемника. Он и управляет двигателем.
Совершенно неправильно говорить о том, что аналоговая и цифровая модификация в корне различаются при функционировании. Они могут обладать одинаковыми двигателями, механизмами и потенциометрами
Таким образом, становится понятно, сервопривод, что это такое?
Процесс рекуперации
Зачастую запускается при переключении режимов работы сервомотора: что это такое? Это возвратная энергия, которая выделяется при смене знака (направления движения) относительно вращающего момента. Обычно она не слишком большая, но все равно собирается на конденсаторах, увеличивая, таким образом, напряжение на звене постоянного тока.
В тех же случаях, когда данное неравенство абсолютных значений достигнет серьезной отметки, пороговый уровень емкости шины будет пробит. И тогда все излишки будут сброшены в тормозной резистор.
Мы постарались рассмотреть все особенности данных механизмов и подчеркнуть удобство и перспективность их использования. Предлагаем также взглянуть на схемы сервоприводов, фото и видеоролики на эту тему – чтобы вы могли дополнить свое представление.
Схема и типы сервоприводов
Принцип работы сервопривода основан на обратной связи с одним или несколькими системными сигналами. Выходной показатель подается на вход, где сравнивается его значение с задающим действием и выполняются необходимые действия — например, выключается двигатель. Самым простым вариантов реализации является переменный резистор, который управляется валом — при изменении параметров резистора меняются параметры питающего двигатель тока.
В реальных сервоприводов механизм управления гораздо сложнее и использует встроенные микросхемы-контроллеры. В зависимости от типа используемого механизма обратной связи выделяют аналоговые и цифровые сервоприводы. Первые используют что-то, похожее на потенциометр, вторые — контроллеры.
Вся схема управления серво находится внутри корпуса, управляющие сигналы и питание подаются, как правило, идут по трем проводам: земля, напряжение питания и управляющий сигнал.
Сервопривод непрерывного вращения 360, 180 и 270 градусов
Выделяют два основных вида серводвигателей — с непрерывным вращением и с фиксированным углом (чаще всего, 180 или 270 градусов). Отличие серво ограниченного вращения заключается в механических элементах конструкции, которые могут блокировать движение вала вне заданных параметрами углов. Достигнув угла 180, вал окажет воздействие на ограничитель, а тот отдаст команду на выключение мотора. У серводвигателей непрерывного вращения таких ограничителей нет.
Материалы шестерней сервопривода
У большинства сервоприводов связующим звеном между валом и внешними элементами является шестеренка, поэтому очень важно, из какого материала она сделана. Наиболее доступных вариантов два: металлические или пластмассовые шестерни
В более дорогих моделях можно найти элементы из карбона и даже титана.
Пластмассовые варианты, естественно, дешевле, проще в производстве и часто используются в недорогих моделях серво. Для учебных проектов, когда сервопривод делает несколько движений, это не страшно. Но в серьезных проектах использование пластмассы невозможно, в виду очень быстрого снашивания таких шестеренок под нагрузкой.
Металлические шестеренки надежнее, но это, безусловно, сказывается как на цене, так и на весе модели. Экономные производители могут сделать часть деталей пластмассовыми, а часть металлическими, это тожно нужно иметь в виду. Ну и, естественно, что в самых дешевых моделях даже наличие металлической шестеренки не является гарантией качества.
Титановые или карбоновые шестерни — самый предпочтительный вариант, если вы не ограничены бюджетом. Легкие и надежные, такие сервоприводы активно используются для создания моделей автомобилей, дронов и самолетов.
Преимущества серводвигателей
Широкое использование сервоприводов связано с тем, что они обладают стабильной работой, высокой устойчивостью к помехам, малыми габаритами и широким диапазоном контроля скорости. Важными особенностями сервоприводов являются способность увеличивать мощность и обеспечение обратной информационной связи. И этого следует, что при прямом направлении контур является передатчиком энергии, а при обратном – передатчиком информации, которая используется для улучшения точности управления.
Отличия серво и обычного двигателя
Включая или выключая обычный электрический двигатель, мы можем сформировать вращательное движение и заставить двигаться колеса или другие предметы, прикрепленные к валу. Движение это будет непрерывным, но для того, чтобы понять, на какой угол повернулся вал или сколько оборотов он сделал, потребуется устанавливать дополнительные внешние элементы: энкодеры. Сервопривод уже содержит все необходимое для получения информации о текущих параметрах вращения и мжет самостоятельно выключаться, когда вал повернется на необходимый угол.
Отличия серво и шагового мотора
Важным отличием серводвигателя от шагового двигателя является возможность работать с большими ускорениями и при переменной нагрузке. Также серводвигатели обладают более высокой мощностью. Шаговые двигатели не обладают обратной связью, поэтому может наблюдаться эффект потери шагов, в серводвигателях потери шагов исключены – все нарушения будут зафиксированы и исправлены. При всех этих явных преимуществах серводвигатели являются более дорогостоящими приборами, чем шаговые двигатели, обладают более сложной системой подключения и управления и требуют более квалифицированного обслуживания
Важно отметить, что шаговые двигатели и сервоприводами не являются прямыми конкурентами – каждое из этих устройств занимает свою определенную сферу применения