Оглавление
- Предохранители автомобильные
- Как проверить предохранитель с помощью мультиметра
- Выберите пакет предохранителей
- Монтажный блок в салоне
- Предохранители переменного тока в цепях постоянного тока
- Сколько автоматических выключателей можно использовать
- Устройство автомата
- Типы и виды автомобильных предохранителей
- Виды и типы плавких предохранителей
- Пример выбора плавких предохранителей
- Почему важно не перепутать предохранители?
- Предохранители электромеханической конструкции
- Электронные предохранители и ограничители тока
- Оценка скорости срабатывания предохранителя
Предохранители автомобильные
Предохранители автомобильная – очень важная деталь любого транспортного средства. На приобретение хороших и качественных деталей тратится не один час, вот и на покупку данной вещи стоит потратить положенное количество времени.
Некоторые относятся пренебрежительно к выбору таких деталей, как предохранители автомобильные. Мол, что сложного – это ведь просто пластмассовая деталь, внутри которой находится плавкий элемент. Можно купить любую. Но подобный подход беспечен. Если приобрести некачественно изделие, то можно в ответ получить две неприятности.
Если предохранители автомобильные перегорают некстати, то можно оставить свою машину без функционирующих в дождь стеклоочистителей. Обидно и плохо, однако это еще не самое страшное. Вот второе сложнее. Предохранитель может не сработать во время замыкания. Вот последствия этого случая достаточно опасны, так как в результате может сгореть проводка (как минимум) или автомобиль. Косвенной причиной проблем, возникающих в автомобиле, может стать короткое замыкание. Однако основная проблема обычно кроется в такой детали, как авто-предохранители. Иногда из-за поднимающегося напряжения предохранитель не выдерживает, и пластиковый корпус начинает плавиться. И из-за такой мелочи вполне может сгореть весь автомобиль! Дабы избежать этой ситуации, стоит рассмотреть кое-какие правила, которые стоит учесть, выбирая такую важную деталь, как предохранители автомобильные.
Приобретать лучше набор, а не поштучно
И обязательно нужно обратить своё внимание на информацию, что дана о производителе. Она указана на упаковке
Если же она отсутствует – то лучше не приобретать данный комплект. Если пластмасса, из которой выполнены предохранители автомобильные, прозрачная, то тогда хозяину машины можно будет выявить неисправность этой детали визуально, если плавкий элемент перегорит. Однако существуют изделия, которые выполнены из непрозрачного пластика, а функционируют замечательно, соответствуя всем стандартам и допускам. Теперь стоит уделить внимание техническим требованиям, которые предъявляются к этим деталям.
Исправные предохранители для авто должны осуществлять свою работу на протяжении ста часов при токе, который превышает на 10 процентов номинальный (не допускается оплавление корпуса). И они не должны перегорать! На штырях допускается падение напряжения до 150 мВ (для предохранителей 7,5 и 3,5 , а также для 15 и 10 А) и до 115 мВ (30 А), 125 мВ (25 А), 130 мВ (20 А). Данное изделие должно срабатывать за 0,15-5 секунд (при токе, который в два раза превышает номинальный).
Итак, что сделать, если предохранитель всё-таки неисправный? Сначала нужно вынуть его из гнезда, а потом вставить на освободившееся место новый (только обязательно на нем должна быть та же цифра). Для того чтобы изъять данную деталь, нужно использовать специальную пластмассовую прищепку, которая обычно идет в комплекте с самим изделием
Однако, если принять во внимание все выше указанные рекомендации, то предохранитель прослужит долгое время
Как проверить предохранитель с помощью мультиметра
Если у вас есть мультиметр, тогда проверить предохранитель можно двумя способами.
Проверка напряжения
Первый способ — измерить напряжение на обоих контактах (выводах) предохранителя. На маленьких предохранителях есть верхняя часть обоих выводов, выступающая сквозь корпус предохранителя. Это позволяет измерять напряжение на каждой стороне предохранителя, не вынимая его.
Установите мультиметр в режим измерения постоянного напряжения (=U). Подсоедините щуп COM (черный) к минусу или металлической части кузова. Установите стояночный тормоз и поверните зажигание в положение ON (ВКЛ).
Зажигание должно быть включено, потому что при выключенном зажигании не на все предохранители подаётся напряжение. С помощью положительного щупа (красного) проверьте напряжение на обеих сторонах каждого предохранителя. Предохранитель, это просто электрический проводник.
Этот метод хорошо работает, когда необходимо проверить много предохранителей одновременно.
Проверка сопротивления
Если вы уже вытащили предохранитель, но не ясно, перегорел он или нет, вы можете проверить его сопротивление. Сопротивление обратно пропорционально току. Чем ниже сопротивление, тем выше ток.
Другими словами, между двумя контактами предохранителя должна быть непрерывность. Перегоревший же предохранитель покажет очень высокое сопротивление (бесконечность).
Чтобы измерить сопротивление любого электрического оборудования, оно должно быть отключено от электрической цепи. Вы не можете измерить сопротивление, пока оборудование подключено или включено. Переключите мультиметр на «Ом» и подключите щупы, как на фото.
Если предохранитель перегорел — мультиметр показывает OL, что означает отсутствие непрерывности или сопротивление выше, чем можно измерить. Если предохранитель исправен, мультиметр показывает 0 Ом.
Смотрите видео, как проверить предохранитель с помощью зажигалки или мультиметра:
Выберите пакет предохранителей
Ваше приложение будет определять тип предохранителя, который вы будете использовать. Вам может понадобиться высоковольтный предохранитель. Если ваш продукт в основном продается в США, то уместным является стандарт, как правило, 1/4 дюйма (3.5 см). В Европе более распространен стеклянный предохранитель размером 5 × 20 мм. Для автомобильных приложений предохранители с лезвийными выводами используются во всем мире. В промышленных электрошкафах вы можете наблюдать промышленный тип предохранителей. Если вы защищаете дорожки печатной платы, идеально подходят предохранители для поверхностного монтажа (рисунок ниже).
Часто достаточно просто нужно посмотреть на продукты, похожие на ваши, и узнать, какой предохранитель они использовали. Это может существенно помочь определится с выбором.
Монтажный блок в салоне
В первых моделях ВАЗ 2105 блок предохранителей располагали в салоне автомобиля. Такой блок и сегодня можно увидеть в некоторых «пятёрках» под панелью приборов рядом с левой дверью. Каждый из предохранителей на блоке, расположенном в салоне, отвечает за тот же участок электрической цепи, что и соответствующий предохранитель на блоке, расположенном под капотом.
Как определить сгоревший предохранитель
Если возникают проблемы с какой-либо группой электрооборудования в машине, вероятность того, что дело в предохранителе высока, но не стопроцентна. Чтобы убедиться в выходе из строя предохранителя, иногда бывает достаточно внешнего осмотра: если на его корпусе имеются обгорелые следы, скорее всего, предохранитель сгорел. Такой способ проверки достаточно примитивен, и лучше в этом случае использовать мультиметр, который позволяет диагностировать неисправность:
В первом случае необходимо:
- Перевести мультиметр в режим измерения напряжения.
- Включить проверяемую цепь, например, освещение, печку и т. д.
- Проверить наличие напряжения на выводах предохранителя. Если на одном из выводов напряжения нет, предохранитель нужно заменить.
Во втором случае мультиметр переводится в режим измерения сопротивления, после чего наконечники прибора присоединяются к снятому предохранителю. Если значение сопротивления близко к нулю, предохранитель требует замены.
Демонтаж и ремонт блока
Снимается блок предохранителей, расположенный в салоне, в той же последовательности, что и установленный под капотом. Необходимо открутить крепёж, снять разъёмы и вынуть блок. Так же, как и в случае с блоком, расположенным под капотом, ремонт монтажного блока, установленного в салоне, заключается в замене предохранителей и восстановлении дорожек.
Если предохранитель перегорел в дороге и под рукой нет запасного, можно заменить его проволокой. Но при первой же возможности проволоку нужно убрать и установить вместо неё номинальный предохранитель. Схема расположения предохранителей изображена, как правило, на внутренней стороне крышки монтажного блока.
Следует помнить, что существуют монтажные блоки нескольких видов, которые внешне никак не отличаются друг от друга. Различия состоят в распайке дорожек. При замене блока нужно убедиться в том, что маркировки старого и нового блоков совпадают. В противном случае электрооборудование будет работать некорректно.
Пешеход
Блок предохранителей старого образца
В монтажных блоках старого образца используются цилиндрические (пальчиковые) предохранители, которые устанавливаются в специальные подпружиненные разъёмы. Такие разъёмы не отличаются надёжностью и долговечностью, вследствие чего вызывают множество нареканий со стороны автолюбителей.
Каждый из 17 предохранителей, расположенных на монтажном блоке старого образца, отвечает за те же группы потребителей электроэнергии, что и соответствующие предохранители на блоке нового образца (см. таблицу выше). Отличие состоит только в значении номинального тока, на который рассчитаны цилиндрические предохранители. Каждому штекерному предохранителю (на блоке нового образца) номинальным током:
- 10 А соответствует пальчиковый предохранитель номинальным током 8 А на блоке старого образца;
- 20 А — 16 А;
- 7,5 А — 8 А.
Техобслуживание и ремонт блока предохранителей ВАЗ 2105 в большинстве случаев не вызывает затруднений у автолюбителей. Чтобы самостоятельно определить неисправность монтажного блока и устранить её, бывает достаточно даже небольшого водительского опыта
Для надёжной работы электрооборудования важно использовать предохранители с параметрами, указанными в технической документации
Источник
Предохранители переменного тока в цепях постоянного тока
Учитывая вышесказанное, рассмотрим пример проверки возможности применения конкретного предохранителя в цепи постоянного тока.Приведенная ниже информация относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. При этом в каталоге для них нет информации о возможности их использования в цепях постоянного тока. Тем не менее эти предохранители могут применяться в цепях, где используется постоянное напряжение. Однако, при этом необходимо провести определённый проверочный расчёт.
Отключающая способность предохранителей зависит от сочетания:
- максимального приложенного постоянного напряжения;
- постоянной времени цепи L/R;
- минимального предполагаемого тока короткого замыкания Ipmin цепи;
- преддугового интеграла I2t выбираемого предохранителя.
Пример расчёта.
Исходная информация:
Используем параметры конкретного предохранителя 170M6149: 1100A, 1250 VAC,
I2t — 575.000 A2s
Прилагаемое напряжение E = 500V DC
Возможный ток короткого замыкания Ip = E/R = 500/16 = 31.3 kA
Постоянная времени L/R = 40 ms (0.64/16)
Рис.4. Условная схема рассчитываемой цепи
Для расчётов используется ряд следующих зависимостей:
Шаг. 1 График на рис.5 показывает зависимость максимума приложенного напряжения постоянного тока от L/R с 3 уровнями тока Ip в качестве параметра.
Необходимо выбрать кривую 1, 2 или 3 выше точки пересечения известного напряжения и постоянной времени. Находим точку пересечения для прилагаемого напряжения 500 В и постоянной времени, равной 40ms. Непосредственно выше этой точки пересечения находится кривая 2.
Если выше точки пересечения напряжения и постоянной времени нет никакой кривой, тогда должен быть выбран плавкий предохранитель с номиналом переменного напряжения более 1250 В.
Рис.5. Зависимость максимума приложенного напряжения постоянного тока от L/R
Шаг 2. Для правильного применения предохранителя необходимо использовать коэффициент F, связывающий I2t с предполагаемым током срабатывания Ipmin. На рис.6 показана зависимость коэффициента F от L/R. По параметру 2 (выбранной кривой 2) для постоянной времени L/R = 40 ms находим коэффициент F = 26,5.
Рис.6. Определение промежуточного коэффициента F в зависимости от постоянной времени
Шаг 3. Для прилагаемого напряжения 500В по пересечению с кривой номинального напряжения используемого предохранителя находим пиковое напряжение дуги при срабатывании предохранителя.
Как видно из графика (Рис.7), для данного случая пиковое напряжение дуги при срабатывании предохранителя будет достигать значения 1900V.
Рис.7. Определение пикового напряжения дуги при срабатывания предохранителя
Шаг 4. Минимальный уровень тока (Ipmin) цепи должен соответствовать следующему условию:
Проверка с конкретными параметрами цепи показала, что отключающая способность выбранного предохранителя достаточна при следующих основных условиях:
- Максимальное прилагаемое напряжение — 500V;
- Постоянная времени 40мs ( допустимо до 46мs);
- Минимальный необходимый ток срабатывания Ip — 20kA (имеем для данной цепи 31,3kA, что вполне соответствует условию);
- Пиковое напряжение дуги при срабатывании предохранителя — 1900 В.
Повторимся, приведенная методика проверки применимости относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. Возможность применения в цепях постоянного тока других быстродействующих предохранителей необходимо уточнять в справочных данных соответствующих каталогов.
Таким образом, плавкие предохранители допускают работу в цепях как переменного, так и постоянного тока, но с существенной коррекцией максимально допустимых параметров, в частности, напряжения. Однако не существует универсальной верной методики подбора предохранителя для постоянного тока, основываясь на его параметрах для переменного тока. В связи с этим, производителем рекомендуется в цепях постоянного тока применять специально разработанные для этого предохранители или предохранители, в справочных данных которых оговаривается возможность работы в режиме постоянного тока.
Сколько автоматических выключателей можно использовать
Расчет групповой утечки тока
В одном электрощите нельзя устанавливать выключатель дифтока групповой сети со значением более 30 мА. ПУЭ не запрещают подключение нескольких автоматов при условии, что не будет утечки тока. Перед началом работ следует вычислить групповую утечку.
- Переменным резистором измерить фактически показатель.
- Рассчитать теоретическую величину на основании п. 7 ПУЭ – на 1 А нагрузки приходится 0,4 мА и 10 мкА на 1 м кабеля.
Чтобы подобрать правильное количество УЗО, понадобится:
- При подключении, к примеру, 3-х УЗО на 16 А каждый сложить величины.
- Получившееся значение умножить на 0,4 мА.
- Подсчитать метраж провода по схеме квартиры и умножить на 10 мкА.
- Сложить величины и узнать утечку.
Устройство автомата
Как подключить автоматический выключатель
Бытовой автоматический предохранитель содержит две защиты – тепловую и электромагнитную. Тепловой расцепитель для защиты от перегрузок – это пластина из биметалла, через которую проходит электрический ток и нагревает ее. При достижении током пороговой величины пластина деформируется так, что воздействует на отключение электрического контакта. В зависимости от перегрузки, время срабатывания может быть длительным. Минимальный ток отключения зависит от типа автомата и составляет не менее 1,3 от номинальной величины. После остывания пластины устройство снова готово к использованию.
Схема устройства автоматического выключателя
Со временем параметры автоматического выключателя могут измениться из-за износа контактов.
Электромагнитный расцепитель является защитой от КЗ. Механизм расцепления в устройстве всего один, но приводится в действие по-разному. При КЗ величина тока значительно выше номинального и биметаллическая пластина может разрушиться. Поэтому требуется мгновенное размыкание контактов, которое производит электромагнит. Импульс тока проходит через катушку и за счет электромагнитной индукции приводит в действие подвижный сердечник, освобождающий пружину расцепителя.
При коротком замыкании отключение автомата вызывает появление электрической дуги, которая принудительно гасится в дугогасительной камере.
Автомат можно использовать как обычный выключатель нагрузки. Обычно для этого стараются применять реле напряжения, имеющее более мощные контакты.
Типы и виды автомобильных предохранителей
Автомобильные предохранители классифицируются по материалу легкоплавкой вставки на:
- свинцовые;
- оловянные;
- сплавные (олово + свинец);
- алюминиевые.
Их важной характеристикой является время срабатывания. Чем быстрее произойдет расплавление вставки, тем более надежно будет защищена схема при коротком замыкании на предмет перегрева проводников, возможного воспламенения
Для этого вставки изготавливают из металлов и сплавов с более низкой температурой плавления (перехода из твердого в жидкое агрегатное состояние). В некоторых типах для ускорения срабатывания применяют подпружинивание (типы FJ).
В автомобиле применяются предохранители различных типоразмеров.
Наибольшее применение в системах автомобилей получили предохранители типов:
- MAXI FX – силовые предохранители в подкапотном блоке;
- FTX NORM – предохранители в подкапотном и салонном блоках;
- FNL VINI – в подкапотном и салонном блоке предохранителей;
- FJ10 – в подкапотном блоке силовых предохранителей.
В зависимости от номинала предохранителя, обычно указанного на его корпусе, применяется дополнительная цветовая маркировка, точнее, основной цвет его корпуса.
Виды и типы плавких предохранителей
Для применения в электроцепях используют разные типы и разновидности ПП. Выпускаемые в России изделия отличаются по типу конструкции:
- наполненные с маркировкой ПН-2; ППН, НПН и т. п.;
- ненаполненные (ПР-2).
Понятие наполненности связано с наличием внутри отдельных видов вставок вещества, гасящего электродугу, возникающую в момент перегорания проводника. Цепь будет разомкнута только после её исчезновения. Поэтому в колбах, наполненных ПП, находится кварцевый песок. Ненаполненные способны выделять газы, гасящие дугу. Это происходит при нагреве материала корпуса вставки.
Кроме типов, различают виды ПП:
- Слаботочные применяют в маломощных бытовых приборах с потребляемым током силой до 6 А. Это цилиндрические вставки с контактами на торцах.
- Вилочные ПП часто ставят в автомобили. Название обусловлено внешним видом: контакты находятся на одной стороне корпуса и вставляются в разъемы, как вилка в розетку.
- Пробковые — распространенные в однофазных сетях электрические пробки для счетчика. Номинальный ток таких вставок составляет 63 А, они рассчитаны на единовременное включение нескольких бытовых приборов. Перегорающая вставка в таком предохранителе находится внутри керамического корпуса с патроном, снаружи остается 1 контакт, а другой соединяется с контактами пробки. При превышении нагрузки деталь сгорает, полностью обесточивая квартиру. Восстановить электроснабжение можно, заменив вставку на новую.
- Трубчатый ПП по строению напоминает вставку для пробок, но его крепление выполнено между 2 контактами. Тип такого предохранителя — ненаполненный, а корпус сделан из фибры, которая при сильном нагреве выделяет газ.
- Ножевые предохранители рассчитаны на величину тока 100-1250 А и применяются в сетях, где нужна высокая нагрузка (например, при подключении прибора с мощным двигателем).
- Кварцевые, с наполнением кварцевым песком, применяются в сетях с напряжением до 36 кВ.
- Газогенерирующие, разборные и неразборные. При сгорании разновидностей ПСН, ПВТ происходит мощное выделение газа, сопровождающееся хлопком. ПП применяют для сетей с напряжением 35-110 кВ. Номинальный ток такого ПП — до 100А.
В зависимости от общей нагрузки на сеть устанавливают разные виды ПП — более мощные ставят в специальных трансформаторных будках, они могут выдерживать ток, обеспечивающий потребности жилого массива иди предприятия. Маломощные монтируют в счетчиках: они защищают отдельные квартиры. В старых бытовых приборах тоже может быть установлен ПП (слаботочный), но современная техника содержит эти элементы редко.
Пример выбора плавких предохранителей
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где: k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Почему важно не перепутать предохранители?
Если плавкий предохранитель вышел из строя (например, перегорел из-за случайного короткого замыкания), то необходимо установить элемент с номиналом, не превышающим заводское значение. Применять скрепки, куски фольги или вставки, рассчитанные на повышенную силу тока, запрещено. В случае неисправности потребителей возрастет нагрузка на электропроводку, что приведет к возгоранию автомобиля. Информация о номиналах указывается на крышке предохранительного блока, корпусе вставки (касается ножевого типа) или рядом с гнездом для установки элемента.
Не следует использовать планки, рассчитанные на меньшую силу тока, поскольку при включении потребителя перемычка расплавится, не выдержав нагрузку. Если после установки предохранителя, соответствующего номиналу, происходит повторный выход из строя, то следует проверить цепь. Причиной дефекта может быть замыкание внутри оборудования либо повреждение изоляции кабеля, приводящее к контакту жилы с кузовом автомобиля. Эксплуатировать машину с неисправной электрической проводкой не следует из-за риска возникновения пожара.
Предохранители электромеханической конструкции
Принцип врезания защитного устройства в питающий провод и обеспечение его разрыва с целью снятия напряжения позволяет отнести созданные для этого электромеханические изделия к предохранителям. Однако, большинство электриков выделяет их в отдельный класс и называет автоматическими выключателями или сокращенно автоматами.
Виды предохранителей
При их работе специальный датчик постоянно контролирует величину проходящего тока. После достижения критического значения подается управляющий сигнал на исполнительный механизм – взведенную пружину от теплового или магнитного расцепителя.
Электронные предохранители и ограничители тока
Электронные защитные устройства разделяются на три вида:
- самовосстанавливающие электрическую цепь после устранения аварии;
- устройства сигнализации об аварии;
- восстанавливающие питание за счет внешнего вмешательства.
В электронике применяются датчики тока, подключенные к нагрузке. При увеличении падения напряжения на датчике выше заданного, с него подается сигнал на защитное устройство, которое отключает цепь или ограничивает ток.
Простейшей защитой радиоэлектронных устройств от токовых перегрузок является стабилизатор напряжения 220в, изображенный на рис. а. Ток нагрузки здесь не может быть выше максимального тока транзистора КП302В. Для изменения величины выходного тока можно выбрать другой транзистор или включить их параллельно.
Электронные схемы ограничения предельного тока
На рис. б электрический ток также ограничивается транзисторами. VT1 работает в режиме насыщения, и напряжение входа практически полностью передается на выход. В рабочем режиме VT2 закрыт и светодиод HL1 не горит. Датчиком тока служит резистор R3. При превышении на нем порогового значения падения напряжения начинает открываться транзистор VT2, а VT1 – закрываться, ограничивая нагрузочный ток. При этом загорается светодиод HL1, сигнализируя о достижении током порогового значения.
Для больших рабочих токов применяется схема защиты на тиристоре (рис. в). В нормальном режиме тиристор заперт, а составной транзистор работает в режиме насыщения. Когда в нагрузке Rн появляется короткое замыкание, через управляющий переход тиристора протекает ток, открывающий его. При этом управляющая цепь транзисторов шунтируется открытым тиристором и ток в нагрузке снижается до минимума.
Оценка скорости срабатывания предохранителя
После того, как вы выбрали комплект предохранителей, возможно, в связи с этими усилиями вам следует удостоверится, что скорость срабатывания плавкой вставки соответствует требованиям вашего приложения. Быстродействующий предохранитель сгорит быстро, прежде чем провода или дорожки печатной платы успеют нагреться. Тем не менее, быстрое перегорание может стать причиной неприятного сбоя из-за кратковременной перегрузки.
Лампы накаливания, ёмкостная нагрузка, а также линейные и импульсные источники питания имеют большой импульс тока при включении. Задача немного усложняется в отношении нагрузок, питаемых от сети переменного тока, так как при включении бросок переменного тока может быть менее серьезным, если момент включения совпадет с моментом перехода напряжения через нуль. Вы должны также учитывать условие, когда вы подключаете питание в момент амплитудного значения напряжения. Это создаст хоть и короткий, но значительный импульс тока, который может сжечь плавкую вставку.