Что будет если поставить резистор большего сопротивления

Крепление резисторов

Резистор – это электротехнический элемент, который чаще всего имеет два выхода для подсоединения к схеме. Существуют также разновидности оборудования с тремя выводами. Их можно встретить среди переменных и подстроечных резисторов.

Используются также специальные их разновидности, имеющие отводы. Обычно их несколько.

В современной электронике все чаще применяются резисторы, предназначенные для поверхностного монтажа. Они выглядят как крохотные детали прямоугольной формы и не имеют привычных проволочных выводов. Вместо этого для подключения подобной детали предназначены две полоски из металла, расположенные по краям резистора.

Поверхностный монтаж производится путем припаивания элемента сопротивления на печатные проводники, находящиеся на плате.

Популярность подобных деталей объясняется их минимальными размерами, что соответствует современным требованиям электротехнического оборудования. Их маркировка имеет отличную от проволочных резисторов систему.

Постоянные, переменные и подстрочные резисторы

Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.

Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.

На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.

На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.

Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.

Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).

Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.

Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.

Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.

Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.

Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.

Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.

Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом —  чтобы невозможно было ее повернуть и сбить настройку.

Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.

Технология поверхностного монтажа SMD-резисторов

Монтаж поверхностных резисторов в любительских мастерских осуществляется с помощью фена, а в производственных условиях происходит в специальных печах.

Этапы монтажа деталей на плату в серийном и массовом производстве:

  • На плате размещают небольшие прокладки из серебра или золота, свинцово-оловянные пластины, на которых будут закрепляться SMD-компоненты.
  • С помощью машины на подготовленные монтажные площадки наносится паяльная паста и смесь, состоящая из флюса и припоя.
  • После подготовки печатной платы в устройство (Pick-машину) подаются компоненты в лотках, на рулонах ленты или в трубках. Затем машины размещают их на плате. Производительность оборудования может достигать 60 000 элементов в час.
  • Собранная плата поступает в печь с температурой, достаточной для расплавления припоя.
  • После извлечения из печи платы охлаждают и очищают от рассеянных частиц припоя.

Качество проверяют визуальным осмотром, в ходе которого определяют отсутствующие детали и степень очистки.

Разработка и внедрение технологии поверхностного монтажа (SMT) позволили автоматизировать процесс сборки плат и ускорить его, сделать проще, дешевле и эффективней. На практике может встречаться гибрид технологий поверхностного и сквозного монтажа.

Применение резисторов поверхностного монтажа положительно сказывается на массе и размерах радиоэлектронных устройств, на их частотных параметрах.

Что нужно учесть при выборе ЦП

При необходимости купить цифровой потенциометр следует знать, на какие его параметры обращать внимание. Среди них:

  • Уровень входного сигнала (напряжение).
  • Максимальный показатель мощности и тока.
  • Импеданс (показатель полного сопротивления).
  • Уровень разрешения.
  • Количество каналов.
  • Линейность сопротивления.
  • Положение при включении.
  • Наличие или отсутствие энергозависимой памяти.
  • Интерфейс резистора.
  • Размер устройства.

Отдавать предпочтение нужно тому ЦП, параметры которого больше всего подходят под конкретную задачу. Например, последний показатель крайне важен для приложений и схем, критически ограниченных по размеру. Хотя некоторые пользователи отмечают, что можно сделать подобный потенциометр своими руками, такая работа не стоит затраченного времени и сил. В продаже настолько большой выбор ЦП, да еще по доступной цене, что можно подобрать для любых целей и устройств.

Условные обозначения и номиналы резисторов на схеме

Условное обозначение резистора на схеме согласно ГОСТу – прямоугольник размером 4 мм x 8 мм. В англоязычной литературе распространено обозначение резистора в виде пилообразной линии:

Рисунок 1 – Условное графическое обозначение резистора

Номиналы резисторов в омах обычно отображаются на схеме в виде чисел рядом с условным обозначением, а если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, таким как R1, R2, R3 и т.д. Как видите, обозначения резисторов могут быть показаны горизонтально или вертикально:

Рисунок 2 – Обозначение номиналов резисторов на схеме (резисторы 150 Ом и 25 Ом)

Ниже показано несколько примеров резисторов разных типов и размеров:

Рисунок 3 – Примеры резисторов

Также на схеме можно показать, что резистор имеет переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного для обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто имеет нестабильное сопротивление:

Рисунок 4 – Условное графическое обозначение переменного резистора

Фактически, каждый раз, когда вы видите обозначение компонента с нарисованной по диагонали стрелкой, это означает, что этот компонент имеет переменное, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным дополнением к обозначению электронных компонентов.

Характеристики и параметры

Резистор, как и любой другой радиоэлемент, характеризуется различными параметрами, определяющими его свойства. Основным из них, известным даже «чайникам», является номинальное сопротивление. Но мало кто из начинающих радиолюбителей знает, что кроме него существует ещё ряд важных характеристик.

К основным параметрам резистора относят:

  1. Рабочее сопротивление. Основной параметр, величина которого обозначает, какое сопротивление оказывает элемент прохождению тока.
  2. Граничная рассеиваемая мощность. Показывает, какую максимальную энергию может поглотить радиодеталь без изменения своих остальных характеристик.
  3. Температурный коэффициент. Изображается в виде функции и указывается в справочниках производителей. Характеризует изменение значения сопротивления в зависимости от температуры.
  4. Допуск погрешности. Обозначает процентное содержание, в пределах которого может изменяться сопротивление в зависимости от заявленного.
  5. Рабочее напряжение. Величина, которую может выдержать элемент, сохранив правильную работоспособность.
  6. Избыточный шум. Этот коэффициент обозначает, какие искажения получает сигнал после прохождения через резистор.
  7. Влагоустойчивость и термостойкость. Показывают, как влияет воздействие влаги и тепла на изменение параметров элемента.
  8. Коэффициент напряжения. Учитывает зависимость сопротивления от приложенного напряжения.
  9. Паразитная составляющая. Характеризуется значением ёмкости и индуктивности.

При этом некоторые характеристики могут являться несущественными, а для других отводится главная роль. Зависит это от режима работы схемы, в которой он применяется. Например, от частоты сигнала. Если резистор работает на высоких частотах, то из-за наличия посторонних составляющих величина сопротивления может увеличиваться или уменьшаться.

Диод как датчик температуры- функция полупроводника

Диод — наипростейший по своей комплектации прибор, обладающий свойствами полупроводника.

Между двумя крайностями диода (донорной и акцепторной) пролегает область пространственного заряда, иначе: p-n-переход. Этот «мост» обеспечивает проникновение электронов из одной части в другую, поэтому, в силу разноимённости составляющих его зарядов, внутри диода возникает довольно малый по силе, но всё-таки ток. Движение электронов по диоду происходит только в одну сторону. Обратный ход конечно есть, но совершенно незначительный, а при попытке подключить в этом направлении источник питания диод запирается обратным напряжением. Это увеличивает плотность вещества и возникает диффузия. Кстати, именно по этой причине диод носит название полупроводникового вентиля (в одну сторону движение есть, в другую — нет).

Если попытаться повысить температуру диода, то количество неосновных носителей (электронов двигающихся в обратном основному направлении) увеличится, а p-n-переход начнёт разрушаться.

Принцип взаимодействия между падением напряжения на диодном p-n-переходе и температурой самого диода была выявлена практически сразу после того, как он был сконструирован.

В результате p-n-переход диода из кремния — это наиболее простой температурный датчик. Его ТКН (температурный коэффициент напряжения) составляет 3 милливольта на градус цельсия, а точка прямого падения напряжения — около 0,7В.

Для нормальной работы данный уровень напряжения излишне мало, поэтому чаще используется не сам диод, а транзисторные p-n-переходы в комплекте с базовым делителем напряжения.

В результате, конструкция по своим качествам соответствует целой последовательности диодов. Как итог, показатель по падению напряжения может быть гораздо большим, чем 0,7В.

Поскольку ТКС (температурный коэффициент сопротивления) диода является отрицательным (- 2mV/°C), то он оказался весьма актуальным для использования в варикапах, где ему отводится роль стабилизатора резонансной частоты колебательного контура. Контроль осуществляется при помощи температуры.

Данные по падению напряжения на диодах

При анализе показаний цифрового мультиметра можно отметить, что данные по падению напряжения на p-n-переходе для кремниевых диодов составляют 690-700 мВ, а у германиевых — 400-450 мВ (хотя этот вид диодов на данный момент практически не используется).  Если во время замера температура диода поднимается, то данные мультиметра напротив снизятся. Чем значительнее сила нагрева, тем значительнее падают цифровые данные.

Обычно это свойство используется для стабилизации процесса работы в электронной системе (например, для усилителей звуковых частот).

Схема термометра на диоде.

Датчики температуры для микроконтроллера

На данный момент многие схемы строятся на микроконтроллерах, сюда же можно отнести и разнообразные измерители температуры, в которых могут быть применены полупроводниковые датчики при условии, что температура при их эксплуатации не превысит 125°C.

Поскольку градуирование температурных измерителей происходит ещё на заводе, калибровать и настраивать датчики нет никакой необходимости. Получаемые от них результаты в виде цифровых данных поступают в микроконтроллер.

Применение полученной информации зависит от программного наполнения контроллера.

Помимо прочего, такие датчики могут работать в термостатном режиме, то есть (при заранее заданной программе) включаться или выключаться по достижении определённой температуры.

Однако, если опорными станут другие температурные показатели, программу придётся переписывать.

Прочие сферы применения

Хотя на сегодняшний день выбор температурных датчиков весьма широк, никто не забывает про их диодный вариант, который достаточно часто применяется в электроутюгах,  электрокаминах и электронике в самом широком её смысле.

Несмотря на ограничения по температурному режиму диодные датчики имеют свои значительные плюсы:

— относительная дешевизна;

— скромные габариты;

— запросто подойдут к огромному числу электронных приборов;

— превосходная чувствительность и точность.

Благодаря всем этим качествам область применения датчиков данного типа растёт из года в год.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Делаем 2-скорости вентилятора охлаждения на ВАЗ

Данное решение позволяет избавиться от частых включений вентилятора охлаждения, нет просадок напряжения (хотя у меня их и не было за счет хорошего генератора и автоматического РН на 14.5В), не падает ХХ при включении вентилятора. Да и нет вибрации по кузову с родным 4х лопасным вентилятором. Штатная работа вентилятора охлаждения осталась на месте.

Вентилятор охлаждения теперь включается на половину мощности при температуре в 92 градуса, а максимальная скорость будет при достижении 96 градусов.

Получилось вот что:

Для этого понадобились такие компоненты как:

1… Тройник под датчик охлаждения с газели, стоимостью 150 рублей. Попилен женой болгарина и завальцован молотком с обработкой напильником. 2… ДТОЖ от классики 92/87 градусов. Рублей 100. 3… 2 хомута под патрубок. Какой размер — хз. Просто под данный патрубок и все… 4… Реле 4х контактное на 70 А + разъем. Стоимостью 160 рублей с фишкой. 5… Предохранитель на 30 А выносной. Я поставил в цепь питания на 30 контакт реле. 6… Обжимные фишки + обжимка (можно и узкими пассатижами) и термоусадка были. 7… Разные провода 4 метра. 8… Фишки мама/папа на вентилятор, ибо я не хотел резать изоляцию. Разъединяется “родная” фишка вентилятора, наша купленная соединяется между собой, плюсовой контакт изолируется, а минусовой используется для подключения к нему сигнала от реле. 9… Сопротивление с классической печки на 1,5 Ом. Можно и 2-2,5 Ом сопротивление поставить, но я не смог в своем городе найти сопротивление с печки УАЗика. Так что довольствуемся тем что есть. На вентилятор подается 6,6 В по тестеру.

Режется нижний патрубок радиатора в случае если Ваш радиатор нового образца без заглушки под ДТОЖ. Тройник ставить так, чтобы контакты датчика стояли под 90 градусов, а не как у меня на фото(я чуть упустил данный момент, корпус печки немного не садится как надо). Но это уже при замене ОЖ будет поправлено. Если же у Вас радиатор старого образца, либо Лузаровский универсальный, то патрубок резать не надо. На данных радиаторах имеется заглушка под ДТОЖ.

87… контакт скручиваем либо припаиваем к черному проводу вентилятора(ориентируйтесь по проводам от самого вентилятора, а не по центральной проводке, ибо цвета могут отличаться. Еще как вариант — прозвонить мультитестером). “Плюс” на вентилятор у нас постоянный на него подается, а вот управляется массовым сигналом(может отличаться по годам выпуска судя из комментариев). 86… контакт можно подключить напрямую к “плюсовой” клеме АКБ. Обмотка реле на себя напряжение не тянет. 85… контакт реле подключаем в разрыв через датчик температуры охлаждающей жидкости(ДТОЖ). Датчик в нашем случае выполняет роль автоматической кнопки. 30… контакт подключаем напрямую к минусовой клеме АКБ через предохранитель, потом подключаем резистор сопротивления и потом в реле.

Сам резистор сопротивления был притянут к корпусу вентилятор охлаждения обычным хомутом. Резистор крепить в районе потока воздуха от вентилятора для его охлаждения. Греется во время работы хорошо.

В общем все… Вентилятор за весь вечер активных покатушек и пробок ни разу не включился на полную. Все на автомате, нет скачков и просадок оборотов на ХХ. Мне нравится. Вентилятор продолжает кратковременно работать даже после выключения зажигания.

Так же в данную схему без проблем можно добавить кнопку принудительного включения вентилятора — обязательно использовать реле, управляющий плюс катушки реле (85 контакт например) брать от главного реле из салона, управляющий минус (86 контакт) через кнопку включения вентилятора, на 30 и 87 контакты подключить контакты ДТОЖ. Все это нужно для того, чтобы вентилятор выключался при выключении зажигания и исключалась возможность постоянной работы вентилятора в случае забывчивости водителя. Хотя ИМХО — лишняя эта кнопка при таком решении.

Ну и к слову — данную схему можно использовать и для карбовых авто. Просто нужно датчика, один “зубильный” для радиатора, а второй “классический” для тройника (хотя можно и наоборот). Ну это если не получится найти 2х режимный датчик включения вентилятора от ино.

P/S.. Ставили другу аналогично на ВАЗ 2115, 2006 г.в. — по схеме пришлось поменять полярность подачи напряжения на вентилятор. У него управляется не “минусом”, а “плюсом”.

Область применения резисторов

Резистор играет важнейшую функцию в работе электрических систем. Например, он способен контролировать распределение, мощность и прочие характеристики электричества в автомобиле. Резистор любого размера, находящийся в отопительной системе позволяет точно регулировать количество подаваемого тепла.

Элемент, расположенный в светодиодах, позволяет регулировать интенсивность освещения. Следовательно, данный механизм позволяет нам более точно регулировать параметры работы техники. В противном случае нам приходилось бы пользоваться заранее установленным режимом работы техники без возможности его изменения.

Маркировка

Советские изделия маркируются буквами и цифрами. При этом небольшие номиналы (до ста Ом) демонстрируются буквами R или Е, а тысячи – буквой К. Например, 250R = 250 Ом, 2К3 = 2,3 кОм = 2300 Ом, К25 = 0,25 кОм = 250 Ом. Иногда цифробуквенные коды встречаются и на импортных изделиях, например, 4W – мощность в 4 ватта, 50R – сопротивление в 50 Ом. Все-таки чаще они маркируются цветными полосами.

Цветовая маркировка

Отдельные фирмы-производители располагают разными системами значений цветовых полос. Число таковых может быть от 3 до 6. Если под рукой нет инструкции от производителя, нужно посмотреть, сколько полос имеется на корпусе элемента, и по названию фирмы найти соответствующую таблицу в сети. Первой полосой нужно считать расположенную наиболее близко к выводу.

Чтобы предохранить цепь от скачков напряжения, важно знать, что такое резистор, и уметь подбирать подходящий для конкретного случая элемент. Важно также уметь правильно рассчитать номиналы резисторов для последовательного подключения в цепь

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.

Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.

Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные. Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).

МАРКИРОВКА ЧИП-РЕЗИСТОРОВ Для маркировки чип-резисторов применяется несколько способов. Способ маркировки зависит от типоразмера резистора и допуска.

Резисторы типоразмера 0402 не маркируются.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.

При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.

Обозначение 220 означает, что номинал резистора равен 22 Ома.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.

Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм. Литература — Журнал «Ремонт электронной техники» 2 1999:::

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление

электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

  • 5 %-ный ряд;
  • 10 %-ный;
  • 20 %- ный.

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты

, чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Расчет, подбор параметров потенциометра

Итак, потенциометр предназначен для регулировки напряжения именно на высокоомной нагрузке – она должна иметь сопр. выше, чем ПТ, иначе количество Вольт будет определяться ею же, функция регулировки пропадет.

Основные особенности по расчету ПТ такие:

  • сопр. ПТ должно быть намного меньшим (Rпот<< Rн), чем у нагрузки. Это не обязательно, но при несоблюдении, дальнейшие исчисления усложнятся – придется учитывать ток на ней. Рекомендовано значения ниже как минимум в 10 раз, но лучше  — в 20, 30, 100. Чем меньше, тем лучше, но не чрезмерно, иначе не будут выполнены требования следующих пунктов;
  • U токового источника должно подходить, ПТ должен выдерживать его (Iном.пот×Rпот) > Uист. При этом количество Ампер, текущих через переменник (Iпот = Uuст/Rпот) должно быть меньшим номинала детали по току;
  • ток, проходящий через ПТ (Iпот = Uuст /Rпот), не должен быть выше номинала по таковому источника (Iпот < Iном. ист.);
  • если есть несколько ПТ и все они подходят под указанные выше условия, то берут изделие с большим сопротивлением — оно будет потреблять меньший ток, что особенно значимо при применении с гальваническими батареями, АКБ.

Еще нюанс регулировки тока и напряжения реостатом и потенциометром:

  • оба позволяют получать на нагрузке U равное или ниже U источника;
  • но с ПТ можно понижать указанную выше величину до 0, чего чрезвычайно сложно, почти невозможно, добиться от РС.

Важность мощности рассеяния

При подборе переменного резистора учитывают в первую очередь номинал по сопротивлению, но таковому по току, иными словами, мощности рассеяния, не менее важно уделить внимание. Два параметра взаимосвязанные. Объясним на примере

Схема содержит резистор с определенным R, но выясняется, что это значение должно быть значительно ниже, то есть деталь надо заменить

Объясним на примере. Схема содержит резистор с определенным R, но выясняется, что это значение должно быть значительно ниже, то есть деталь надо заменить.

Ставят элемент со значительно меньшим R, и, казалось бы, проблема решена, но тут возникает опасность, связанная с игнорированием закона Ома. R на резисторе было значительным, U цепи фиксированное. При понижении номинала переменника общее R линии упало, как следствие, ток возрос. Если поставить ПТ с прежней мощностью рассеяния, то при увеличенном I он может не выдержать нагрузки, последствия традиционные — перегрев, вплоть до возгорания.

Приблизительная норма: при номинале в 10 Ом по цепи должен протекать ток около 1 А — это мощность, рассеиваемая резистором. При выборе обязательно надо смотреть эту допустимую величину для детали.

Идеальный резистор

Существует понятие того, каким должен быть идеальный резистор. В действительности его не существует, но некоторые элементы схемы могут быть приближенно похожи на безупречный вариант.

Идеальный резистор является проводником со строго обозначенным, не меняющимся сопротивлением, надписанным на корпусе. Данная функция оборудования не зависит в этом случае от силы тока и окружающих условий. Такой прибор не имеет внутренней емкости, но при этом он отличается идеальной технологией полного отвода тепла при работе.

Размеры его должны быть нулевыми, чтобы не занимать место на электросхеме. Идеальный резистор является электротехническим элементом, имеющим систему бесшумной работы.

Но в реальности такие приборы не соответствуют подобному образу.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии). 

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Для полной цепи

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

Показатели, влияющие на тип резистора

Любой резистор постоянного сопротивления включает ряд характеристик, обозначенных на корпусе при его производстве. Основными из них являются сопротивление, класс точности, а также мощность рассеивания.

Существуют и другие характеристики, но они разнятся в зависимости от типа оборудования.

Резистор – это источник тока, величина которого зависит от таких факторов, как длина и площадь поперечного сечения проводника, температура. Имеет значение напряжение, которое было приложено к концам проводника. Величина резистора также зависит от силы тока и материала, из которого выполнен проводник.

Электронные конструкции используют разные резисторы. В соответствии с определенными условиями применяют соответствующие разновидности приборов.