Какие существуют виды источников электрического тока?

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка

Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода

В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет

Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра

К примеру, действующее значение ЭДС.

Электродвижущая сила

Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.

Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.

Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами

. Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит. В машине постоянного тока сторонней силой является сила Лоренца.

Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении

электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.

Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

При параллельном соединении

электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.

Соединение источников тока

Соединение источников тока

Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.

Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.

Источник



Определение слова «Джоуль» по БСЭ:

Джоуль — Джоуль (Joule) Джеймс Прескотт (24.12.1818, Солфорд, Ланкашир, — 11.10.1889, Сейл, Чешир), английский физик, член Лондонского королевского общества (1850). Был владельцем пивоваренного завода близ Манчестера. Внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения энергии. Д. установил (1841. опубликовано в 1843), что количество тепла, выделяющееся в металлическом проводнике при прохождении через него электрического тока, пропорционально электрическому сопротивлению проводника и квадрату силы тока (см. Джоуля — Ленца закон). В 1843-50 Д. экспериментально показал, что теплота может быть получена за счёт механической работы, и определил механический эквивалент теплоты, дав тем самым одно из экспериментальных обоснований закона сохранения энергии. В 1851, рассматривая теплоту как движение частиц, теоретически определил теплоёмкость некоторых газов. Совместно с У. Томсоном опытным путём установил, что при медленном стационарном адиабатическом протекании газа через пористую перегородку температура его изменяется (см. Джоуля — Томсона эффект). Обнаружил явление магнитного насыщения при намагничивании ферромагнетиков. Соч.: The scientific papers, v. 1-2, L., 1884-87. в рус. пер. — Некоторые замечания о теплоте и о строении упругих жидкостей, в кн.: Основатели кинетической теории материи, М. — Л., 1937. Лит.: Wood A., Joule and the study of energy, L., 1925. Дж. П. Джоуль.

Джоуль — единица энергии и работы в Международной системе единиц и МКСА системе единиц, равная работе силы 1 н при перемещении ею тела на расстояние 1 м в направлении действия силы. Названа в честь английского физика Дж. Джоуля. Обозначения: русское дж, международное J. Д. был введён на Втором международном конгрессе электриков (1889) в Абсолютные практические электрические единицы в качестве единицы работы и энергии электрического тока. Д. был определён как работа, совершаемая при мощности в 1 вт в течение 1 сек. Международная конференция по электрическим единицам и эталонам (Лондон, 1908) установила «международные» электрические единицы, в том числе так называемый международный Д. После возвращения с 1 января 1948 к абсолютным электрическим единицам было принято соотношение: 1 международный Д. = 1,00020 абсолютный Д. Д. применяется также как единица количества теплоты. Соотношения Д. с др. единицами: 1 дж = 107 эрг = 0,2388 кал. Г. Д. Бурдун.

Электрический ток. Работа и мощность в цепи постоянного тока. Закон Ома для полной цепи

Кристаллическая решётка Электрический ток. Все металлы являются проводниками электрического тока. Они состоят из пространственной кристаллической решетки, узлы которой совпадают с центрами положительных ионов. Вокруг ионов хаотически движутся свободные электроны.

В металлах электронная проводимость

Электрическим током в металлах называется упорядоченное движение свободных электронов. За направление тока принимают направление движения положительно заряженных частиц.

Электрические заряды могут двигаться упорядоченно под действием электрического поля, поэтому условием для существования эл. тока является наличие электрического поля и свободных носителей эл.заряда.

Сила тока численно равна заряду, протекающему через данное поперечное сечение проводника в единицу времени. Ток называется постоянным, если сила тока и его направление не изменяется с течением времени.

I = 1 Кл/с = 1 А

1 ампер (А) равен силе постоянного тока, при котором через любое поперечное сечение проводника за 1 с протекает 1 Кл электричества. I = q0 nvS Силу тока в цепи измеряют амперметром. Условное обозначение в цепи

Работа и мощность тока. Электрический ток снабжает нас энергией. Она возникает за счёт работы электрического поля по передвижению свободных зарядов в проводнике. Рассмотрим участок цепи, по которому течёт ток I. Напряжение на участке обозначим U, сопротивление участка равно R. При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу. ΔA = U I Δt — эту работу называют работой электрического тока. За счёт работы на рассматриваемом участке может совершаться механическая работа; могут также протекать химические реакции. Если этого нет, то работа эл.поля приводит только к нагреванию проводника. Работа тока равна количеству теплоты, выделяемому проводником с током: — закон Джоуля — Ленца

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена на данном участке: P = IU или . Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Закон Ома для замкнутой цепи. Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению заряда q вдоль цепи, к значению этого заряда (1В=1Дж/1Кл). Рассмотрим теперь замкнутую (полную) цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. (R+r) — полное сопротивление цепи. Закон Ома для полной цепи записывается в виде или

Сила тока в электрической цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи.

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.


Аккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.


Батарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.


Механический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройствоВажно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Соединение проводников

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства

Виды напряжений

В электрических цепях используются два основных напряжения электрического тока: постоянное и переменное.

Рис. 1. Постоянное и переменное напряжение.

Постоянное во времени напряжение создается источниками тока (батареи, аккумуляторы), на концах которых долгое время сохраняется одна и та же разность потенциалов (ЭДС).

Электрический ток в этом случае тоже постоянен во времени и течет в одном направлении. Постоянное напряжение используется, когда не требуется транспортировать электроэнергию на большие расстояния: в электрических схемах, на транспорте, в военной и космической технике и т.д.

При изменении полярности потенциалов на клеммах источника, электрический ток тоже будет менять свое направление (колебаться), следуя по закону Ома за временными изменениями напряжения. Количество таких колебаний за определенный промежуток времени (период) называется частотой. Чаще всего используется синусоидальная зависимость тока от времени.

В России стандартная частота составляет 50 Герц, что соответствует изменениям полярности напряжения (и направления тока) 50 раз в секунду. Эти мерцания (пульсации) человеческий глаз не чувствует при использовании в системах освещения. Но в телевизорах и дисплеях компьютеров эту частоту повышают (от 85 Гц и выше), так как при долгом, пристальном рассматривании глаза начинают уставать.

Рис. 2. Синусоидальный переменный ток.

Переменный ток применяется при передаче электроэнергии на большие расстояния. Для этих целей лучше всего подходят трехфазные сети, которые подключены к электростанциям (тепловым, атомным, гидро-), где турбины генерируют такой переменный вид напряжения электрического тока.

Рис. 3. Трехфазный переменный ток.

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е — электродвижущая сила, Е = const
Ro = 0 — внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I — мощность и ток в цепи постоянного тока.

р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля — Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

9.1.4. Неразветвленная магнитная цепь

Задачей расчета неразветвленной магнитной цепи в большинстве случаев является определение МДС F=Iw , необходимой для того, чтобы получить заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).

На рис. 9.9 приведен пример неразветвленной магнитной цепи — магнитопровод постоянного поперечного сечения S1

с зазором. На этом же рисунке указаны другие геометрические размеры обоих участков магнитопровода: средняя длинаl1 магнитной линии первого участка из ферромагнитного материала и длинаl2 второго участка — воздушного зазора. Магнитные свойства ферромагнитного материала заданы основной кривой намагничиванияВ(Н) (рис. 9.10) и тем самым по (9.4) зависимостьюma(Н).

По закону полного тока (9.2)

где H1

иH2 — напряженности магнитного поля в первом и втором участках.

В воздушном зазоре значения магнитной индукции В2

и напряженностиH2 связаны простым соотношениемВ2 =mН2 , а для участка из ферромагнитного материалаВ1 =ma1Н1. Кроме того, в неразветвленной магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:

Ф = В1S1=B2S2, (9.6)

где S1

иS2 — площади поперечного сечения участка из ферромагнитного материала и воздушного зазора.

Если задан магнитный поток Ф

, то по (9.6) найдем значения индукцийB1 иB2 . Напряженность поляH1 определим по основной кривой намагничивания (рис. 9.10), аH2 =B2m . Далее по (9.5) вычислим необходимое значение МДС.

Сложнее обратная задача: расчет магнитного потока при заданной МДС F

Заменив в (9.5) напряженности магнитного поля значениями индукции, получим

,

или с учетом (9.6)

где rMk=lkSkmak — магнитное сопротивлениеk -гoучастка магнитной цепи, причем магнитное сопротивлениеk -гo участка нелинейное, если зависимостьВ(H) для этого участка нелинейная (рис. 9.10), т.е.mak ≠ const.

Для участка цепи с нелинейным магнитным сопротивлением rM

можно построить вебер-амперную характеристику — зависимость магнитного потокаФ от магнитного напряженияUM на этом участке магнитопровода. Вебер-амперная характеристика участка магнитопровода рассчитывается по основной кривой намагничивания ферромагнитного материалаВ(H) . Чтобы построить вебер-амперную характеристику, нужно ординаты и абсциссы всех точек основной кривой намагничивания умножить соответственно на площадь поперечного сечения участкаS и его среднюю длинуl .

На рис. 9.11 приведены вебер-амперные характеристики Ф

(UM1 ) для ферромагнитного участка с нелинейным магнитным сопротивлениемrM1 иФ (UM 2) для воздушного зазора с постоянным магнитным сопротивлениемrM 2 =l2S2m магнитопровода по рис. 9.9.

Между расчетами нелинейных электрических цепей постоянного тока и магнитных цепей с постоянными МДС нетрудно установить аналогию. Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке магнитной цепи равно произведению магнитного сопротивления участка на магнитный поток UM

=rMФ . Эта зависимость аналогична закону Ома для резистивного элемента электрической цепи постоянного токаU = rI . Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого контураSUM =SF , что аналогично второму закону Кирхгофа для электрических цепей постоянного токаSU =SE. Продолжая дальше аналогию между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).

В качестве иллюстрации ограничимся применением для анализа неразветвленной магнитной цепи графических методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной характеристики (рис. 9.12, б).

Согласно первому методу построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф

(UM1 +UM 2), графически складывая по напряжению вебер-амперные характеристики ее двух участков. При известной МДСF=Iw по вебер-амперной характеристике всей магнитной цепи определим рабочую точкуА , т. е. магнитный потокФ , а по вебер-амперным характеристикам участков магнитопровода — магнитные напряжения на каждом из них.

Согласно второму методу для второго (линейного) участка построим нагрузочную характеристику

т. е. прямую, проходящую через точку F

на оси абсцисс и точкуFrM2 на оси ординат. Точка пересеченияА нагрузочной характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1 ) определяет магнитный потокФ в цепи и магнитные напряжения на ферромагнитном участкеUM1 и воздушном зазореUM2 . Значение индукции в воздушном зазореB2= Ф/S2 .

Механическая аналогия электрической цепи

Для лучшего понимания значения источника тока в замкнутой электрической цепи рассмотрим следующую механическую аналогию. На рисунке 2.48 изображен замкнутый контур, состоящий из труб и насоса. Чтобы исключить действие силы тяжести, предположим, что контур расположен горизонтально. Весь контур заполнен жидкостью, например водой. На любом участке горизонтальной трубы жидкость течет за счет разности давлений на концах участка. Жидкость перемещается в сторону уменьшения давления. Но сила давления, появляющаяся вследствие сжатия жидкости, — это вид сил упругости, которые являются потенциальными. Поэтому работа этих сил на замкнутом пути, как и работа кулоновских сил, равна нулю. Следовательно, одни эти силы не могут вызвать длительную циркуляцию жидкости в замкнутом контуре, так как течение жидкости сопровождается потерями энергии вследствие действия сил трения.

Для циркуляции воды необходим насос — аналог источника тока. Крыльчатка этого насоса действует на частички жидкости и создает постоянную разность давлений (напор) на входе и выходе насоса, благодаря чему жидкость и течет по трубам. Роль сторонних сил в насосе играет сила, действующая на воду со стороны вращающейся крыльчатки. Внутри насоса вода течет от участков с меньшим давлением к участкам с большим давлением.

Понятие электрического напряжения в физике

Готовые работы на аналогичную тему

  • Курсовая работа Электрическое напряжение цепи 420 руб.
  • Реферат Электрическое напряжение цепи 240 руб.
  • Контрольная работа Электрическое напряжение цепи 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Электрическим током в физике считается направленное перемещение заряженных частиц, создаваемое электрополем, совершающим при этом определенную работу.

Определение 1

Работа создающего ток электрополя называется работой тока ($A$). Такая работа может на разных участках цепи отличаться, однако при этом она будет пропорциональной проходящему через него заряду.

Физической величиной работы тока на конкретном участке при перемещении по нему заряда 1 Кл считается электрическое напряжение ($U$).

Для определения напряжения на отдельно взятом участке существует следующая формула:

$U =\frac{A}{q}$, где:

  • $A$ — работа тока,
  • $q$ — прошедший по участку заряд.

Обозначение источников тока

Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:


Обозначения

На каждой схеме условных обозначений можно увидеть следующие параметры:

  • Общее обозначение источника тока и движущей силы ЭДС;
  • Графическое изображение без ЭДС;
  • Химический тип;
  • Батарея;
  • Постоянное напряжение;
  • Переменное напряжение;
  • Генератор.

Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.