Электрическая схема катушки

Технические характеристики

Технические характеристики компенсационных дросселей

Основным техническим параметром дросселя в электротехнике и электронике, полностью характеризующим его функциональность, является величина индуктивности. Этим он напоминает обычную катушку, применяемую в различных электрических схемах. И в том и другом случае за единицу измерения принимается Генри, обозначаемый как Гн.

Еще один параметр, описывающий поведение дросселя в различных цепях – его электрическое сопротивление, измеряемое в Омах. При желании его всегда удается проверить посредством обычного тестера (мультиметра). Для полноты описания работы этого элемента потребуется добавить такие показатели:

  • допустимое (предельное) напряжение;
  • номинальный ток подмагничивания;
  • добротность образуемого катушкой контура.

Дроссель цепи постоянного тока СТА-ФТП-93 93 кВт

Указанные характеристики дросселей позволяют разнообразить их ассортимент и использовать для решения самых различных инженерных задач.

1 Область применения

Для изображения коммутационных устройств, входящих в электросистему, используют 4 основных обозначения. Пример однолинейной схемы Монтажные электрические схемы. Е — ИМ, на который дополнительно установлен ручной привод. Как соединяются радиоэлементы в схеме Итак, вроде бы определились с задачей этой схемы. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Иногда номинальные данные не указывают, в этом случае параметры элемента не имеют значения, можно выбрать и установить звено с минимальным значением. Самый простой пример — обыкновенный выключатель. Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Пусть это будет значок R2. Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. Рисунок 6 Допускается при изображении на схеме элемента или устройства разнесенным способом позиционное обозначение каждой составной части элемента или устройства проставлять, как при совмещенном способе, но с указанием для каждой части обозначений выводов контактов. В принципиальных схемах разных отраслей имеются отличия в изображении отдельных элементов.

ОБОЗНАЧЕНИЯ БУКВЕННО-ЦИФРОВЫЕ В ЭЛЕКТРИЧЕСКИХ СХЕМАХ

Включают в разработанные чертежи электрификации домов, квартир, производств. Если невозможно указать характеристики или параметры входных и выходных цепей изделия, то рекомендуется указывать наименование цепей или контролируемых величин. Поэтому, эта статья в основном именно для них.

Прописывается полная информация об элементе, емкость, если это конденсатор, номинальное напряжение, сопротивление для резистора. Второй вид более современный и активно применим, особенно в импортном оборудовании. Однобуквенная символика элементов Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом

Основные базовые изображения Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи. Вся информация представлена блоками с подписями — наименованиями устройств. Условные графические обозначения радиоэлементов

Электрический дроссель: принцип действия, назначение, применение

Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).

Условно такие широкие границы подразделяются на несколько участков:

  1. низкие ( звуковые) частоты (20 Гц – 20 кГц);
  2. ультразвуковые частоты (20 – 100 кГц);
  3. высокие и сверхвысокие частоты (от 100 кГц и выше).

Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Последний показатель широко используется при расчетах колебательных контуров.

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

  • переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
  • насыщения. Главное область применения – стабилизаторы напряжения.
  • сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
  • магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Интересное видео об электрических дросселях смотрите ниже:

Оптимизация добротности катушек индуктивности

Не менее важным параметром, чем индуктивность, при расчете индуктивных компонентов контуров, фильтров, линий задержек является их добротность.

На заданной частоте добротность катушки индуктивности определяют по формуле

QL = 2 π
F L / r,

где r — активное сопротивление потерь, которое имеет несколько составляющих. Сопротивление потерь можно представить в виде суммы

r =
r + rf +
rk +
rем + rэкр +
rс,

где r — сопротивление обмотки постоянному току;
rf — высокочастотные потери;
rk — потери в материале каркаса;
rем — емкостные потери; rэкр — потери в материале экрана;
rс — потери в материале сердечника.

Сопротивление высокочастотных потерь в обмотке состоит из потерь, обусловленных поверхностным (скин) эффектом и эффектом близости
rf= rскин + rблиз. Обе эти составляющие имеют выраженную зависимость от диаметра провода намотки, как показано на рис. 4.5. Это свойство используется для получения максимальной добротности путем выбора оптимального диаметра провода намотки.

Рис. 4.5. Оптимальный диаметр провода намотки

Диэлектрические потери, возникающие в поле собственной емкости катушки через диэлектрик, имеют ту же природу, что и в
конденсаторах и описываются тангенсом диэлектрических потерь на рабочей частоте.

Дросселем высокой частоты называют катушку индуктивности, включаемую в цепь для увеличения сопротивления токам высокой частоты. Основные параметры:
zдр — полное сопротивление, R — сопротивление постоянному току,
Сдр — собственная емкость. Полное сопротивление на рабочих частотах должно быть большим и иметь индуктивный характер. Собственная емкость дросселя (рис. 4.6) определяет его критическую частоту
fкр = 1/(2п(LдрСдр)1/2, ниже которой расположен рабочий интервал частот.

Рис. 4.6. Эквивалентная схема и зависимость полного сопротивления дросселя

Серийно выпускаются ВЧ
дроссели типа ДМ с ферритовым сердечником. Интервал индуктивностей 1…500 мкГ. Допустимое значение тока 60 мА.

Вернуться на главную страницу …

Трансформатор Тесла: принцип действия

Не было бы трансформаторов катушек индуктивности в роли первичной и вторичной обмоток — не было бы ни передачи, ни распределения электроэнергии. Для соединения используется последовательное подключение. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. На втором этапе колебания высокой частоты генерируются в первичном контуре.
Для постоянного тока катушка не является сопротивлением, разве что сопротивление ее провода выступает активным сопротивлением, а вот для тока переменного, да высокочастотного коим являются например коммутационные помехи — катушка станет препятствием.
Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник.
Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.
Для чего нужны и какие бывают В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью.
Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране. Их сердечник изготавливают обычно из феррита.
Фото — принцип работы Помимо этого, индуктивные каркасные и бескаркасные катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. И так далее.
Подключение автомобильный катушки зажигания

Регуляторы расхода рабочей жидкости для гидроприводов мобильных машин (Часть 1)

Рабочие органы и исполнительные механизмы мобильных машин и механизмов с гидроприводом, применяемые в промышленном и гражданском строительстве, при ремонте и содержании дорог, в лесозаготовительном производстве, в коммунальном хозяйстве и т. д., приводятся в движение гидроцилиндрами или гидромоторами.

Для изменения скорости движения штоков гидроцилиндров двустороннего действия или частоты вращения приводных валов реверсивных гидромоторов применяют гидроаппараты, управляющие расходом рабочей жидкости (РЖ), которые в зависимости от свойств разделяют на два основных конструктивных исполнения: дросселирующие и регулирующие.

Дросселирующие гидроаппараты предназначены для создания гидравлического сопротивления потоку путем дросселирования расхода РЖ, который в свою очередь зависит от потери давления. К дросселирующим гидроаппаратам относятся синхронизаторы расходов (делители и сумматоры потока) и гидродроссели нерегулируемые и регулируемые, в том числе с обратным клапаном или без него.

Регулирующие гидроаппараты предназначены для поддержания заданного значения расхода независимо от значений перепада давлений в подводимом и отводимом потоках РЖ. К регулирующим гидроаппаратам относятся регуляторы расхода двухлинейные с изменяемым расходом на выходе и со стабилизацией в зависимости от температуры РЖ и трехлинейные с изменяемым расходом на выходе со сливом избыточного расхода в другую гидролинию или в бак гидросистемы.

Советуем изучить Калькулятор перевода силы тока в мощность

Большинство дросселирующих гидроаппаратов представляют собой местные гидравлические сопротивления, в которых изменение расхода зависит от площади проходного сечения вследствие потери давления u001aР из-за деформации потока РЖ.

Обозначение, параметры и разновидности катушек индуктивности

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Что такое индуктивность

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу — индуктивности — является реальный элемент электрической цепи — индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Рис. 1. Условное графическое обозначение индуктивности

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

где N — число витков катушки.

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф — Фси + Фвп.

Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ , так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси , и потокосцепления внешних полей ψ вп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:

здесь еси — ЭДС самоиндукции, евп — ЭДС внешних полей.

Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер — амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1 ).

В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).

Рис. 2. Вебер-амперные характеристики индуктивной катушки: 1 — нелинейная, 2 — линейная.

В системе единиц СИ индуктивность выражают в генри (Гн).

При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:

Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля .

Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

\varepsilon_L = -L\medspace\frac{dI}{dt}

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon < 0, i > 0, участок 3-4: \varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).

А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).

И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

X_L = w\medspace L

Где w – круговая частота: w = 2 \pi f. f – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

u + \varepsilon_L = 0

А следовательно:

u = – \varepsilon_L

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Что называется “принудительным шагом” намотки?

Для улучшения качества цилиндрических катушек витки не мотаются плотно один к другому. Намотка катушки, при которой витки расположены не вплотную, а с некоторым зазором, называется намоткой “принудительным шагом”.

Для равномерности зазора между витками цилиндрической катушки намотку производят двумя проводами и при этом витки проводов укладываются вплотную.

Когда намотка закончена — один из проводов сматывают и на каркасе остаётся провод, витки которого отделены друг от друга одинаковыми промежутками, равными толщине снятого провода. Второй провод с успехом можно заменить обыкновенной ниткой.

Рис. 4. Принудительный шаг намотки катушки.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.
  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.
  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Индуктивность кругового кольца круглого сечения

Теперь рассмотрим, какова будет индуктивность если провод свернуть в кольцо. Такой индуктивный элемент будет иметь вид

При этом его индуктивность можно вычислить по следующему выражению

для постоянного тока

где R – радиус витка, м, R = D/2;

r – радиус провода, м, r = d/2;

μ – магнитная постоянная, μ = 4π•10-7 Гн/м.

Так же как и для проводника существует выражение для индуктивности кругового витка на любой частоте

где ξ – коэффициент, вносящий поправку на распространение переменного тока по сечению провода. Определяется также как и для прямого проводника.

Пример. В качестве примера рассчитаем индуктивность такого же провода, как и в первом примере, только свёрнутом в кольцо. В этом случае диаметр провода d = 2 мм, а диаметр кольца D = l/π = 4/3,142 ≈ 1,273 м, провод выполнен из меди (γ = 5,81*107 См/м).

Для постоянного тока индуктивность составит

На частоте 50 кГц

В следующей части я продолжу рассмотрение расчётов индуктивности для различных индуктивных элементов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Катушки, дроссели, трансформаторы

рис. 4.1

Число полуокружностей в условном графическом обозначении катушек и дросселей может быть любым. Чаще количество полуокружностей выбирают равным четырем или же в зависимости от удобства их сопряжения на принципиальных схемах с символами других элементов (конденсаторов, резисторов и т. п.). В зависимости от конфигурации принципиальной схемы выводы обмотки направляют либо в одну сторону (рис. 4.1, L3), либо в разные (L1, L2, L4). Если необходимо показать отвод, то линию электрической связи присоединяют в месте сочленения полуокружностей или в середине одной из них (L4), причём точка не ставится.

Буквенно-цифровое позиционное обозначение катушек и дросселей состоит из буквы L и порядкового номера по схеме. Рядом (сверху или справа) можно указывать индуктивность, обычно в миллигенри или микрогенри.

Если катушка или дроссель имеет магнитопровод, условное графическое обозначение дополняют его символом — отрезком сплошной или прерывистой линии, располагаемым с «наружной» стороны полуокружностей (рис. 4.2). При этом магнитопроводы из карбонильного железа, альсифера или других магнитодиэлектриков изображают штриховой линией (L1), из феррита или ферромагнитного сплава (электротехническая сталь, пермаллой) — сплошной линией (L2). Магнитопроводы из немагнитных материалов (меди, алюминия и др.) обозначают так же, как и ферромагнитные, но рядом с УГО указывают химический символ металла.

Возможность подстройки индуктивности изменением положения магнитопровода показывают на схемах знаком подстроенного регулирования, пересекающим условное графическое обозначение катушки под углом 45° (рис. 4.2, L5, L6)

Если необходимо обратить внимание на наличие зазора в ферромагнитном магнитопроводе катушки или дросселя (обычно зазор делают для увеличения магнитного сопротивления, чтобы предотвратить насыщение магнитопровода), символ последнего разрывают посередине (см. рис

4.2, дроссель L4).

рис. 4.3

Объединение таких катушек в блок показывают штриховой линией механической связи, соединяющей знаки регулирования (см. рис. 4.4, L3.1, L3.2).

Символы катушек используют и в построении условных графических обозначений различных трансформаторов. Простейший трансформатор содержит две индуктивно связанные катушки (обмотки). Эту конструктивную особенность, как и в случае с вариометром, показывают, располагая символы обмоток рядом, параллельно (рис. 4.4) и на схемах им присваивают буквенное обозначение катушек — L. Необходимое для обеспечения работоспособности некоторых устройств фазирование обмоток (т. е. порядок подключения выводов) показывают точками, обозначающими их начало (см. рис. 4.4, L1-L2, L7-L8).

Радиочастотные трансформаторы могут быть как с магнитопроводами, так и без них. Если магнитопровод общий для всех обмоток, его изображают между их символами (см. рис. 4.4, L5-L6, L7-L8), а если каждая из них имеет свой магнитопровод — над ними (L9-L10, L11-L12). Возможность подстройки индуктивности изменением положения сердечника показывают знаком подстроенного регулирования, пересекая им либо только УГО магнитопровода (L9-L10, L11-L12), либо и его, и одновременно символов обмоток (L7-Z8). Если же необходимо показать регулируемую индуктивную связь между обмотками, их символы пересекают знаком регулирования (L3-L4, L11-L12).Трансформаторы, работающие в широкой полосе частот, обозначают буквой T, а их обмотки римскими цифрами (рис. 4.5). Иногда вместо последних для обозначения обмоток используют условную нумерацию их выводов. Число полуокружностей в символах обмоток трансформаторов может быть любым.

Для уменьшения помех, проникающих из сети, между первичной и вторичными обмотками трансформаторов питания иногда помещают электростатический экран. Он представляет собой незамкнутый виток медной или алюминиевой фольги или один слой тонкого провода, соединяемый с общим проводом устройства. На схемах такой экран изображают штриховой линией (см. рис. 4.5, T1), а соединение с общим проводом — поперечной черточкой на конце вывода экрана. Условное графическое обозначение трансформаторов допускается показывать повернутым на 90°.Разновидность трансформаторов — автотрансформаторы изображают на схемах, как и катушки с отводами. Возможность плавного регулирования снимаемого с них напряжения показывают знаком регулирования (см. рис. 4.5, T2).