Генератор сигналов л31 доработка

Оглавление

Стиральные машины типа СМР

Стиральная машина “Рига-17”

Внешний вид стиральной машины представоен на фото слева. Схема приведена на рис.5. В схему входят пускозащитное реле типа РТК, электродвигатель М типа АД180-4/71 с пусковой обмоткой L1 и рабочей обмоткой L2, реле времени КТ типа РВ-6, переключатель режима работы машины S типа ПСМ-10. Включение машины осуществляется поворотом ручки-указателя реле времени. Отключение машины происходит автоматически по истечении установленного времени. Для пуска и защиты от перегрузок двигателя стиральная машина снабжена автоматическим пускозащитным реле типа РТК. Переключатель режимов работы ПСМ-10 можно увидеть на фото слева. Внешний вид реле РВ-6 представлен на фото справа. На некоторых сайтах можно встретить предложения о продаже таких реле. Например, здесь http://www.gmbm-shop.ru/index.php?product >

Мелкие детали данных изделий можно посмотреть в увеличенном виде, нажав на каждую из фотографий. Вообще говоря, стиральных машин каждого вида много и рассматривать их все смысла нет, поскольку их выпуск в свое время ограничивался разнообразием применяемых двигателей и реле. К тому же многие машинки, несмотря на их разные названия, имеют одинаковый внешний вид и алгоритм работы. Например, представленная на фото стиральная машина “Рига-17” и, скажем, “Киргизия-4” и меют одинаковый внешний вид и различаются только используемым двигателем. В “Киргизия-4” это двигатель типа АЕР16УХЛ4. Хотя были и сложные для того времени машинки, вроде “Вятка-автомат”. К тому же на просторах интернета можно без труда все это найти, а мы, чтобы облегчить вам поиск информации по данной ретротехнике , приведем в конце необходимую литературу по данному вопросу, с помощью которой и создавалась, собственно, эта страничка, а также сводную таблицу по используемому электрооборудованию в различных моделях стиральных машин. А на фото ниже можно увидеть в разобранном виде реле времени РВ-6А и пускозащитное реле РТК.

Стиральная машина “Волга-9” СМР-1,5

Электрическая схема стиральной машины “Волга-9” включает в себя электродвигатель М типа ДБСМ-1Е4 с пусковой ПО и рабочей РО обмотками. Перключатель В типа 10-4У42 служит для переключения обмоток двигателя на два режима работы. Реле времени РВ типа РВ-6 рассчитано на 6 минут работы. Пускозащитное реле типа РТК-1-1 предназначено для предохранения обмоток электродвигателя от перегрева и отключения его при перегрузке.Штепсельная вилка Ш надета на соединительный шнур.

Стиральная машина “Русалка” СМР-2

Электрическая схема стиральной машины “Русалка” типа СМР-2 включает в себя электродвигатель насоса М1 типа ЭНСМ-1, электродвигатель активатора М2 типа АВЕ-071-4С, ЭРУ – электронно-реверсивное устройство, КТ – реле времени серии РВ-6А, R – резистор номиналом 100кОм серии МЛТ-2, С1 – конденсатор типа К75-37 и КБГ-МН-2-600В емкостью 6мкФ, SA1/2 и SA1/3 – переключатели программ серии ПП 1-236-0, SA2 – тумблер типа Т1, ХР – соединительный шнур ШБВЛ-ВП 2х0,75.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Технические данные

  • Напряжение питающей сети — 220 ± 22 В;
  • Частота сети — 50 ± 05 Гц;
  • Диапазон установки тока заряда — 0,5 — 6,3 А;
  • Автоматическое отключение от аккумуляторной батареи через -10,5 ± 1 ч;
  • Потребляемая мощность, не более -145 Вт;
  • Переменное напряжение для питания переносной автомобильной лампы (12 или 36±2В).

На лицевой панели расположены:

  1. светодиод «СЕТЬ», сигнализирующий о включении устройства в сеть;
  2. индикатор тока для контроля тока заряда;
  3. кнопка включения устройства зарядного в режим заряда;
  4. ручка для установки тока заряда;
  5. светодиод, сигнализирующий об окончании цикла заряда.

На заднюю стенку устройства зарядного вынесен радиатор для охлаждения выпрямителя. На радиаторе установлены розетка для питания переносной лампы (12 или 36 В), электропаяльника и др., и предохранитель.

В нижней части корпуса, устройства имеется ниша, в которую укладывается сетевой шнур и кабели с контактными зажимами «+» и «-» для подключения зарядного устройства к соответствующим клеммам аккумулятора.

Рис. 1. Внешний вид устройства зарядного автоматического «Электроника».

Снятие электрооборудования со стиральной машины

Итак, для изготовления заточного станка используем электрический двигатель АД-180—4/71С1У4 от стиральной машины. Его мощность составляет 180 Вт. Снимаем этот двигатель очень внимательно. Запоминаем, как подключена электропроводка. Ведь двигатели, применяемые в них, однофазные. Они имеют рабочую и пусковую обмотки и запускаются через конденсатор. Так что, рекомендация о запоминании подключения проводов вовсе не лишняя, даже ещё лучше будет промаркировать их, чтобы знать, как потом подключать. А то будет жалко бестолково сожжённого электрического двигателя.

Разборка двигателя и закладывание смазки в подшипники

Двигатель также разбираем. При разборке желательно пользоваться съёмниками. После того как был извлечён ротор, желательно снять и проверить состояние подшипников. Если они непригодные, то просто меняем новыми. А если их состояние нормальное, то промываем их, и закладываем туда свежую смазку. Хорошо подходят смазки Циатим 221, Циатим 201 и Литол 24.

Подработка хвостовика вала

Перед сборкой необходимо нарезать на хвостовик вала резьбу М12 с шагом 1,25. Желательно это выполнить на токарном станке, дабы избежать нежелательных биений рабочих инструментов. Это необходимо для накручивания и фиксации на хвостовике стандартного патрона, применяемого для дрели. А он как раз имеет такие параметры посадки. Зажим патрона рассчитан на диаметр 12 мм. Имея такой патрон, мы обеспечиваем лёгкую замену инструментов, применяемых при работе.

Сборка мотора

Сборку производим обратным порядком тому, как разбирали. Собираем сам двигатель аккуратно, дабы не повредить обмотки и крышки корпуса.

Устанавливаем на двигателе специальную соединительную колодку для надёжного соединения проводов.

Работая на точиле, получаем пыль и грязь. Чтобы она не попадала в двигатель необходимо установить защитную шайбу на двигателе со стороны рабочего инструмента. Между мотором и шайбой оставляем небольшой зазор. Он необходим для свободного прохождения воздуха, который охлаждает обмотки двигателя.

Установка двигателя на станину

Теперь, необходимо электрический двигатель закрепить на станине. Для этого берём уголки размером в 50 на 50 мм. Закрепляем их к станине болтовыми соединениями М6. А к уголкам крепим двигатель на родные болты М10. Ось вала от станины находится на высоте 140 мм. Это позволяет использовать различные инструменты для обработки и заточки изделий. Такие, как точильные камни, диски.

Вся самоделка закрывается кожухом. Он выполняется из листового металла. Собирается он на заклёпках. Для доступа к деталям самоделки, задняя стенка кожуха делается съёмной. Для хорошей вентиляции, которая нужна для охлаждения мотора самоделки, в задней стенке просверливаются отверстия. Кожух самоделки крепится к станине саморезами. На боку кожуха монтируем включатель.

Чтобы расширить возможности точила, самостоятельно изготовляем некоторые насадки для инструментов или покупаем в торговой сети.

Итак, сама механика точила, готова.

Проверка реле холодильника на работоспособность

Если холодильная установка не включается либо ее включение происходит нерегулярно, то скорее всего дело в пусковом реле. Причиной его неисправности могут быть:

  • Окисление или обгорание контактов.
  • Механические повреждения.
  • Перегрев позисторного элемента.
  • Нарушение крепления реле, приводящее к его неправильному расположению.
  • Перегорание спирали.
  • Заклинивание сердечника.

Не нужно спешить покупать новое реле холодильника, лучше узнать, как его проверить, и попробовать сделать это.

В индукционном механизме вытаскивается соленоид, проверяются контакты, при окислении, зачищаются наждачной бумагой. Может быть сломан сердечник, тогда его нужно заменить. Протереть спиртом соприкасающиеся поверхности. Проверить целостность всех элементов. Необходимо помнить, что реле данного типа устанавливаются строго в определенном направлении, указываемом стрелкой. После вышеперечисленных действий присоединяем реле к компрессору и включаем холодильник. Если двигатель не заработал, то вероятнее всего поломка компрессора.

Проверка устройств РТП-1 и РТК-Х

Для проверки поставить реле в правильное положение (стрелкой вверх) и прозвонить мультиметром 1 и3 контакты.

Схема устройства РТК-Х

Если контакты прозваниваются, то реле исправно. В данных моделях желателен визуальный осмотр, так как замыкание может произойти через пластину держателя контактов.

Проверка устройств ДХР и LS-08B

ДХР нужно положить планкой с клеммами вверх и проверить мультиметром целостность между 1 и 3 либо 1 и 4.

LS-08B расположить внутренней стороной вверх, прозвонить между 2 и всеми клеммами или между 3 и всеми клеммами. Где контакты не прозваниваются, там ищите неисправность.

Плюсы асинхронных двигателей для стиральных машин

Электромотор, вращающий барабан, это сердце машинки для стирки. Приводом в самых первых вариантах машинок были ремни, вращающие емкость с бельем.

Но, сегодня асинхронный агрегат, преобразующий в механическую энергию электроэнергию, заметно усовершенствован.

Чаще в схемах стиральных машинках присутствуют асинхронные электродвигатели, состоящие из статора, который не движется и служит одновременно магнитопроводом и несущей конструкцией, и движущегося ротора, вращающего барабан. Работает асинхронный мотор благодаря взаимодействию магнитных переменных полей этих узлов.

Рекомендуем:

Асинхронные двигатели подразделяются на двухфазные, редко встречающиеся, и трехфазные.

К плюсам асинхронных агрегатов относят:

  • незамысловатую конструкцию;
  • простое обслуживание, предусматривающее замену изношенных подшипников и
  • периодическое смазывание электродвигателя;
  • бесшумную работу;
  • относительную дешевизну.
  • Недостатки, конечно, тоже есть:
  • низкий КПД;
  • большие размеры;
  • небольшая мощность.

Такие моторы, как правило, устанавливают на модели недорогие.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

  • Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.

  • Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .

  • Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.

В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Подручные средства

Изучая вопрос, как заряжать аккумулятор, можно отметить, что необязательно использовать специальное зарядное устройство. Его легко изготовить самостоятельно. Однако это представляет определённую опасность, если не иметь представления об основах такого процесса. Причём не все водители знают, как зарядить аккумулятор машины с помощью различных подручных средств. Есть несколько способов изготовления таких приборов своими руками:

  1. Применять для зарядки стандартную бытовую розетку, напряжение которой составляет 220 вольт. Для этого рекомендуется использовать электронный аппарат, изготовленный из полупроводникового материала, и технические устройства, способные преобразовывать энергию.
  2. Взять вторичный источник электропитания. К примеру, блок питания от ноутбука или компьютера. Такой прибор способен обеспечить напряжение в размере 13–14 вольт и силу тока больше 1 ампера.

Следует помнить, что необходимо постоянно контролировать, как заряжается аккумулятор автомобиля. Грамотное регулирование осуществляется не только на основе периодических измерений на клеммах АКБ, но и на вычислении временного интервала.

Зарядка автомобильных аккумуляторов с использованием подручных средств требует большой осторожности, так как они провоцируют повышенное нагревание аккумуляторной батареи. Это в свою очередь приводит к значительному выделению таких химических элементов, как кислород и водород

Неграмотное применение приборов становится причиной опасных ситуаций, таких как повреждение, возникновение пламени, ожоги.

Лучше современных: как правильно доработать старое советское зарядное устройство

У многих в гаражах пылятся и ржавеют старые советские зарядные устройства. Дизайн их нередко напоминает о ядерной войне, а внешнее состояние порой оставляет желать лучшего. Но зато у этих приборов есть главное – надежность, обеспеченная большим запасом электрической и конструктивной мощности. А если к старичку «прикрутить» недорогой электронный контроллер, олдскульный зарядник получит новую жизнь!

С тарые советские зарядные устройства обладают крепкими корпусами и сделанными по ГОСТу потрохами, а отдаваемый ими ток обычно не менее 8-10 ампер, а то и выше. Современные же зарядники зачастую хиловаты, а с сильно разряженными батареями, где как раз нужен большой ток, и вовсе не справляются, уходя в аварийный защитный режим…

Но «старички» пылятся на полках (а то и отправляются на свалку), поскольку в массе своей лишены модного сегодня и ставшего стандартом автоматического отключения заряда при достижении аккумулятором полной емкости. И автовладельцы опасаются оставлять их в гараже на ночь заряжать батарею– «как бы чего не вышло!».

Как устроено «допотопное» зарядное устройство?

В большинстве своем старые отечественные и импортные зарядные устройства были крайне примитивны и не содержали в себе даже зачатков умной электроники. Выполнялись зарядники по простейшей схеме – трансформатор понижал напряжение, а диодный мост делал из переменного тока постоянный. Регулировка силы зарядного тока осуществлялась ступенчатым переключателем либо в первичной цепи трансформатора, либо во вторичной (принципиальной разницы между двумя вариантами не было). Выглядело это обычно так:

Главные достоинства древних приборов – мощный качественный трансформатор и выпрямитель, позволяющие быстро заряжать даже сильно разряженные батареи, перед которыми часто пасуют современные микропроцессорные зарядки. Как правило, в корпусе советских устройств полно свободного места, поэтому туда несложно вставить китайский модуль контроля заряда, который сделает олдскульное зарядное устройство автоматическим.

Модули контроля заряда и их подключение

Модули контроля заряда подключаются к схеме старинного зарядника очень просто: для этого не нужно быть радиоинженером и не обязательно иметь паяльник – достаточно ножа для зачистки проводов, плоской отвертки для их подключения к клеммной колодке и элементарных электротехнических навыков на уровне умения починить настольную лампу.

Модуль, известный под названием XH-M601, стоит около 200 рублей. Торгуют им на небезызвестной китайской интернет-площадке десятки самых разных продавцов – приобрести не проблема. Модуль контролирует напряжение на аккумуляторной батарее и по достижении нормы отключает от сети зарядное устройство. Его можно разместить как внутри корпуса зарядного устройства, если там есть место, так и в любой подходящей пластиковой выносной коробочке. XH-M601 подключается в разрыв шнура зарядника, идущего к розетке 220 вольт, куском сетевого провода сечением 2х0,75 мм. А также его нужно подключить к клеммам-«крокодилам» зарядника для контроля напряжения на батарее – для этого можно использовать любые подходящие провода, ибо ток в контрольной цепи минимален. Два подстроечных элемента синего цвета на плате, регулируемых тоненькой плоской отверточкой, предназначены для выставления нижнего и верхнего порога срабатывания – то есть, напряжения, при котором зарядка включается и при котором выключается, обеспечивая цикличный принцип работы.

Чтобы настроить пределы работы модуля управления зарядкой, к нему на время подключается тестер в режиме вольтметра постоянного тока.

Модуль под названием XH-M602 подороже — он стоит около 500 рублей. Подключается аналогичным образом и аналогичным же образом функционирует, но управление уровнями начала и конца заряда уже осуществляется цифровым образом – с помощью клавиш «плюс/минус» и дисплея с индикацией напряжения. Для настройки необходимо с удержанием нажать левую клавишу иво время мигания дисплея настроить напряжение включения зарядного устройства. Затем с удержанием нажать правую клавишу и во время мигания дисплея настроить напряжение выключения зарядного устройства.

Такое устройство удобно тем, что для настройки режимов не требуются отвертка и вольтметр – все делается кнопками по показаниям дисплея.

Торможение электрического двигателя постоянного тока

Для торможения электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной момент на валу.

Генератор высокого напряжения из строчника на транзисторе

Здравствуйте, уважаемые друзья! Сегодня я предлагаю вам собрать генератор высокого напряжения всего на одном транзисторе из строчного трансформатора ТВС-110ПЦ15 с умножителем напряжения УН9/57-13 от старого цветного телевизора. Схема довольно простая, построена по принципу блокинг генератора и содержит небольшое количество деталей.

Схема генератора высокого напряжения из строчника на одном транзисторе

Для сборки генератора вам понадобится один транзистор КТ819Г, или импортный аналог TIP41C, но лучше всего использовать MJE13009, поскольку этот транзистор выдерживает ток до 12 А и соответственно будет меньше греться. Лично я в своем генераторе использовал MJE13009. Транзистор обязательно намажьте термопастой и установите на радиатор, желательно с вентилятором.

Еще вам понадобится два резистора мощностью по 5 ватт. На 100 ом и 240 ом, в моем генераторе резисторы очень сильно грелись и я решил приклеить «поксиполом» небольшой радиатор

Самой важной деталью генератора является строчный трансформатор ТВС-110ПЦ15, возможно использовать ТВС-90ЛЦ5 и другие аналогичные от старых цветных, черно белых и даже ламповых телевизоров

Строчный трансформатор ТВС-110ПЦ15

На магнитопроводе трансформатора надо намотать пару дополнительных обмоток. Катушка L1 содержит 10 витков, намотанных проводом диаметром 1 миллиметр. Катушку L2 мотаем проводом 1,5 миллиметра, всего 4 витка. Обе катушки должны быть намотаны в одну сторону. Вторичная высоковольтная обмотка остается без изменения.

Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

Умножитель напряжения УН9/27-13 или аналогичный тоже нуждается в незначительной доработке. На нем надо удалить два неиспользуемых вывода, отмеченных на картинке красными стрелками, потом изолировать эти места «поксиполом». Делать это необязательно, но если вы случайно во время эксперимента коснетесь этих выводов… Волосы встанут дыбом и мало не покажется, конечно током не убьет, там очень мало ампер, но обжечь может. Между строчным трансформатором и умножителем устанавливается резистор на 470 ом.

Умножитель напряжения УН9/27-13

Разрядник сделан из двух проволок диаметром 1 миллиметр. Расстояние между электродами подбирается индивидуально. Для питания генератора лучше всего использовать источник питания от 12 до 30 вольт с силой тока не менее 2А.

Генератор высокого напряжения. Разрядник

После подачи питания на разряднике появляется мощная дуга. Как измерить напряжение на выходе из умножителя без киловольт метра? Принято считать, 1 миллиметр дуги за 1 киловольт, длина дуги 15 миллиметров, значит напряжение на разряднике примерно 15 киловольт.

Хочу сказать пару слов о технике безопасности. На разрядник из умножителя подается высокое напряжение несколько десятков киловольт, поэтому не прикасайтесь руками к разряднику во избежание поражения электрическим током, даже после отключения питания в конденсаторах умножителя остается высокое напряжение. Конечно током не убьет, потому что мало ампер, но ударит больно и возможно оставит ожоги на коже.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает генератор высокого напряжения.

Комментарии • 15

Ебнутые на всю голову утырки! Взять и просто рассказать про 4 конца П1, П2, С1, иС2 и что с чем соединяется—ни фига не могут. Скем страну поднимать?? С глухонемыми.

А вот у меня КД-6-4-У4 , с четырьмя проводами, какой конденсатор не пробую — не работает, без кондёра с «толкача» работает, не в курсе — что это?

Ребята скажите пожалуйста , сильно ли у вас греется двигатель?? У меня после 10 минут работы за него рукой не взяться. Я к рабочей обмотке подключил 220 и вал провернул рукой. С конденсатором нагревается еще быстрее.

И что тут удивительного, обычная схема подключения?

Какая такая «обычная»?? Нарисуй и объясни. Только не так как этот Глухонемой!! ;))

три чо дибил сказано же 0.4 мф

Зачем сразу оскорблять? Просто указать на ошибку не судьба?

Его вообще можно к 120 герцовой сети подключать, скорость оборотов увеличится (это если есть отдельная противоположня фаза и ноль).

Какой конденсатор ты использовал ?

@DeFree _ МБГЧ на 4 mf x 250 v (можно и любого другого типа, но только не электролитический!)Вместо лампочки ставим резистор типа ПЭВ-10 (на 10 w) = 130 ом—Такая схема включения использовалась в катушечных магнитофонах типа: Юпитер 203, Сатурн 202 и им-же подобных.

Источник

Схемы реверсирования двигателей.

Здравствуйте дорогие читатели. Частенько в любительских самодельных устройствах используются различного рода двигатели. В зависимости от предназначения, двигатели в этих устройствах, согласно конструкторскому замыслу должны вращаться в обе стороны. То есть схемы их включения должны предусматривать реверсирование. Самое простой реверс имеют двигатели постоянного тока с возбуждением от постоянных магнитов. Поменял концы проводов питания местами и все – движок вращается в другую сторону. Поэтому и схемы реверсирования для этих двигателей простые. А как быть с другими двигателями? Вот об этом и поговорим.

как подключть электро двигатель кд-6-4-ухл4 в сеть 220в .подскажите . от электро двигателя выходит три провода

не помню точно но вроде так: одна обмотка прямо в сеть, вторая последовательно с резистором 130 Ом 7.5 Вт и конденсатором МБГЧ 4 мкФ 250 В (или КБГ 4 мкФ 600 В)

зачем магнитофон ломал? там было подключено все правильно

Продзвони тестером обмотки двигателя. Там один вывод идёт от пусковой обмотки, один от рабочей, и один общий. Пусковая обмотка имеет сопротивление БОЛЬШЕ рабочей. Значит общий вывод и вывод от рабочей обмотки подключается в сеть 220 вольт, а вывод от пусковой обмотки через конденсатор ёмкостью 4 мкФ, и напряжением не менее 400 вольт, на второй провод сети.

Вам нужен авометр. Измерьте сопротивление между проводами. Обозначьте буквами «Р» вывода сопротивление меж которыми наименьшее. Замерьте сопротивление меж «Р» и оставшимся проводом. Провод «Р» с которым меньше сопротивление обозначьте как «РК». Третий провод обозначте как «К».

Присоедените меж РК и К бумажный конденсатор 4 микрофарада. 250 вольт. Подключите к Р и РК 220 вольт

Источник

Для схемы «Тринисторный регулятор»

Предлагаемый тринисторный регулятор мощности (рис. 1), специально предназначенный для менеджмента коллекторным электродвигателем (электродрель, вентилятор и т.д.). имеет некоторые особенности. Во-первых, электродвигатель с силовым тринистором включены в одну из диагоналей выпрямительного моста, а на другую подано сетевое напряжение. Кроме того, тот самый тринистор управляется не короткими импульсами, как в традиционных устройствах, а более широкими, благодаря чему кратковременные отключения нагрузки, характерные для работающего коллекторного электродвигателя, не сказываются на стабильности работы регулятора.На однопереходном транзисторе собран генератор коротких (доли миллисекунд) положительных импульсов, используемых для менеджмента вспомогательным тринистором VS1. Питается генератор трапецеидальным напряжением, получаемым благодаря ограничению стабилитроном VD1 положительных полуволн синусоидального напряжения, следующих с частотой 100 Гц. С появлением каждой полуволны такого напряжения конденсатор С1 начинает заряжаться
через цепь из резисторов R1 R3. Блок питания Бп 2-1схема элекрическая Скорость зарядки конденсатора можно регулировать в некоторых пределах переменным резистором R1.Как только напряжение на конденсаторе достигнет порога транзистора (он зависит от напряжения на базах транзистора и может регулироваться резисторами R4 и R5), на резисторе R5 появляется положительный импульс, поступающий далее на управляющий электрод тринистора VS1. Этот тринистор открывается, и появляющийся на резисторе R6 более длительный (по сравнению с управляющим) импульс включает силовой тринистор VS2. Через него напряжение питания поступает на электродвигатель М1.Момент открывания управляющего и силового тринисторов, а значит, мощность на нагрузке (иначе говоря, частоту вращения вала электродвигателя) регулируют переменным резистором R1.Поскольку в анодную цепь тринистора VS2 включена индуктивная нагрузка, может наблюдаться самопроизвольное открывание тринистора более того без сигнала на управляющем электроде. Ч…
Смотреть описание схемы …