Выпрямительные диоды малой, средней и большой и мощности, справочник

Оглавление

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.

Зачем нужно охлаждать светодиод

Мнение о том, что светодиод не нагревается ошибочно. Оно строится на том, что прикасаясь к такому маломощному прибору, не чувствуешь тепла. Согласно, закона сохранения энергии: энергия не появляется из ничего и не пропадает бесследно, а преобразуется из одного вида в другой. Светодиоды, как твердотельные источники света, излучают видимую часть спектра и выделяют при этом тепло. Вследствие термоэлектрических явлений, происходящих в полупроводниковых светодиодах, выделяется тепло. В прямой зависимости от температуры нагрева светодиодов меняются его показатели и характеристики. Такая сильная зависимость показателей от температуры приводит к тому, что:

Рис. 1. График зависимости показателя относительного светового потока от температуры перехода (светодиод MKR)

  • полупроводниковый переход при нагреве светодиодного кристалла деградирует, и он быстро изнашивается, а срок эксплуатации снижается;
  • тепловой рубеж у светодиодов, после которого наступает пробой, достигается после повышения температуры до 150°С. В зависимости от применяемых материалов, изменяется количество светового потока и срока износа;
  • постепенно уменьшается количество светового потока, что отражают кривые зависимости, изображенные на Рис.1;
  • с изменением температуры меняется и величина прямого падения напряжения на светодиоде. При нагреве источника света увеличивается показатель прямого падения напряжения. На графиках кривыми изображается такая зависимость.

Перечисленные выше причины являются серьезным поводом, чтобы обеспечить отвод тепла от светодиодного прибора.

Диоды иностранных производителей

Похожий принцип с некоторыми отличиями используется в системе маркировки диодов импортного образца. Отличают три стандарта:

  1. JEDEC – американский. Каждый диод представлен в виде набора обозначений в виде 1NXY, где X – это серийный номер, а Y – модификация. Первые два символа есть у всех приборов, поэтому в цветовой маркировке их не учитывают. Каждой цифре или литере соответствует свой цвет, согласно таблице.
  2. PRO-ELECTRON – европейский. Две буквы в начале – материал и подкатегория диода. Серийный номер может иметь вид значения от 100 до 999 (бытовые приборы) либо с добавлением литер (Z10-A99), подразумевающих промышленное применение. Каждое из значений кодируется в цветовой элемент.
  3. JIS – японский. Заметно отличается от предыдущих – в начале указывается функциональный тип: фотодиод, обычный диод, транзистор или тиристор. Затем идет S – обозначение полупроводника; следующая литера – тип прибора внутри категории, затем серийный номер и буква модификации (одна или две).

Запомнить все сочетания практически невозможно. Если усвоить хотя бы основные соответствия, разобраться в назначении диода удастся гораздо быстрее.

Классификация диодов

По исходному полупроводниковому материалу диоды делят на четыре группы:

  • германиевые,
  • кремниевые,
  • из арсенида галлия,
  • из фосфида индия.

Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые.

Это связано с их большей проводимостью при небольшом напряжении (около 0,1…0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5…30 кОм).

По конструктивно-технологическому признаку различают диоды:

  • точечные,
  • плоскостные.

По назначению полупроводниковые диоды делят на следующие основные группы:

  • выпрямительные,
  • универсальные,
  • импульсные,
  • варикапы,
  • стабилитроны (опорные диоды),
  • стабисторы,
  • туннельные диоды,
  • обращенные диоды,
  • лавинно-пролетные (ЛПД),
  • тиристоры,
  • фотодиоды, с
  • ветодиоды и оптроны.

Диоды характеризуются такими основными электрическими параметрами:

  • током, проходящим через диод в прямом направлении (прямой ток Іпр);
  • током, проходящим через диод в обратном направлении (обратный ток Іобр);
  • наибольшим допустимым выпрямленным ТОКОМ Івыпр.макс;
  • наибольшим допустимым прямым током Іпр.доп.;
  • прямым напряжением Unp;
  • обратным напряжением иобР;
  • наибольшим допустимым обратным напряжением иобр.макс
  • емкостью Сд между выводами диода;
  • габаритами и диапазоном рабочих температур.

Классификация диодов

По исходному полупроводниковому материалу диоды делят на четыре группы:

  • германиевые,
  • кремниевые,
  • из арсенида галлия,
  • из фосфида индия.

Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые.

Это связано с их большей проводимостью при небольшом напряжении (около 0,1…0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5…30 кОм).

По конструктивно-технологическому признаку различают диоды:

  • точечные,
  • плоскостные.

По назначению полупроводниковые диоды делят на следующие основные группы:

  • выпрямительные,
  • универсальные,
  • импульсные,
  • варикапы,
  • стабилитроны (опорные диоды),
  • стабисторы,
  • туннельные диоды,
  • обращенные диоды,
  • лавинно-пролетные (ЛПД),
  • тиристоры,
  • фотодиоды, с
  • ветодиоды и оптроны.

Диоды характеризуются такими основными электрическими параметрами:

  • током, проходящим через диод в прямом направлении (прямой ток Іпр);
  • током, проходящим через диод в обратном направлении (обратный ток Іобр);
  • наибольшим допустимым выпрямленным ТОКОМ Івыпр.макс;
  • наибольшим допустимым прямым током Іпр.доп.;
  • прямым напряжением Unp;
  • обратным напряжением иобР;
  • наибольшим допустимым обратным напряжением иобр.макс
  • емкостью Сд между выводами диода;
  • габаритами и диапазоном рабочих температур.

Диод Шоттки — принцип работы, назначение :: SYL.ru

Диод Шоттки — это полупроводниковый прибор (диод) реализованный за счет контакта металл-полупроводник. Свое имя получил в честь немецкого физика Вальтера Шоттки.

Особенности диодов Шоттки

В 1938 г. ученым была создана основа теории этих полупроводниковых приборов. Вместо p-n перехода в таких диодах в качестве барьера применен металл-полупроводник. Область полупроводникового материала объединена основными носителями. В месте контакта начинает формироваться область заряда ионизованных акцепторов. В результате в районе перехода возникает потенциальный барьер, который получил название барьера Шоттки. Изменение его уровня приводит к изменению значения тока, протекающему сквозь диод Шоттки. Главной особенностью таких полупроводниковых приборов считается низкий уровень понижения прямого напряжения после p-n перехода, а также отсутствие уровня заряда обратного восстановления.

Диоды Шоттки работают в диапазоне температур от минус 650 до плюс 1600 по Цельсию, значение допустимого обратного напряжения выпускаемых в промышленности диодов ограничено 250 В. Однако широкое применение эти приборы получили в промышленной электронике в низковольтных цепях, обратное напряжение которых ограничено пределом до десятков вольт. Диод Шоттки позволяет получать необходимое значение потенциального барьера путем подбора нужного металла. Достаточно низкий уровень высокочастотного шума позволяет использовать такие диоды в импульсных блоках питания, в цифровой аппаратуре, в качестве приемников излучения, модуляторов света, в трансформаторных блоках аналоговой аппаратуры. Они нашли широкое применение при конструировании солнечных батарей. Принцип барьера Шоттки используют при проектировании и изготовлении быстродействующих СВЧ-диодов. Диод Шоттки конструктивно исполнен в стеклянном, пластмассовом и металлическом корпусах. Также эти приборы выпускаются в SMD-корпусах.

Достоинства и недостатки

Их достоинством, в отличие от кремниевых диодов, является довольно низкое падение напряжения (до 0,2-0,4 вольт). Такое малое значение падения характерно исключительно для диодов Шоттки. Барьер Шоттки тоже имеет меньшее значение электрической емкости перехода, это позволяет заметно повышать рабочую частоту прибора. Также эти устройства характеризуются пониженным значением уровня помех. Диод Шоттки имеет и ряд недостатков. Главным является высокая чувствительность к кратковременным скачкам обратного тока и напряжения, в результате чего происходит короткое замыкание, а диод перегорает. Также диоды такого типа характеризуются увеличением значения обратного тока при повышении температуры кристалла.

По мощности эти полупроводниковые приборы можно разбить на три группы: маломощные (проходной ток их не превышает 3-5 ампер), средней мощности (до 10 ампер) и мощные (ток достигает 60 ампер). Мощные диоды Шоттки используются для работы в приборах, служащих для выпрямления переменного тока. Они обеспечивают прохождение прямого тока, достигающего десятков ампер. При этом падение напряжения на диоде составляет всего 0,5-1 В. Допустимое же значение обратного напряжения в диодах Шоттки —  200-500 В.

Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики

В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.

Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.

Металл и полупроводник: особенности контакта.

В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.

Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:

  1. пониженное падение напряжения при прямом смещении;
  2. незначительная собственная ёмкость;
  3. малый обратный ток;
  4. низкое допустимое обратное напряжение.

При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.

Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.

Низковольтные диоды.

Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.

В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.

Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.

Основные параметры.

  1. Максимальное постоянное обратное напряжение;
  2. Максимальное импульсное обратное напряжение;
  3. Максимальный (средний) прямой ток;
  4. Максимальный импульсный прямой ток;
  5. Постоянное прямое напряжение на диоде при заданном прямом токе через него;
  6. Обратный ток диода при предельном обратном напряжении;
  7. Максимальная рабочая частота диода;
  8. Время обратного восстановления;
  9. Общая емкость диода.

Производство диодов Шоттки.

В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.

Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.

Типы стандартных выпрямителей

Существуют различные силовые выпрямительные полупроводниковые диоды в зависимости от типа монтажа, материала, формы, количества диодов, уровня пропускаемого тока. Самыми распространенными считаются:

  1. Устройства средней силы, которые могут передавать ток силы от 1 до 6 Ампер. При этом технические параметры большинства приборов говорят, что такие диоды могут изменить ток с напряжение до 1,3 килоВольт;
  2. Выпрямительные диоды максимальной серии могут пропускать ток от 10 Ампер до 400, в основном они применяются как сверхбыстрые преобразователи, для контроля промышленной сферы деятельности. Эти устройства называются также высоковольтные;
  3. Низкочастотные диоды или маломощные.

Перед тем, как купить какие либо устройств данного типа, очень важно правильно подобрать основные параметры выпрямительных диодов. К ним относятся: характеристики ВАХ (максимальный обратный ток, максимальный пиковый ток), максимальное обратное напряжение, прямое напряжение, материал корпуса и средняя сила выпрямленного тока

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода

Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода. Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца.

Фото — Таблица низкочастотных диодов

Импортные (зарубежные) выпрямительные диоды (типа КВРС, SMD):

Фото — Таблица импортных диодов

Данные про силовые или высокочастотные диоды:

Фото — Силовые диоды

Выпрямительные схемы включения также бывают разные. Они могут быть однофазными (например, автомобильные и лавинные диоды) или многофазными (трехфазные считаются самыми популярными). Большинство выпрямители малой мощности для отечественного оборудования однофазны, но трехфазный очень важен для промышленного оборудования. Для генератора, трансформатора, станочных приспособлений.

Но при этом, для неконтролируемого мостового трехфазного выпрямителя используются шесть диодов. Поэтому его часто называют шестидиодным выпрямительным прибором. Мосты считаются импульсными и способны нормализовать и выпрямить даже нестабильный ток.

Для маломощных аппаратов (зарядного устройства) двойные диоды, соединенные последовательно с анодом первого диода, также соединены с катодом второго, а изготовлены в едином корпусе. Некоторые имеющиеся в продаже двойные диоды имеют в доступе все четыре терминала, которые можно настроить по своим потребностям.

Фото — Выпрямительный диод средней мощности

Для более высокой мощности одним дискретным устройством обычно используется каждый из шести диодов моста. Его можно применять как для поверхностного оборудования, так и для контроля более сложных приспособлений. Нередко шестидиодные мосты используют ограничительные схемы.

Видео: Принцип работы диодов

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод

В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки

На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Корпус

Что касается корпуса, то здесь обозначение полупроводниковых диодов, точно так же, как и других, является уникальным. Указывается четыре цифры, которые обозначают типоразмер. В целом они никак не соответствуют габаритам. Если хочется об этом узнать более подробно, то необходимо обратиться к ГОСТам. Люди, которые не имеют возможности работать с нормативными актами в следствии каких-либо нюансов, могут использовать обычные справочные таблицы.

Следует заметить, что корпуса SMD-устройств от производителя к производителю могут между собой отличаться по мелочам. Дело в том, что любой производитель создает базу под свою технику, соответственно, некоторые детали приходится менять.

Соответственно, также габариты корпусов вышеописанных приборов SMD нужны разные, они также должны выполнять другие требования для корректной работы, такие как условие отвода тепла и так далее. Поэтому перед покупкой следует не только руководствоваться цифрами справочника, но и сделать замеры. Особенно если речь идет о ремонте какой-либо техники. Иначе такие диоды могут попросту не установиться в те места, где они необходимы.

Схемы включения

Д226Б можно использовать в схеме сигнализатора «закрой двери холодильника». Он соединяется с контактами патрона, в который вкручивается лампочка. Когда дверь закрыта выключатель SA1 разомкнут и питание на схему не подаётся. Когда холодильник открывается, напряжение, через без трансформаторный блок питания VD1, VD2, R3 и C2, приходит на конденсатор С1, который начинает заряжаться. Если дверь открыта не более 1 минуты, то С1 не успевает зарядиться и сигнализатор не срабатывает.

При открытии холодильника более чем на 1,5 минуты конденсатор успевает зарядиться до разности потенциалов, при котором открывается транзистор VT1. Через него напряжение приходит на пьезоэлектрический зуммер НА1, и раздаётся звук.

В данной схеме используются:

  • резисторы R1 и R2 – МЛТ 0,125;
  • резисторы R3 – МЛТ 0,5;
  • конденсаторы С1 и С2 – К50-24 или К50-29;
  • VD2 — вместо диода Д226Б можно использовать КД105Б, КД105В, Д226В, Д226Г, КД213Б, КД213В, КД213Г (обратное напряжение не менее 200 В);
  • стабилитрон VD1 должен быть рассчитан на напряжение стабилизации от 8 до 12 В;
  • вместо указанного на схеме транзистора можно использовать КП304 или КП301 с любым буквенным индексом (полевые транзисторы боятся статического электричества, поэтому при пайке требуется быть осторожным, чтобы избежать пробоя);
  • можно использовать зуммеры PKLCD1212R1000-R1, PKLCS1212E4001-R1, или другие, рассчитанные на напряжение от 8 до 12 В.

Старая система обозначений

В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов.

Первый элемент буквенный, Д — диод.

Второй элемент — номер, соответствующий типу диода: 1…100 — точечные германиевые, 101…200— точечные кремниевые, 201…300 — плоскостные кремниевые, 801…900 — стабилитроны, 901…950 — варикапы, 1001…1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока ) на:

  • низкочастотные НЧ (до 3 МГц),
  • средней частоты СЧ (от 3 до 30 МГц),
  • высокочастотные ВЧ (свыше 30 МГц),
  • сверхвысокочастотные СВЧ;

По рассеиваемой мощности:

  • маломощные (до 0,3 Вт),
  • средней мощности (от 0,3 до 1,5 Вт),
  • большой (свыше 1,5 Вт) мощности.

Определение и разновидности диодов

Диод — электронная двухэлектродная деталь, проводимость которой изменяется в зависимости от полярности подающегося напряжения. Вольтамперная характеристика нелинейная, несимметричная, в отличие от терморезисторов и ламп накаливания.

Элемент состоит из деталей:

  • коробка в форме вакуумной колбы из металла, керамики, стекла;
  • катод для эмиссии свободных электронов;
  • анод для приемки носителей;
  • нагреватель — раскаляющаяся нить;
  • кристалл из кремния или германия с границей (р-n переходом).

По технологическим свойствам и строению выделяют виды:

  • точечные (плоскостные);
  • импульсные;
  • выпрямители;
  • универсальные;
  • в отдельной категории: тиристоры, фотодиодные и светодиодные.

Проверим ваши знания. Плюсовой вывод диода называется:

Анод
83.75%

Катод
15%

Электрод
1.25%

Проголосовало: 80

Материал изготовления

При производстве применяют германий, кремний, арсенид галлия, фосфид индия, селен. Первые три вида используют чаще всего.

Особенности материалов:

  • Кристаллы из германия имеют большой коэффициент проводимости при малом вольтаже, материал дорогой и редкий.
  • Кремний имеет повышенное напряжение смещения, равное 0,7 В (у германия 0,3 В), он более простой в обработке и распространенный.
  • Химическая комбинация мышьяка и галлия отличается высокой напряженностью электрополя пробоя, работает при повышенной мощности, приборы более радиационностойкие.

Площадь перехода

Левый слой (n) пропускает отрицательные электроны, а правый (p) характеризуется дырочной проводимостью. Ток возникает при изменении положения дырок. При касании пластов с разной проводимостью из-за диффузии электроны перемещаются в p-область, а дырки — в n-зону. В итоге граничный слой n-зоны получает положительный заряд, а аналогичный слой p-области — отрицательный.

Типы диодов по размеру перехода:

  • плоскостные в форме одной пластины с двумя зонами примесной проводимости;
  • точечные с малой площадью перехода для слабых токов;
  • микросплавные с соединенными монокристаллами n и p типа.

Технические параметры

Рабочий температурный интервал показывает зависимость сопротивления диода от изменения температуры. Для германиевых кристаллов диапазон составляет -60° — +70°С, а кремниевых — -60° — +125°С. При снижении температуры увеличивается опасность механического повреждения, и повышается обратное и прямое сопротивление диода.

Допустимое обратное напряжение означает величину, когда p-n переход получает пробой. Показатель зависит от удельного сопротивления, ширины перехода и температуры проводника. Повышают допустимое обратное напряжение последовательным подключением диодов.

SMD маркировка электрических элементов

Принцип нанесения обозначений состоит в зашифрованной передаче сведений о размерах и электрических параметрах чипа. Существует условное деление по количеству выводов и величине корпуса элементов:

Количество выводов Маркировка корпуса по возрастанию размера Краткое описание
Двухконтактные SOD (например, SOD128, SOD323 и т.п.) или WLCSP2 Пассивные чипы цилиндрической или квадратной формы, танталовые конденсаторы, диоды
Трехконтактные DPAK, D2PAK, D3PAK Автор данного корпуса — компания Моторола. Все элементы имеют одинаковую форму, но разный размер. Используются для полупроводниковых элементов, выделяющих тепловую энергию
Четырехконтактные и более WLCSP(N) (литера N обозначает число выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIP Контакты этих чипов размещены по двум противоположным боковым сторонам корпуса
Элементы с числом контактов более четырех LCC, PLCC, QFN, QFP, QUIP Выводы расположены по всем четырем сторонам корпуса
Выводы размещены в виде решетки BGA, uBGA Микросхемы, предназначенные для пайки с помощью специальной пасты
Безвыводные элементы μBGA, LFBGA Оснащены только контактными пластинками или каплями припоя

Чип конденсаторы

Существуют два основных типа конденсаторов — электролитические (корпус имеет форму цилиндра) и керамические или танталовые (корпус выполнен в виде параллелепипеда). На маркировке электролитов всегда присутствуют значения емкости и напряжения, а на керамических образцах — нет. Минус (катод) электролитов обозначен полоской, расположенной на верхней стороне корпуса.

Маркировка SMD резисторов

Маркировка представлена несколькими знаками — цифрами и буквами. Две первые цифры означают номинал, а третья (и четвертая) — порядок, или количество нолей. Например, число 322 означает 3200 Ом или 3,2 кОм. Иногда используется разделитель R, играющий роль запятой. Так, обозначение 3R2 значит 3,2 кОм. Или 0R32 — 0,32 кОм.

Есть специальные резисторы, выполняющие функции предохранителей или перемычек. У них нулевой номинал сопротивления.

Размеры SMD устройств стандартизированы и связаны с маркировкой. Так, чипы диодов, резисторов или конденсаторов типоразмера 0805 имеют параметры 0,6 × 0,8 × 0,23 дюйма (длина-ширина-высота).

SMD индуктивности

Форма и размеры корпусов дросселей и катушек индуктивности имеют те же величины, что и у резисторов или конденсаторов. Обозначение состоит из 4 цифр. Две первые — длина, другие — ширина чипа, выраженные в десятых долях дюйма. Например, маркировка дросселя 0805 значит, что его длина — 0,08, а ширина — 0,05 дюйма.

SMD диоды и транзисторы

Диодные чипы могут быть выполнены в виде бочонка или параллелепипеда (брикета). Все размеры полностью соответствуют параметрам резисторов, что упрощает разработку печатных плат. Учитывая специфику работы диодов, для которых необходимо соблюдать полярность, на отрицательном выводе или рядом с ним имеется полоска. Она обозначает катод, что позволяет избежать ошибок при монтаже.

На поверхности чипа может находиться только код, который не дает полной информации о параметрах детали. Поэтому существуют специальные информационные массивы — datasheet, располагающие сведениями о всех параметрах и возможностях элементов. Если необходимы полные данные о свойствах, которыми обладают транзисторы, datasheet дает возможность получить подробную информацию.

Используются корпуса двух типов:

  • SOT;
  • DPAK.

Помимо транзисторов в таком формате могут выпускаться диодные сборки, использующиеся в выпрямителях и драйверах.

импульсные диоды

Импульсный диод — диод, предназначенный для работы в высокочастотных импульсных схемах.

Само название этих радиокомпонентов говорит о том, что они предназначаются для работы в схемах, где сигнал состоит из импульсов.

Импульсными называют диоды, имеющие малые длительности переходных процессов и предназначенные для работы в качестве ключевых элементов при воздействии импульсов малой длительности или при больших значениях импульсного тока. Такие диоды могут быть использованы в триггерных и генераторных схемах, ограничителях, коммутаторах и других импульсных устройствах. В качестве импульсных успешно используются точечные и микросплавные диоды, быстродействие которых увеличивается путем подбора легирующей примеси, уменьшающей время жизни неосновных носителей. Такой примесью к полупроводникуn‑типа может быть, например, золото .

Обычно импульсный диод представляет собой полупроводниковый диод с p-n-переходом, оптимизированный по собственной емкости корпуса, барьерной емкости и имеет малое времени восстановления обратного сопротивления (рассасывания неосновных носителей накопленных в базе диода при прямом токе).

рис 1 Уменьшение площади p-n-перехода приводит к уменьшению времени tуст и времени tвос .

Для уменьшения собственной емкости при изготовлении умышленно уменьшают площадь p-n-перехода (рис 1 ) и для снижения времени жизни неосновных носителей применяют сильно легированные полупроводниковые материалы, например, кремний легируют золотом для снижения времени обратного восстановления, поэтому импульсные диоды имеют невысокие предельные импульсные токи (до сотен мА) и небольшие предельные обратные напряжения (до десятков вольт), а также увеличенные обратные токи.

Также выпускаются импульсные диоды с барьером Шоттки.

Типичная барьерная емкость импульсного диода менее единиц пикофарад и время восстановления обратного сопротивления обычно не более 4 нс.

Лучшими импульсными характеристиками обладают некоторые специальные виды диодов, использующие разнообразные физические эффекты и свойства полупроводников для уменьшения времени переходных процессов, происходящих при переключении диода. К таким диодам в первую очередь относятся: диоды с накоплением заряда, диоды Шоттки, диоды Мотта, p-i-n-диоды.

В общем случае четкой границы для параметров и применимости тех или иных видов полупроводниковых диодов не существует. Например, диоды Шоттки могут применяться и в выпрямителях, и в качестве импульсных ключей, и как детекторные и смесительные диоды диапазона СВЧ. В свою очередь, многие универсальные диоды неплохо работают в импульсных режимах, а диоды СВЧ иногда могут использоваться и в низкочастотных диапазонах.

Системы цветового кодирования полупроводниковых диодов

Цветовая маркировка полупроводниковых диодов предусмотрена в системах JEDEC и Pro Electron. Такая маркировка осуществляется цветными полосками различной толщины, наносимыми по окружности цилиндрического корпуса диода.

В системе JEDEC цветовой маркировкой (согласно стандарта EIA-236-C) кодируются цифры серийного номера прибора (двух-, трех- или четырехзначное число). Первая цифра и буква “N” опускаются. Цветовое обозначение различных цифр соответствует таб. 2.1-3.

Таб. 2.1-3. Цветовая маркировка цифр и букв по системе JEDEC

Кодирование осуществляется от катода по следующим правилам:

  1. Номера, состоящие из двух цифр, обозначаются одной (первой) черной полосой и двумя (второй и третьей) соответствующими цифрам цветными полосами. Если в обозначении имеется буквенный суффикс, то его кодирование осуществляется четвертой полосой в соответствии с таб. 2.1-3.
  2. Номера из трех цифр обозначаются тремя цветными полосами, соответствующими цифрам. Если в обозначении имеется буквенный суффикс, то его кодирование осуществляется четвертой полосой в соответствии с таб. 2.1‑3.
  3. Номера, состоящие из четырех цифр, обозначаются четырьмя цветными полосами и пятой черной полосой. Если в обозначении имеется буквенный суффикс, то его кодирование осуществляется пятой цветной полосой (вместо черной) в соответствии с таб. 2.1-3.
  4. Если цвет корпуса прибора совпадает с цветом какой-либо полосы (кроме последней), то данная полоса может не наноситься, а вместо нее оставляется свободное место соответствующей ширины.

Маркировка наносится на прибор начиная от катода. При этом начало маркировки отстоит от края прибора на меньшее расстояние, чем конец (последняя полоса) маркировки. Если такое расположение невозможно из-за малого корпуса прибора, то первая полоса маркировки делается двойной ширины. Возможно также, что маркировка вообще не помещается целиком на приборе, в этом случае допускается использование одной полоски любого цвета для отметки вывода катода. На рис. 2.1-1 приведен пример цветовой маркировки диода по системе JEDEC.

Рис. 2.1-1. Пример цветовой маркировки по системе JEDEC

В системе Pro Electron цветовая маркировка начинается у катода с двух широких полос. Первой широкой полосе соответствуют две первые буквы обозначения:

  • черная полоса — AA;
  • красная полоса — BA.

Таким образом, цветовая маркировка предусмотрена только для маломощных кремниевых и германиевых диодов. Вторая широкая полоса соответствует третьей букве обозначения прибора (если такая буква в обозначении присутствует). Соответствие следующее:

  • белая полоса — Z;
  • серая полоса — Y;
  • черная полоса — X;
  • синяя полоса — W;
  • зеленая полоса — V;
  • желтая полоса — T;
  • оранжевая полоса — S.

Тонкие цветные полосы следуют за широкими, они кодируют серийный номер прибора. Цветовое кодирование цифрового кода в системе Pro Electron такое же, как и в системе JEDEC (см. таб. 2.1-3). Пример цветовой маркировки Pro Electron приведен на рис. 2.1‑2.

Рис. 2.1-2. Пример цифровой маркировки по системе Pro Electron.

Следующая >