Задать вопрос

Оглавление

Схемы включения TL431

Параметрический стабилизатор напряжения

Тл431, цоколевка которого начертана на схеме, может включаться в различных вариантах. Используя ИС, можно не только стабилизировать, но и контролировать напряжение и различные параметры в электросхемах. Кроме того, она входит в состав звуковых или световых сигнализирующих устройств.

Интересно. Если перевести показатель любой физической величины в напряжение, то допустимо собрать аппарат, контролирующий эту физическую величину.

Это значит, что, установив специальные датчики, возможно следить за такими параметрами, как:

  • влажность;
  • температура;
  • давление;
  • уровень жидкости;
  • значение освещённости.

Перечень можно продолжать, но суть одна – электронный стабилитрон допустимо использовать не только в БП и преобразователях.

Корпус и цоколёвка ИС

Стабилизатор тока на TL431

Стабилитрон tl431 в подобном подключении стабилизирует величину тока. Включенный между эмиттером и корпусом схемы (минусом) R2 используется как шунт. Напряжение на нём составляет 2,5 В. Выходной ток (Iвых) соответствует соотношению 2,5/R2.

Токовая стабилизация на TL431

Индикатор повышения напряжения

Мониторить уровни U позволяет стабилизатор tl431 схема включения которого выполнена так, что стабилитрон не откроется при поступлении на вход R (управляющий) U < 2,5 В.

Внимание! Сквозь запертый TL431 ток течёт всё равно. Хоть он мал – до 0,4 мА, но заставляет индикатор гореть

Приходится параллельно led-диоду включать R = 2-3 кОм.

Схема индикатора

При поступлении на R U > 2,5 В ИС откроется. Индикатор зажжётся. Чтобы согласовать стабилитрон и led-диод по величине текущего через них тока, в ветвь для токоограничения (индикатора) включают R3.

Формула для расчёта R3 имеет вид:

R3 = (Uпит – Uh1 – Uda)/Ih1,

где:

  • Uh1 – напряжение на led-диоде, В;
  • Uda – значение потенциала на открытом стабилитроне, В;
  • Ih1 – номинальный ток светодиода.

При расчётах следует ориентироваться на то, что для TL431 Umax = 36 В, допустимые токи для led-диодов – 5…15 мА. Делитель напряжения на входе управляет величиной напряжения срабатывания Uзажиг. данного сигнализатора. Рассчитывают R2, применяя формулу:

R2 = 2,5*R1/(Uзажиг. – 2,5).

Кстати. На практике R2 подбирается при помощи подключения подстроечного сопротивления. С его помощью выставляется нужный предел включения, после чего замеряется тестером его сопротивление, и впаивается уже резистор с постоянным значением.

Проверка исправности TL431

Возникает вопрос: tl431 как проверить мультиметром? Никак! Это микросхема, вмещающая в своём составе множество элементов. Только одних транзисторов десять штук. Поэтому либо совсем заменяется управляемый стабилитрон, либо собирается тестовая схема (типа индикатора напряжения), и проверяется то, как она будет работать.

Индикатор низкого напряжения

В данном случае применяют инверсное подключение, светодиод излучает при запертом стабилитроне. Элемент индикации подключен параллельно ИС и при открытом стабилитроне 2-х вольт мало для излучения света. Когда микросхема закроется, ток уменьшится, напряжение на нём увеличится, и индикатор засветится.

Схема индикации низкого напряжения

Индикатор изменения напряжения

В устройствах, применяемых для контроля над изменением напряжения, используют управляемый стабилитрон. В качестве индикатора берётся светодиод с двумя цветами свечения, например, красно-зелёный. Красный свет сигнализирует о превышении, зелёный – о низком значении U.

Схема устройства контроля над изменением напряжения

Работа TL431 совместно с датчиками

Для работы с датчиками ИС tl431a схема включения изменяется так, что на смену R2 в плечо подключают нужный датчик.

Внимание! На нижеприведённой схеме для примера обозначены разные датчики, которые присоединяют на место R2. Датчики вместо резистора

Датчики вместо резистора

TL431 в схеме со звуковой индикацией (ЗИ)

Применение ИС в схемах с ЗИ возможно для мониторинга процессов наполнения и поддержания границ воды в водонапорных башнях. В ёмкости крепится пара металлических полосок на верхнем уровне водяного столба. Вода, заполнив ёмкость, замкнёт электроды, размещённые друг относительно друга через 2,5-3,5 мм. Схема сработает и выдаст акустическое оповещение.

Индикатор уровня воды

Применение TL431

Эта микросхема может использоваться в различных устройствах питания различной мощности. TL431 используется в производстве блоков питания, ЛБП, стабилизаторов напряжения и тока, и прочего.

Эта микросхема может служить обычным компаратором, но благодаря внутреннему опорному источника питания схемы с таким использованием TL431 значительно упрощаются. В таком случае на ней можно создать схему терморегулятора и прочих устройств для считывания сигналов с аналоговых датчиков. А так же может служить индикатором напряжения. В том числе и звуковым.

Но чаще всего оно применяется в качестве источника опорного питания в связке с другими микросхемами, так как выдает его очень стабильно. Существует множеством схем, где TL431 используется в связке с LM317 – другим популярным регулируемым стабилизатором.

Самоделки, хобби, увлечения.

Выбранный вариант зависит от назначения устройства.

Теперь кратко назначение компонентов: Резистор R2 он является ограничителем тока базы транзистора vt1 можно использовать от до ом. Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад.

В первую очередь это просто электрическое напряжение. Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим.

Все особенности и типовые схемы включения указаны в datasheet на русском языке. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт. Резистор R2 совместно с транзистором vt1 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжение 2,5 вольта.

Кому лень читать

В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном диод Зенера. В качестве излучателя можно применить излучатель ЗП А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL Силовые элементы с радиаторами, диодными мостами тоже там есть. Если такая мощность не нужна, можно сократить количество светодиодов до одного.

Для получения более высокого выходного тока может быть использована следующая схема. Рисунок 1. Основная область применения микросхемы TL, конечно же блоки питания.

Необходимое выходное напряжение может быть установлено с помощью всего двух внешних резисторов делитель напряжения , подключенных к выводу REF. Резистор в этой схеме рассчитывается по следующей формуле: где Ist — ток TL, а Il — ток нагрузки. Аналоги имеют совершенно другие температурные параметры. Следующая схема имеет два режима ограничения: по току; по напряжению; Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. Lm317T сборка схемы

Как проверить работоспособность микросхемы TL431

Микросхема имеет достаточно сложную внутреннюю структуру, поэтому проверить её одним тестером нельзя. В любом случае придется собирать какую-то схему. Если есть регулируемый источник питания, то потребуется три резистора и светодиод.

Напряжение источника питания должно быть не более 36 В. R1 выбирается так, чтобы при максимальном напряжении ток через светодиод не превысил 10-15 мА. Соотношение R1 и R3 должно быть таким, чтобы при максимальном напряжении источника на R3 падало более 2,5 В, а лучше – больше 3. При повышении выходного напряжения от 0 В до достижения на R3 порога светодиод вспыхнет, а значит микросхема исправна. Светодиод можно не устанавливать, а просто замерить напряжение на катоде – оно должно скачкообразно измениться.

Если регулируемого источника нет, а есть блок питания с постоянным напряжением, придется вместо R3 применить потенциометр. При вращении движка в обе стороны, светодиод должен загораться и гаснуть.

Рынок электронных компонентов предлагает очень широкий спектр интегральных стабилизаторов напряжения. Но и область применения очень обширна, поэтому свою нишу на рынке имеют многие типы микросхем. Включая TL431.

Watch this video on YouTube

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Принцип работы и основные характеристики стабилитрона

Что такое компаратор напряжения и для чего он нужен

Как сделать реле времени своими руками?

Технические характеристики

Рассмотрим максимально допустимые характеристики микросхемы TL431. Если при работе они будут превышены, то прибор выйдет из строя. Длительная эксплуатация устройства с параметрами, близкими к предельным, также опасна для него. Значения этих параметров представлены ниже:

  • наибольшее возможное напряжение между анодом и катодом  – 37 В;
  • диапазон токов, протекающих через катод на протяжении длительного времени – от -100 до +150мА;
  • диапазон токов на входе (управляющем электроде) устройства – от -0,05 до +10 мА;
  • максимальная рассеиваемая мощность зависит от типа корпуса:
  • SOT-89 – 0.8 Вт;
  • ТО-92 – 0,78 Вт;
  • SO-8 – 0.75 Вт;
  • SOT-23 – 0,33 Вт;
  • SOT-25 – 0,5 Вт.
  • диапазон рабочих температур – от -25 до +85ОС;
  • предельно допустимая температура кристалла – +150 ОС;
  • диапазон температур при которых может хранится изделие — -65 до +150 ОС.

В технической документации производители приводят диапазон рекомендуемых рабочих характеристик. Напряжение на катоде VKA может изменяться от минимального, равного управляющему VREF, до максимального 36 В. Катодный ток должен находиться в пределах от 1 до 100 мА.

При конструировании нового устройства следует также обращать внимание на электрические характеристики. Измерение производилось при температуре TC= 25°C

Остальные параметры тестирования приведены в колонке «Режимы измерения».

Параметры Режимы измерения Обозн. min typ max Ед. изм
Управляющее напряжение VKA=VREF,IKA=10 мA VREF 2,455 2,495 2,535 В
Величина отклонения управляющего напряжения при изменении температуры VKA=VREF,IKA=10 мA, Ta = от 0°C до +85°C VDEV 9,0 20 мВ
Изменение напряжения на управляющем электроде в зависимости от изменения напряжения на катоде IKA=10 мA

ΔVKA=10V~VREF

ΔVKA=36V~10V

ΔVREF

ΔVКА

 

-1,0

-0,5

 

-2,7

-2,0

 

мВ/В

мВ/В

Ток через управляющий электрод IKA=10 мA IREF 1,5 4 мкА
Отклонение управляющего (опорного) тока при изменении температуры IKA=10 мA ΔIREF

ΔT

0,4 1,2 мкА
Минимальный управляющий ток через катод, VKA=VREF IKA(MIN) 0,3 0,5 мА
Ток через катод при закрытом переходе VKA=36V, VREF=0 IKA(OFF) 0,05 1,0 мкА
Динамическое сопротивление VKA=VREF, f≤1.0 кГц IKA=1 to 100 мA ZKA 0,15 0,5 Ом

Datasheet Download — KEC

Номер произв KIA431B
Описание BIPOLAR LINEAR INTEGRATED CIRCUIT
Производители KEC
логотип  

1Page

No Preview Available !

SEMICONDUCTOR
TECHNICAL DATA
KIA431 Series
BIPOLAR LINEAR INTEGRATED CIRCUIT
PROGRAMMABLE PRECISION REFERENCES
The KIA431 Series integrated circuits are three-terminal programmable shunt regulator diodes.

These monolithic IC voltage reference operate as a low temperature coefficient zener which is programmable from Vref

to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a
typical dynamic impedance of 0.22 .The characteristics of these references make them excellent replacements for
zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt
reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the KIA431 Series
operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
FEATURES

Divice Code Name :KIA431 + Vref Code + Package Code+Pin Configuration Code

ITEM

Vref Code

Package Code
Pin Configuration Code (SOT-23 Only)
Code Tolerance (%) Code
Package
Code
Type
Blank
2.2
Blank
TO-92
Blank
A
KIA431
A
B
1.0 F SOT-89
0.5 S TSM
2
B
T TSV
M SOT-23
Low Dynamic Output Impedance : 0.22 (Typ.).
Sink Current Capability of 1.0 to 100mA.
Equivalent Full-Range Temperature Coefficient of 50ppm/ (Typ.).
Temperature Compensated for Operation Over Full Rated Operating Temperature Range.
Low Output Noise Voltage.
LINE UP
Type No. Operating Voltage(V) Package Marking
KIA431
KIA431A
TO-92
KIA431B
KIA431F
3A
KIA431AF
SOT-89
3B
KIA431BF
3C
KIA431T
43C
KIA431AT
TSV 43A
KIA431BT
KIA431S
2.5~36
43B
43C
KIA431AS
TSM
43A
KIA431BS
43B
KIA431M
KIA431AM
KIA431BM
SOT-23
(A-Type)
43C
43A
43B
KIA431M2
KIA431AM2
KIA431BM2
SOT-23
(B-Type)
43F
43D
43E
* KIA431BT
(Tolerance : 0.5% , TSV package) : Under Development
PIN CONFIGURATION (SOT-23)
3
1
2
3
TOP
VIEW
21
A-Type : 1. Cathode 2. Ref 3. Anode
B-Type : 1. Ref 2. Cathode 3. Anode
2009. 3. 4
Revision No : 15
1/8

No Preview Available !

BLOCK DIAGRAM
KIA431 Series
Reference (R)

2.5Vref

+ Cathode (K)


Anode (A)
Cathode (K)
Reference (R)
Anode (A)
ORDERING INFORMATION
KIA431
Pb-Free / Halogen-Free
Packing Specification
Pin configuration (SOT-23 Only)
Package code

Vref Tolerance code

Vref Tolerance code

Blank
2.2%
A 1.0%
B 0.5%
Packing Specification
Package Code
Blank
TO-92
F SOT-89
S TSM
T TSV
M SOT-23
TO-92
SOT-89
TSM / SOT-23
TSV
Pin Configuration (SOT-23 Only)
Blank
A-Type
2 B-Type
Pb-Free / Halogen-Free
P Pb-Free
H Halogen-Free
AT : Taping of AMMO PACK type
RTF : RTF type
RTK : RTK type
RTK : RTK type
2009. 3. 4
Revision No : 15
2/8

No Preview Available !

KIA431 Series
MAXIMUM RATINGS (Ta=25 )
(Full operating ambient temperature range applies unless otherwise noted.)
CHARACTERISTIC
SYMBOL
RATING
Cathode To Anode Voltage
Cathode Current Range, Continuous
Reference Input Current Range, Continuous
Operating Junction Temperature
Operating Temperature
Storage Temperature
KIA431

VKA

37

IK -100 150

Iref -0.05 10

Tj 150

Topr -40 85

Tstg -65 150

700
KIA431F
800
Total Power Dissipation
KIA431M
KIA431S
(Note1)
(Note2)

PD

350
900
KIA431T
550
Note1) Package mounted on 99.5% Alumina 10 8 0.6mm
Note2) Package mounted on a ceramic board. (600 0.8 )
UNIT
V
mA
mA
mW
ELECTRICAL CHARACTERISTICS (Ta=25 )
CHARACTERISTICS
SYMBOL
TEST
CIRCUIT
Reference Input
Voltage
KIA431
KIA431A
KIA431B

Vref Figure 1

Reference Input Voltage
Deviation Over Temperature Range
Figure 1

Vref (Note 1)

Ratio of Change in Reference Input
Voltage to Change in Cathode to
Anode Voltage

Vref

VKA

Figure 2
Reference Input Current
Ta=25

Ta=Topr

Reference Input Current
Deviation Over Temperature Range
Minimum Cathode Current For Regulation
Off-State Cathode Current
Dynamic Impedance

Iref Figure 2

Iref Figure 2

Imin Figure 1

Ioff Figure 3

Figure 1

Zka (Note 2)

TEST CONDITION

VKA=Vref , IK=10mA

VKA=Vref , IK=10mA

IK=10mA

VKA=

10V Vref

VKA=

36V 10V

IK=10mA, R1=10k , R2=

IK=10mA, R1=10k , R2=

VKA=Vref

VKA=36V, Vref=0V

VKA=Vref, IK=1.0 100mA,

f 1.0kHz
MIN. TYP. MAX. UNIT
2.440 2.495 2.550
2.470 2.495 2.520
2.4825 2.495 2.5075
V
V
V
— 7.0 30 mV
— -1.4 -2.7
mV/V
— -1.0 -2.0
— 1.8 4.0
A
— — 6.5
— 0.8 2.5 A
— 0.5 1.0 mA
— 2.6 1000 nA
— 0.22 —
2009. 3. 4
Revision No : 15
3/8

Всего страниц 8 Pages
Скачать PDF

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Нестандартные варианты и функциональные аналоги

Микрофотографии кристаллов TL431 трёх разных производителей в одном масштабе. Крупнейшая светлая область каждого кристалла — ёмкость частотной компенсации, крупная гребенчатая структура рядом с ней — выходной транзистор, группы «лишних» контактных площадок — технологические контакты для ступенчатой подстройки на заводе-изготовителе

Микросхемы различных производителей, выпускаемые под именем TL431 или под близкими к нему именами (KA431, TS431 и т. п.), могут существенно отличаться от оригинальной TL431 производства Texas Instruments. Иногда различия вскрываются лишь опытным путём, при испытаниях ИС в недокументированных режимах; иногда они явно декларируются в документации производителей. Так, TL431 производства Vishay отличается аномально высоким, порядка 75 дБ, коэффициентом усиления напряжения на низких частотах. Спад коэффициента усиления этой ИС начинается на отметке 100 Гц. В диапазоне частот свыше 10 кГц частотная характеристика TL431 Vishay приближается к стандарту; частота единичного усиления, около 1 МГц, совпадает со стандартной. Микросхема ШИМ-контроллера SG6105 содержит два независимых стабилизатора, заявленные как точные аналоги TL431, но их предельно допустимые IKA и UKA составляют лишь 16 В и 30 мА; точностные характеристики этих стабилизаторов заводом-изготовителем не тестируются.

Микросхема TL430 — исторический функциональный аналог TL431 с опорным напряжением 2,75 В и предельно допустимым током катода 150 мА, выпускавшийся Texas Instruments только в корпусе для монтажа в отверстия. Встроенный бандгап TL430, в отличие от одновременно выпущенной TL431, не был скомпенсирован по температуре и был менее точен; в выходном каскаде TL430 не было защитного диода. Выпускаемая в XXI веке микросхема TL432 представляет собой обычные кристаллы TL431, упакованные в корпуса для поверхностного монтажа с нестандартной цоколёвкой.

В 2015 году Texas Instruments анонсировала выпуск ATL431 — функционального аналога TL431, оптимизированного для работы в экономичных импульсных стабилизаторах. Рекомендованный минимальный ток катода ATL431 составляет всего 35 мкА против 1 мА у стандартной TL431 при тех же предельных значениях тока катода (100 мА) и напряжения анод-катод (36 В). Частота единичного усиления сдвинута вниз, до 250 кГц, чтобы подавить усиление высокочастотных помех. Совершенно иной вид имеют и графики граничных условий устойчивости: при малых токах и напряжении анод-катод 15 В схема абсолютно устойчива при любых значениях ёмкости нагрузки — при условии использования высококачественных малоиндуктивных конденсаторов. Минимальное рекомендованное сопротивление «антизвонного» резистора — 250 Ом против 1 Ом у стандартной TL431.

Помимо микросхем семейства TL431, по состоянию на 2015 год широко применялись всего лишь две интегральные схемы параллельных стабилизаторов, имеющие принципиально иную схемотехнику, опорные уровни и предельные эксплуатационные характеристики:

  • Биполярная ИС LMV431 производства Texas Instruments имеет опорное напряжение 1,24 В и способна стабилизировать напряжения до 30 В при токе катода от 80 мкА до 30 мА;
  • Низковольтная КМОП-микросхема NCP100 производства On Semiconductor имеет опорное напряжение 0,7 В и способна стабилизировать напряжения до 6 В при токе катода от 100 мкА до 20 мА.

Схемотехника устройств на LMV431 и NCP100 аналогична схемотехнике устройств на TL431.

компенсационный стабилизатор напряжения

Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается. На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).

kia431a техническое описание (2/6 страниц) KEC | Биполярная ЛИНЕЙНАЯ Интегральная схема (программируемая PRECISION ЛИТЕРАТУРА)

Part Number Компонентов Описание Html Просмотр Производитель

KIA2431P Биполярных ЛИНЕЙНОЙ КОМПЛЕКСНОЕ ЦЕПЬ PROGRAMMABLE PRECISION ЛИТЕРАТУРА 1 2 3 4 5 Подробнее KEC (Korea Electronics)

KIA2092N БИПОЛЯРНАЯ ЛИНЕЙНАЯ ИНТЕГРИРОВАННАЯ ЦЕПЬ КРЕМНИЙ МОНОЛИТНЫЙ ДРАЙВЕР СИЛЫ ДЛЯ CD-ПРОИГРЫВАТЕЛЯ 1 2 3 4 5 БИПОЛЯРНАЯ ЛИНЕЙНАЯ ИНТЕГРИРОВАННАЯ ЦЕПЬ 4 КОНТАКТА 3А ВЫХОД РЕГУЛЯТОР НИЗКОГО ПАДЕНИЯ НАПРЯЖЕНИЯ 1 2 3 4 5 KEC (Korea Electronics)

KIA6040P СИСТЕМНАЯ СИСТЕМА AMR CIRC40P BIPCOLAR
4 5 Подробнее KEC (Korea Electronics)

KIA6268P
БИПОЛЯРНАЯ ЛИНЕЙНАЯ ИНТЕГРИРОВАННАЯ ЦЕПЬ ДВОЙНОЙ ПРЕДУСИЛИТЕЛЬ ЗАПИСИ / ВОСПРОИЗВЕДЕНИЯ
1 2 3 4 5 Подробнее
KEC (Korea Electronics)
KIA6941S

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.