Оглавление
- Система дистанционного управления
- Контроллер, который мы ремонтируем
- Устройство
- Технические характеристики светодиодных люстр для дома
- Светодиодные потолочные люстры для дома, их преимущества и недостатки
- Устройство люстры
- Схема подключения проводов
- Ремонт люстры с пультом своими руками
- Подключение люстры с пультом управления своими руками
- Схема контроллера светодиодной люстры
Система дистанционного управления
Обычный выключатель закреплён на одном месте. Это достоинство и недостаток одновременно – он никогда не потеряется, его легко найти в темноте, но чтобы включить и выключить свет необходимо идти к месту установки.
Пульт ДУ можно носить с собой и управлять светом, не вставая с кровати. Но такое устройство легко потерять в комнате. Этого недостатка лишена система из малогабаритного пульта ДУ и стационарного выключателя. В более продвинутых моделях есть функция звукового сигнала на переносном модуле при команде со стационарного блока.
В основу работы пульта дистанционного управления заложена передача команд при помощи радиоволн.
Состоит такая система из двух блоков:
- Передатчика, находящегося в блоке дистанционного управления. В зависимости от нажатых кнопок, он подаёт управляющий радиосигнал на приёмник, находящийся в люстре. Питание пульта ДУ осуществляется от батареек;
- Радиоприёмника, находящегося в люстре. Этот приёмник настроен на приём сигнала только своего ПДУ. Полученные команды обрабатываются блоком автоматики, который управляет лампами. Питание осуществляется от сети 220В.
Система дистанционного управления
Принцип дистанционного управления
Команды подаются нажатием кнопок на пульте и радиоволнами передаются в приёмное устройство, встроенное в контроллер – электронный блок, управляющий её работой.
Состоит это устройство из следующих частей:
- блока питания;
- приёмника сигнала со встроенной антенной;
- логической схемы, расшифровывающей входной сигнал и передающей его на силовой блок;
- силовой блок – включает и выключает свет или меняет его яркость.
Контроллер выполняется малого размера и помещается в люстре или подвесном потолке.
Важно! Недостатком таких плат является чувствительность к перегреву и высокой влажности
Радиус действия управления
Прежде всего, определяется необходимая дистанция срабатывания. В обычных жилых помещения достаточно 8 метров. Такой дальностью обладают бюджетные системы. Они состоят из переносного пульта и встраиваемого контроллера.
Защита от помех и посторонних сигналов
В многоквартирном доме систем ДУ может быть много. Чтобы они не влияли друг на друга, пульт и контроллер должны быть взаимно настроены.
Для этого радиосигнал шифруется по определённому алгоритму, и команды от постороннего пульта не воспринимаются контроллером.
Обратите внимание! Недостаток этой схемы в том, что настройка выполняется на заводе и при утере или поломке пульта приходится менять весь комплект
Количество каналов управления
Число каналов управления соответствует кнопкам на пульте и количеству светильников, которыми может управлять система. Самые распространённые конструкции имеют 4 канала и 4 кнопки:
- A,B – управляют отдельными лампами или режимами работы светильника;
- С – включает свет полностью;
- D – отключает свет полностью.
Пульт ДУ
Мощность светильников
Люстры потребляют определённые мощность и ток, зависящие от числа и типа установленных ламп. В контроллерах устанавливаются системы коммутации для ламп общей мощностью до 1кВт. Это больше, чем любой из бытовых люстр.
Важно! При необходимости управлять большей мощностью выбирается контроллер большей мощности, или устанавливается дополнительное реле
Питание пульта и контроллера
Электронным схемам передатчика и приёмника необходимо электропитание:
- В пульте установлены обычные пальчиковые батарейки типа АА или ААА. Вместо них можно использовать аккумуляторы соответствующего формата;
- Контроллер подключается к сети 220В проводами, которыми запитана люстра. При подключении необходимо “ноль” и “фазу” подключать к соответствующим клеммам.
Места установки контроллеров ДУ
Монтируются платы ДУ в светильники любых конструкций, только необходимо учесть ток ламп и напряжение сети.
Устанавливается контроллер в одно из следующих мест:
- в пространство в потолке возле места подвеса светильника;
- в защитный кожух или корпус люстры;
- в монтажной коробке, к которой подключаются лампы;
- внутри гипсокартонной стены;
- вместо настенного выключателя.
Во все эти места контроллеры включаются просто в разрыв сети, за исключением установки вместо обычного выключателя. Для работы плате необходимо питание – фаза и ноль, а к выключателю приходят фаза и провод от лампы. Поэтому ноль необходимо подводить отдельно. Проще всего это сделать при установке выключателя в одном блоке с розетками.
Контроллер, который мы ремонтируем
Теперь самое интересное – я опишу процесс ремонта контроллера Kedsum K-PC803
, фото внешнего вида которого я уже приводил в начале статьи.
Схема этого контроллера почти полностью совпадает со схемой, приведенной выше. Разница лишь в том, что в этом контроллере не 2 канала, а 3. Но принцип абсолютно тот же. Уделим немного времени, чтобы познакомиться с некоторыми внутренностями и отличиями от приведенной схемы.
Вот как выглядит контроллер для управления люстрой на 3 канала изнутри:
Чуть поближе:
Три реле (черные, слева) соответствуют трем каналам управления.
Справа от верхнего реле видим ряд черных полукруглых деталек. Это три ключевых транзистора и стабилизатор на +5В. Вот как это выглядит в другого ракурса:
На этом фото можно различить транзисторы Q1, Q2, Q3 – ключевые для включения реле (тип – С9013), стабилизатор +5В для питания радиочастотной части – L78L05, и микросхему декодера радиосигнала HS153SP-J.
Обратная сторона схемы (сторона пайки). На фото подписал выводы, чтобы было легче провести рекогнисцировку:
Устройство
Любой осветительный прибор состоит из трех деталей:
- корпус;
- патрон (1 и больше);
- плафон (1 и больше).
Электрическая часть большинства обычных светильников состоит из проводов питания, подключенных к патрону, в котором установлена лампочка. Это основа, которая остается неизменной. При этом напряжение питания и род тока может отличаться в зависимости от типа установленных ламп.
Умные люстры и люстры с дистанционным управлением отличаются тем, что в их цепь добавлен приемник сигнала с пульта и устройство коммутации (включения) ламп. В зависимости от сложности лампы они могут не просто включаться и выключаться, но и, например, иметь возможность плавной регулировки яркости.
В люстре могут устанавливаться:
- галогенные лампы с напряжением питания 12 В;
- лампы на 220 В любого типа (если нет конкретных рекомендаций в инструкции);
- светодиодные лампочки постоянного тока, или отдельные светодиоды или сборки;
- возможно применение RGB-чипов для создания декоративной подсветки или светомузыки.
Если лампа просто включает и выключает свет, то используется блок реле с радиоуправлением. Если предусмотрена плавная регулировка, то для этого предусматриваются регуляторы переменного напряжения или ШИМ-контроллеры, для регулировки постоянного напряжения.
Итак, чаще всего электрическая часть люстры на пульте управления состоит из:
- Приемника управляющих сигналов. В зависимости от модели может работать в ИК-диапазоне, на радиочастотах, например, 433 МГц, по Wi-Fi или Bluetooth, в таком случае возможно управление со смартфона.
- Коммутационного прибора. Это устройство, на которое подаются команды от передатчика, оно включает лампу или группу ламп. Обычно этот узел конструктивно объединен с приемником.
- Групп источников света.
- Если используются низковольтные галогеновые лампы, светодиодные лампы или светодиодные сборки, то устанавливаются электронные трансформаторы, блоки питания на 12 В и светодиодные драйвера соответственно.
Радиореле на английском называются Wireless Switch. Чтобы найти эту деталь в корпусе люстры – ищите подобную надпись на корпусах блоков.
Схема
Давайте рассмотрим типовую схемы люстры с беспроводным управлением.
На иллюстрации изображена схема люстры 220 В с лампами – это самый простой вариант. Здесь нет никаких понижающих источников питания и преобразователей.
На этой схеме более наглядно изображено подключение дистанционного модуля на 4 группы ламп.
Обратите внимание, что в него выходит:
- 2 провода для подключения к сети;
- 5 проводов для подключения к нагрузке (зависит от количества групп, количество проводов на 1 больше чем количество групп – это общий ноль);
- 1 провод, который ни к чему не подсоединяется – это антенна, обычно белого цвета, но может и отличаться.
Нулевой провод – общий. Их два, один – для подключения к сети, другой – для подключения к нагрузке, их можно менять местами, на плате они припаяны к одной точке.
Внешний вид, на корпусе указана схема подключения:
Внутри такого модуля стоит плата:
Синие элементы – это реле. Это коммутирующие элементы, они подают напряжение на нагрузку. В них катушки на 12 В, для их питания реализована безтрансформаторная схема с гасящим конденсатором.
Вот вторая схема:
Это люстра с галогенными низковольтными лампами и светодиодной подсветкой. Один из самых распространенных вариантов. В средней части схемы для питания установлены (сверху вниз):
- Блок питания для светодиодов (Led transformer), но судя по схеме – это драйвер, к нему подключено 45 светодиодов на 3 В последовательно.
- 2 электронных трансформатора на 12 В для галогенных ламп (Electronic converter), к первому подключено 5 ламп на 12 В, а ко второму – 4. Эти лампы подключаются группами параллельно.
Технические характеристики светодиодных люстр для дома
В последнее время потолочные светодиодные люстры с пультом для дома нашли обширное применение в качестве источников искусственной освещенности. В течение последних лет за счет постоянного развития технологий удалось существенно уменьшить стоимость светодиодов и продукции, где они используются.
Теперь такие источники света являются оптимальным решением для создания освещения за счет повышенной экономичности и продолжительного срока эксплуатации. Светодиодные люстры различаются габаритами и видом цоколя, температурой свечения и рабочим напряжением, которое может составлять от двенадцати до 220 вольт. Ниже мы подробнее коснемся технических характеристик.
Круглая
Мощность
Мощность светодиодного оборудования указывается таким же образом, как и у стандартных – в ваттах, однако здесь число намного меньше. Суть в том, что такие устройства функционируют на гораздо меньшем напряжении, потому потребляют существенно меньше мощности. При этом световой поток не уступает стандартным лампам.
Как понять, прибор какой мощности сравним с классическими светильниками? Изготовители уверяют, что получить эквивалентную мощность LED-люстры можно, если умножить указанное число на десять. Таким образом, четырехваттная светодиодная лампочка идентична в плане мощности сорокаваттной стандартной лампе накаливания. На самом же деле умножать нужно в пять или шесть раз. Ниже приведена таблица соответствия мощности лампочек накаливания, люминесцентных источников света и светодиодных люстр:
Лампа накаливания | Люминесцентная лампа | Светодиодная лампа |
---|---|---|
20 Ватт | 5-7 Ватт | 2-3 Ватт |
40 Ватт | 10-13 Ватт | 4-6 Ватт |
60 Ватт | 15-16 Ватт | 7-10 Ватт |
75 Ватт | 18-20 Ватт | 10-12 Ватт |
100 Ватт | 25-30 Ватт | 12-16 Ватт |
150 Ватт | 40-50 Ватт | 17-20 Ватт |
200 Ватт | 60-80 Ватт | 20-30 Ватт |
Количество ламп
Количество лампочек в светодиодных потолочных люстрах для дома может быть совершенно разным. Все зависит от того, какие задачи ставятся перед подобным осветительным оборудованием:
- для спальни оптимальным вариантом станет мягкое рассеянное освещение либо направленный свет;
- для гостиной в качестве дополнения к общей освещенности можно обозначить элементы интерьера и украсить помещение посредством торшера, бра и настольной лампы;
- для кухонного пространства можно создать дополнительное освещение рабочей зоны.
В городской квартире
В зависимости от поставленных целей можно подобрать от одного до нескольких светильников.
Площадь освещения
Важным показателем при выборе светодиодных люстр является площадь освещения. Поэтому, решив заказать такое оборудование, необходимо учесть форму помещения. В квадратной комнате распространение света осуществляется равномерно, тогда как в прямоугольном помещении необходимо изделие немного большей мощности или монтаж вспомогательных источников света. В частности, несколько интерьерных настольных ламп либо торшер напольного типа способны взять на себя функции второстепенной техники там, где недостаточно света, создаваемого главным источником освещения. Потолочные светодиодные люстры с пультом управления следует выбирать не только по размеру, но и по площади, которую они способны освещать.
Тип освещения | Варианты комнат | Количество света (Вт на кв м) |
---|---|---|
Спокойный, приглушенный | Спальня | до 12 Вт на кв м |
Помещения со средним уровнем света | Туалет, ванная, кухня, детская | до 18 Вт на кв м |
Помещение с яркой освещенностью | Гостиная, рабочий кабинет | 20 Вт на кв м |
Габариты
Здесь действует тривиальное правило – чем выше необходима яркость свечения, тем больша должна быть форма светильника. Менее мощная люстра имеет пропорционально меньшие размеры.
Собравшись приобрести такое осветительное оборудование, следует оценить его габариты, поскольку от них напрямую зависит то, насколько мощный и качественный источник освещения вы приобретете. Отметим, что традиционно размеры такой светотехники меньше, нежели ламп накаливания и энергосберегающих лампочек, благодаря чему можно эффектно украсить ею интерьер.
Современное изделие
Светодиодные потолочные люстры для дома, их преимущества и недостатки
Светодиодные люстры потолочные для дома являются подвесными либо потолочными устройствами, где роль источника освещения отведена сменным лампам либо просто светодиодам. В устройстве представлен полупроводниковый кристалл, применяемый для преобразования электроэнергии в свет. Производителями предлагаются преимущественно модели в таких стилистических направлениях, как:
- модерн;
- хай-тек;
- минимализм.
В зоне отдыха
Они превосходно вписываются в интерьер кухни, детской, гостиной либо спальни.
Люстры на базе LED-технологии обладают множеством преимуществ, в отличие от классических источников освещения. К числу ключевых плюсов можно отнести:
Иконка | Достоинство | Описание |
---|---|---|
Экономия электрической энергии. | Потребление электроэнергии в десяток раз ниже, нежели у осветительной техники с лампочками накаливания, и втрое меньше, чем у энергосберегающих ламп | |
Дистанционное управление. | Светодиодная люстра на потолок включается и выключается не только с помощью выключателя на стене, но и с помощью пульта управления. | |
Пожаробезопасность. | Несущественное выделение тепловой энергии, отсутствует нагревание корпуса | |
Экологичность. | Такие приборы признаны экологически безопасными | |
Продолжительный срок службы. | Порядка одиннадцати лет беспрерывного свечения люстр, оснащенных встроенными светодиодами. Период эксплуатации составляет около пятидесяти тысяч часов. | |
Современный дизайн. | Современная лаконичная внешность и многообразие форм делают эти светильники подходящими практически для любых помещений. | |
Равномерное освещение. | Яркое равномерное освещение при отсутствии мерцаний, характерных для галогеновых люстр и лампочек накаливания | |
Совершенные технологии. | Светодиодная лампа, мощность которой насчитывает двенадцать ватт, обладает яркостью свечения, соответствующей лампочке накаливания мощностью сто ватт. | |
Гибкость. | Светодиодная потолочная люстра с пультом управления позволяет управлять интенсивностью освещения. |
Несмотря на такие весомые преимущества, есть у такого оборудования и свои минусы. В частности, при неисправности светодиодного светильника его необходимо менять. Достаточно перегореть единственному светодиоду, как отключаются все остальные, так как между ними последовательное соединение.
светодиодные потолочные люстры
В ванной комнате
Устройство люстры
Чтобы понять, каким образом выполняется подключение, давайте-ка разберёмся в устройстве диодной люстры:
- Блок драйвера, который подаёт питание линии светодиодных лампочек. Его подключение осуществляется, как правило, двумя проводами одного цвета. Те, что идут на диоды, — разноцветные, например чёрного и белого цветов. Подключаются светодиоды последовательно: если один приходит в негодность, то выходит из строя вся линия.
- Микроблок, где установлены приёмник и контроллер обработки сигналов. Этот блок (свитч) — главная деталь всего устройства. Именно через него подключают питание от сети. Он выполняет функцию переключателя. Микроблок коммутации сигналов производители обозначают «Wireless Switch» или «Control Switch». На одну из его сторон должна быть наклеена схема подключения. На вход к контроллеру подходят провода, как правило, в синей и коричневой оплётке. Именно такие цвета общеприняты во многих странах для обозначения цепи переменного тока от щитка. Белый провод с другой стороны блока — это антенна для пульта.
- Трансформатор, вспомогательная проводка, и, собственно, лампочки. Всё перечисленное в списке (за исключением лампочек) аккуратненько скрыто корпусом люстры.
@mysku.me
Обычно управление люстрой с пульта осуществляется на радиоволнах с диапазоном 27,1 МГц.
Схема подключения проводов
Для подключения любой люстры не обязательно знать ее внутреннее устройство. Подключается люстра с пультом к сети как обычный светильник:
- фазный провод к клемме L;
- нулевой к терминалу N;
- если есть защитный проводник, он подключается к клемме, обозначенной PE или значком заземления.
Схема подключения светильника через одноклавишный выключатель с использованием распредкоробки.
Схема подключения светильника, как «черного ящика», с использованием распредкоробки показана на рисунке. Настенный выключатель освещения – главный. Если его выключить, пульт дистанционного управления никак не будет влиять на работу освещения.
Но знание внутреннего устройства не будет лишним для понимания работы устройства в целом, а также для выполнения, при необходимости, ремонтных работ.
Блок-схема люстры с дистанционным управлением.
Большинство люстр, регулируемых с пульта содержат модуль дистанционного управления, коммутирующий нагрузки, в качестве которых выступают осветительные приборы. Обычно их 1..3, могут быть применены обычные лампы накаливания (или их группы), светодиодные или галогенные лампочки.
Модули дистанционного управления могут быть собраны на различной элементной базе и по отличающимся схемам, но блок-схема у большинства из них одинаковая:
- Приемник служит для приема, усиления и фильтрации сигнала, передаваемого пультом. Инфракрасные каналы связи между передатчиком и приемником, распространенные в бытовой аппаратуре, в люстрах применяются редко из-за высокого уровня тепловых помех, испускаемых светильником. В простых светильниках управление производится по радиоканалу, в продвинутых – по Bluetooth или WI-Fi. Два последних варианта часто используют в сложных устройствах с регулировкой яркости свечения или со световыми эффектами, которые управляются через приложение мобильного гаджета.
- Дешифратор получает от приемника сформированную последовательность импульсов и «расшифровывает» команду. В зависимости от задания, он формирует сигнал на включение или отключение одной из нагрузок, а в сложных моделях на изменение уровня яркости свечения.
- Сформированная команда усиливается в силовом блоке. Если не нужна регулировка яркости, нагрузка коммутируется электромагнитным реле. Если надо изменять яркость или цветность, силовой блок представляет собой ШИМ-регулятор с электронными ключами.
- Источник питания формирует постоянное напряжение для обеспечения всех элементов схемы.
Если нагрузкой являются галогенные или светодиодные лампы, то в люстре будут присутствовать дополнительные устройства управления.
Блок для галогенных ламп
Галогеновые лампы подключаются к сети 220 вольт не напрямую, а через понижающий трансформатор. Сейчас большей частью применяются не обычные трансформаторы с магнитопроводом и двумя обмотками, а электронные трансформаторы. Они работают по другим принципам, поэтому их габариты и вес ниже. При этом также ниже надежность, но выше уровень помех, генерируемых в питающую сеть. Такой трансформатор коммутируется со стороны 220 вольт – там ниже токи при равной мощности, и выше долговечность контактов реле.
Схема управления галогенными лампами.
На подключение люстры к сети 220 вольт наличие галогенных ламп и трансформатора любого типа влияния не оказывает. Надо иметь в виду, что при замене ламп их общая мощность не должна превышать нагрузочную способность трансформатора.
Тип лампы | Напряжение, В | Потребляемая мощность, Вт |
---|---|---|
Visico ML-075 | 12 | 75 |
NH-JC-20-12-G4-CL | 20 | |
Navigator 94 203 MR16 | 20 | |
G4 JC-220/35/G4 CL 02585 Uniel | 35 | |
Elektrostandard G4 | 20 |
Светодиодный блок
Светодиоды включаются через стабилизатор тока – драйвер. Он снижает напряжение на последовательных и параллельных цепочках светодиодов и стабилизирует ток через них.
Схема управления светодиодными элементами.
В продвинутых моделях, позволяющих управлять не только включением и отключением LED, но и регулированием их яркости и изменением цвета свечения, драйвер объединен с силовым блоком. Ключами служат выходные транзисторы ШИМ-регулятора.
Ремонт люстры с пультом своими руками
После качественно выполненной диагностики ремонт будет несложен. Он сводится к замене выявленного неисправного элемента. Приобрести эти комплектующие можно в магазинах электронных компонентов либо через интернет.
Замена блока управления люстрой
Если диагностика контроллера не дала внятных результатов и владелец считает, что приобретать новый комплект приемо-передающей части нерационально, можно переделать люстру на местное управление от двухклавишного выключателя освещения. Эту переделку целесообразно выполнять, если светильник с ДУ установлен на место люстры, которая раньше так и коммутировалась, и соответствующая проводка уже имеется. В противном случае придется проводить дополнительный провод, а это вскрытие декоративной облицовки стен и потолков, штробление и т.д.
Схема подключения осветителя в обход контроллера.
Если проводка уже готова, то подключить светильник можно без вмешательства во внутреннюю схему посредством имеющегося клеммника для внешних соединений. Преимущества такого варианта в том, что если в будущем владелец решит все же заменить контроллер, переподключение будет минимальным.
Опыт показывает, что при выходе из строя люстры с управлением от ПДУ ей вполне реально дать вторую жизнь. Потребуется небольшой набор инструментов, базовые знания электротехники и желание думать.
Подключение люстры с пультом управления своими руками
Прежде чем установить светильник на потолочный подвес, необходимо подключить его к сети и проверить работоспособность всех элементов, в особенности пульта и контроллера. Общая схема подключения приведена ниже.
Чтобы упростить проверку, находим на выводах проводки на потолке ноль и фазу, после чего подключаем люстру с помощью фишек и длинного двухжильного кабеля.
Важно не перепутать подключение сети к контроллеру
Для того чтобы проверить работу пульта и контроллера, необходимо подсоединить сетевой удлинитель с потолка на вход контроллера. Вместо нагрузки подключаем мультиметр в режиме прозвонки и пытаемся включить схему люстры с пульта. Если есть сработка, то необходимо проверить работу трансформатора для галогенок и драйвера для светодиодов.
Их нужно подключить отдельно к черному общему и желтому или белому проводу. Чтобы не вывести электронику люстры из строя, необходимо на выход трансформатора подсоединить хотя бы одну галогенку.
Испытание включения фонаря с пульта «на земле»
Если все работает, собираем схему и крепим детали внутри корпуса люстры. Если возникли проблемы с пультом, то нужно будет проверить питание и напряжение в контрольной точке. Если пульт старый, то проблема с включением люстры могла возникнуть из-за срабатывания контактной поверхности кнопок.
Проверка перед установкой на потолок
Крепление и установка люстры с пультом
Для установки светильника, как правило, используется монтажная планка или крюк. Перед подвешиванием на потолке убираем удлинитель, люстру вывешиваем на крюке на коротком полуметровом шнуре. Так удобнее собирать проводку, затем подключаем входной фазовый провод к контроллеру, а нулевой к общему нулю схемы.
Провода, ведущие на галогенки и светодиодную подсветку, соединяем по временной схеме. Далее с помощью пульта проверяем, насколько устойчиво включаются лампы. Оставляем собранную люстру во включенном состоянии. Через 10-15 минут выключаем, отсоединяем фазу и руками проверяем на наличие сильно греющихся участков. Если таковые имеются, значит, трансформатор или сечение провода выбраны неправильно.
Проверяем нагрев блоков
После прохождения теста можно убрать шнур и закрепить люстру на потолке. Один из способов подключить люстру с пультом управления приведен на видео
Как настроить пульт для люстры
На приборе дистанционного управления имеется несколько кнопок, их количество совпадает с количеством каналов контроллера. Вмешиваться в работу электроники пульта не имеет смысла, так как сигнал команды шифруется, чтобы увеличить помехоустойчивость. Лампы на люстре можно включать, нажимая определенную кнопку на пульте, второе нажатие, как правило, означает команду на выключение. Каналы можно также переключать многократным нажатием на кнопку пульта с «D».
Чем проще устройство, тем реже оно ломается
В последних моделях контроллеров есть также функция регулировки яркости и таймер автоматического отключения освещения.
Схема контроллера светодиодной люстры
Напоминаю, что этот дистанционный радиоуправляемый выключатель (блок управления) можно применять не только в люстрах, но и в других электронных устройствах. Можно коммутировать любое напряжение (в разумных пределах, при небольшой доработке печатной платы), и любые токи (ток ограничен током реле, но можно поставить дополнительные контакторы).
Схема контроллера приведена ниже:
Схема контроллера для люстры с пультом управления Sneha B-827
Схема взята мной с сайта www.tokes.ru, спасибо!
Имея эту схему, можно смело браться за ремонт контроллера, и шансы на успех довольно высоки.
Для подробного рассмотрения схемы я её увеличил, и разбил на 6 условных частей:
Схема контроллера светодиодной люстры, разбитая на части для легкого понимания
Рассмотрим каждую часть по отдельности.
1. Силовое питания и коммутация
В эту часть схемы входят входные и выходные цепи, и контакты реле, через которые питается нагрузка.
Катушки реле входят в 3-ю часть схемы.
Ноль и фаза поступают дальше.
2. Схема питания 220 – 12 В
На эту часть приходит напряжение 220В, ноль и фаза. Ноль проходит на диодный мост через дроссель, который в некоторой степени устраняет высокочастотную помеху по питанию, которая может приводить к сбоям. Для этой же цели служит конденсатор С1.
Фаза на диодный мост приходит через гасящий конденсатор С2, который для безопасной работы зашунтирован резистором R1.
Каждый диод диодного моста также зашунтирован конденсатором, для минимизации высокочастотной составляющей питающего напряжения.
Выход диодного моста нагружен на конденсаторы фильтра С3 и С4, которые служат для фильтрации низкочастотной и высокочастотной составляющих выходного напряжения моста. Напряжение стабилизируется цепочкой из последовательно соединенных стабилитрона VD2 на 12В и ограничительного резистора R4.
В результате в точке А образуется напряжение постоянного тока 12,5-15В по отношению к нулевому проводу (минус диодного моста).
3. Ключевые транзисторы
Ключевые транзисторы – это по сути усилители дискретного сигнала, который поступает с декодера. Они включены по классической схеме.
4. Схема питания 12 – 5 В
Далее напряжение 12В поступает на схему стабилизации питания +5В. Напряжение на входе этого стабилизатора понижается и стабилизируется цепочкой из резистора R6 и стабилитрона VD4 на 12В и подается на интегральный стабилизатор 78L05. Далее, стабилизированное напряжение +5В дополнительно фильтруется конденсаторами С5 и С6, поскольку нужно особое качество постоянного напряжения.
5. Радиомодуль
Напряжение питания +5В поступает на питание радиомодуля. Назначение радиомодуля – принять из радиоэфира сигнал от пульта управления, и выдать его в таком виде, чтобы его мог раскодировать декодер.
6. Декодер радиосигнала
Декодер получает сигнал на частотах, каждая из которых соответствует заранее обозначенному сигналу. Что творится в декодере – секрет фирмы, даташит на микросхему HS153SP-J найти не удалось.
“Продукт жизнедеятельности” декодера радиосигнала – дискретные напряжения порядка +5В, которые открывают ключевые транзисторы.
Кому будут интересны аспекты работы схемы, о которых я не сказал, либо есть чем меня дополнить и попрекнуть – пишите в комментарии!