Типы корпусов процессоров

Введение

Развитие микроэлектронных компонентов постоянно идет в направлении увеличения интеграции, производительности и функциональности. Этот процесс характеризуется увеличением плотности активных элементов на кристалле примерно на 75% в год, а это, в свою очередь, вызывает необходимость в увеличении количества их выводов на корпусе на 40% в год. Этим обуславливается, во-первых, постоянно растущий спрос на новые методы корпусирования, а во-вторых, увеличение плотности межсоединений на печатной плате.

В результате общих тенденций площадь монтажных подложек уменьшается примерно на 7%, а физические размеры электронной аппаратуры — на 10–20% в год. Эта тенденция поддерживается непрерывным увеличением плотности межсоединений за счет уменьшения элементов печатного монтажа. Все это серьезно влияет на систему производства электроники: увеличивается стоимость основных фондов, объем прямых издержек, увеличивается цикл производства. В итоге все это приводит к увеличению себестоимости электронных изделий, если не принимать специальных мер по их удешевлению.

Корпуса металлокерамические 402.16-32; 402.16-33; 402.16-41

Условное обозначение корпуса: 402.16-32; 402.16-33; 402.16-41

Количество выводов: 16

Особенности:

Плоский прямоугольный корпус с двухсторонним расположением выводов для монтажа на поверхность печатной платы;
Выводная рамка припаяна сверху многослойной керамической платы;
Дно и стенки корпуса выполнены из высокотемпературной вакуумной керамики ВК-94-1;
Варианты корпуса отличаются наличием металлизации на монтажной площадке и/или плоскости основания корпуса, а также электрической связью отдельных выводов корпуса с ободком и/или монтажной площадкой;
Крепление кристалла – эвтектическая пайка; клей холодного отверждения;
Основной способ герметизации для корпусов с никелевым покрытием – шовная контактная сварка;
Требования к технологическим процессам сборки согласно РД 11 0274.

Типовое применение:

  • Интегральные микросхемы;
  • Транзисторные и диодные сборки малой и средней мощности для жестких условий эксплуатации (в оборонной, аэрокосмической отраслях, ядерной энергетике)

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. Компания «Texas Instruments» спустя год подала заявку на патент.

Тем временем представитель другой компании «Fairchild Semiconductor» — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Микросхемы на плате

Многокристальные модули (MCM)

Многокристальные модули относились, до начала 1990-х, к области космической и военной технологии и высококачественной компьютерной промышленности. Первой преуспела в практическом использовании МСМ фирма IBM при организации производства серии ЭВМ четвертого поколения. В качестве монтажного и теплоотводящего основания использовались многослойные керамические платы. Специально для этого был построен завод по их производству. Большой объем работ сегодня ведется в Германии, в частности, в Ростокском университете и Техническом университете в Берлине, где за счет использования технологий МСМ увеличивается компоновка не только в плоскости модуля, но и по его вертикали (рис. 9).


Рис. 9. Экспериментальные образцы элементов МСМ в Берлинском Техническом университете

В 1990-х годах использование МСМ было единственным решением по увеличению интеграции и соответствующему повышению функциональности аппаратуры. Тогда вложения в создание многокристальных модулей были меньше, чем инвестиции в микроэлектронику.

Но в дальнейшем развитие электроники пошло по ставшему уже традиционным пути — по пути увеличения интеграции микросхем, что повлекло громадные вложения в их производство. Эти тенденции прослеживаются и сейчас. Построенные в Юго-Восточной Азии фабрики микросхем с топологическим разрешением 0,065 мкм и 0,093 мкм пока не до конца загружены. Поэтому сегодня усилия сосредоточены на проектах, которые бы использовали возможности развивающегося микроэлектронного производства.

Тем не менее, проекты МСМ прорабатываются всерьез там, где другие пути интеграции по тем или другим причинам не доступны.

Главная трудность в создании МСМ — сложности в тестировании кристаллов микросхем. Если вероятность попадания в состав трехкристального модуля равна 95% годных микросхем, выход годных МСМ составляет 85,7%. Далее встает вопрос идентификации годных и негодных компонентов модуля. Рентабельность производства МСМ напрямую связана с вероятностью годных микросхем.

Рис. 10

Рис. 11

Рис. 12

Во всяком случае, самая дорогая часть MCM — основание (подложка). В таблице 1 показаны варианты исполнения монтажных оснований МСМ. Вариант MCM-L предпочтителен с позиций экономичности.

Таблица 1. Современные представления о многокристальных модулях

PLCC корпус

PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) – соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.

Вот так примерно выглядит “кроватка” для таких микросхем

А вот так микросхема “лежит” в кроватке.

Иногда такие микросхемы называют QFJ, как вы уже догадались, из-за выводов в форме буквы “J”

Ну и количество выводов ставится после названия корпуса, например PLCC32.

Меньшие форм-факторы

После SOIC появилось семейство меньших форм-факторов с расстоянием между выводами менее 1,27 мм:

  • Тонкий маленький контурный пакет (TSOP)
  • Тонкоусадочная малогабаритная упаковка (TSSOP)

Термоусадочная мелкоконтрастная упаковка (SSOP)

Микросхемы из термоусадочной малоконтурной упаковки (SSOP) имеют выводы типа «крыло чайки», выступающие с двух длинных сторон, и расстояние между выводами 0,0256 дюйма (0,65 мм) или 0,025 дюйма (0,635 мм). Расстояние между выводами 0,5 мм встречается реже, но не редко.

Размер корпуса SOP был сжат, а шаг свинца затянут, чтобы получить уменьшенную версию SOP. Это дает корпус ИС со значительным уменьшением размера по сравнению со стандартным корпусом. Все процессы сборки ИС остаются такими же, как и при использовании стандартных СОП.

Приложения для SSOP позволяют уменьшить размер и массу конечных продуктов (пейджеры, портативные аудио / видео, дисководы, радио, радиочастотные устройства / компоненты, телекоммуникации). Семейства полупроводников, таких как операционные усилители, драйверы, оптоэлектроника, контроллеры, логические, аналоговые, память, компараторы и многое другое, использующие BiCMOS, CMOS или другие кремниевые / GaAs-технологии, хорошо рассматриваются семейством продуктов SSOP.

Тонкая мелкоконтурная упаковка (TSOP)

Флэш-память Hynix как TSOP

Тонкий небольшие наброски пакет (ЦОП) представляет собой прямоугольный, тонкий насыщенный компонент. TSOP типа I имеет ножки, выступающие из ширины упаковки. TSOP типа II имеет ножки, выступающие из продольной части упаковки. ИС на модулях памяти DRAM обычно были TSOP, пока они не были заменены массивом шариковой сетки (BGA).

Тонкоусадочная малогабаритная упаковка (ТССОП)

Выставлен ПАД ЦСОП-16

Тонкие термоусадочные небольшие контурные упаковки (TSSOP) представляет собой прямоугольный, компонент тонкого тела. Количество ног TSSOP может варьироваться от 8 до 64.

TSSOP особенно подходят для драйверов затворов, контроллеров, беспроводных / RF , операционных усилителей , логических , аналоговых , ASIC , памяти ( EPROM , E2PROM ), компараторов и оптоэлектроники . Модули памяти , дисководы, записываемые оптические диски, телефонные трубки, устройства быстрого набора номера, видео / аудио и бытовая электроника / бытовая техника — это рекомендуемые варианты использования упаковки TSSOP.

Открытая площадка

Вариант с открытой площадкой (EP) небольших корпусов может увеличить рассеивание тепла в 1,5 раза по сравнению со стандартным TSSOP, тем самым расширяя пределы рабочих параметров. Кроме того, открытая площадка может быть заземлена, тем самым уменьшая индуктивность контура для высокочастотных приложений. Открытая контактная площадка должна быть припаяна непосредственно к печатной плате, чтобы реализовать тепловые и электрические преимущества.

Примечания

  1. Технология изготовления микросхем // 1. Общие сведения о микросхемах и технологии их изготовления. (неопр.) (недоступная ссылка). Дата обращения: 11 октября 2010. Архивировано 25 декабря 2012 года.
  2. См. в частности Механцев Е. Б. Об одном полузабытом событии (к пятидесятилетию микроэлектроники), Электроника: Наука, технология, бизнес, выпуск 7, 2009 https://www.electronics.ru/journal/article/293
  3. История Ангстрема Архивная копия от 2 июня 2014 на Wayback Machine
  4. Музей электронных раритетов — Гибриды — 201-я серия
  5. Создание первой отечественной микросхемы (неопр.) . Chip News №8, 2000 г..
  6. Петров Л., Удовик А. Кто изобрёл… интегральную схему? // Электронные компоненты. 2013. №8. С. 10-11 (неопр.) (недоступная ссылка —история ).
  7. История отечественной электроники, 2012 г., том 1, под ред. директора Департамента радиоэлектронной промышленности Минпромторга России Якунина А. С., стр. 632
  8. Охраняется гл. 74 «Право на топологии интегральных микросхем» ГК РФ как интеллектуальная собственность (ст. 1225 «Охраняемые результаты интеллектуальной деятельности и средства индивидуализации»).
  9. What is Ultra Large-Scale Integration (ULSI)? — Definition from Techopedia
  10. Стандарты и качество, Issues 1-5 1989 стр 67 «Сверхбольшая интегросхема (СБИС) — около 100 тыс. элементов; ультрабольшая интегросхема (УБИС) — более 1 млн элементов»
  11. 12 Is 14nm the end of the road for silicon chips? // ExtremeTech, September 2011
  12. H. Iwai, Roadmap for 22 nm and beyond Архивная копия от 23 сентября 2015 на Wayback Machine / Microelectron. Eng. (2009), doi:10.1016/j.mee.2009.03.129
  13. https://download.intel.com/newsroom/kits/22nm/pdfs/22nm-details_presentation.pdf
  14. https://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf
  15. Moore’s Law Buckles as Intel’s Tick-Tock Cycle Slows Down, July 16, 2015
  16. Нефедов А.В., Савченко A.M., Феоктистов Ю.Ф. Зарубежные интегральные микросхемы для промышленной электронной аппаратуры: Справочник. — М.: Энергоатомиздат, 1989. — С. 4. — 300 000 экз. — ISBN 5-283-01540-8.
  17. Якубовский С.В., Барканов Н.А., Ниссельсон Л.И. Аналоговые и цифровые интегральные микросхемы. Справочное пособие. — 2-е изд. — М.: «Радио и связь», 1985. — С. 4—5.
  18. К174ХА42 — однокристальный ЧМ радиоприёмник
  19. Pressure sensors
  20. Магнитоуправляемые ИС на основе кремниевых датчиков Холла (недоступная ссылка)
  21. Интегральные аналоговые термодатчики в схемах на МК
  22. Интегральные датчики компании Maxim
  23. Проектирование аналоговых микросхем на МОП-транзисторах. Часть 1. Малосигнальная модель МОП-транзистора с источниками шумов
  24. Внешняя торговля интегральными схемами по справочнику atlas.media.mit.edu
  25. ПРАВО НА ТОПОЛОГИИ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Классификация[ | ]

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) — до 100 элементов в кристалле
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле
  • большая интегральная схема (БИС) — до 10 тыс. элементов в кристалле
  • сверхбольшая интегральная схема (СБИС) — более 10 тыс. элементов в кристалле

Ранее использовались также теперь уже устаревшие названия: ультрабольшая интегральная схема (УБИС) — от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) — более 1 млрд элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Технология изготовления

Гибридная микросборка STK403-090, извлечённая из корпуса

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

Подробнее см. Планарная технология

  • Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок: толстоплёночная интегральная схема;
  • тонкоплёночная интегральная схема.

Гибридная микросхема (часто называемая микросборкой ), содержит несколько бескорпусных диодов, бескорпусных транзисторов и (или) других электронных активных компонентов. Также микросборка может включать в себя бескорпусные интегральные микросхемы. Пассивные компоненты микросборки (резисторы, конденсаторы, катушки индуктивности) обычно изготавливаются методами тонкоплёночной или толстоплёночной технологий на общей, обычно керамической подложке гибридной микросхемы. Вся подложка с компонентами помещается в единый герметизированный корпус.
Смешанная микросхема — кроме полупроводникового кристалла, содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

  • Аналоговые.
  • Цифровые.
  • Аналого-цифровые.

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон от 2,4 до 5 В — логической единице; для микросхем ЭСЛ-логики при напряжении питания −5,2 В диапазон от −0,8 до −1,03 В — логической единице, а от −1,6 до −1,75 В — логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов, например, усилитель сигнала и аналого-цифровой преобразователь.

Типы корпусов импортных микросхем

Корпус – это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!

Ниже представлены наиболее распространенные серии корпусов импортных микросхем.Для просмотра чертежей корпусов микросхем кликните ссылку с названием типа корпуса или на соответствующую типу корпуса картинку.

DIP (Dual In-line Package, также DIL) – тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика (PDIP) или керамики (CDIP). Обычно в обозначении также указывается число выводов.SOIC или просто SO (small-outline integrated circuit), а также SOP (Small-Outline Package) корпус микросхем , предназначенный для поверхностного монтажа, занимающий на печатной плате на 30-50% меньше площади чем аналогичный корпус DIP, а также имеющий на 50-70% меньшую толщину. Обычно в обозначении также указывается число выводов.

SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов.QFP (Quad Flat Package) — плоский корпус с четырьмя рядами контактов. Представляет собой квадратный корпус с расположенными по краям контактами. Существуют также другие варианты: TQFP (Thin QFP) — с малой высотой корпуса, LQFP (Low-profile QFP) и многие другие.

LCC (Leadless Chip Carrier) представляет собой низкопрофильный квадратный керамический корпус с расположенными на его нижней части контактами, предназначенный для поверхностного монтажа.PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»).

TSOP (Thin Small-Outline Package) тонкий малогабаритный корпус, разновидность SOP корпуса микросхем. Часто применяется в области DRAM, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков.SSOP (Shrink small-outline package) (уменьшенный малогабаритный корпус) разновидность SOP корпуса микросхем , предназначенного для поверхностного монтажа. Выводы расположены по двум длинным сторонам корпуса.

ZIP (Zigzag-In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно.

Транзисторные, диодные, микросхемы с малым количеством выводов

Рисунок из ZN414 IC в TO-18 корпусе

  • MELF : металлический электрод без выводов (обычно для резисторов и диодов)
  • SOD: диод с малым контуром.
  • SOT: транзистор с малым контуром (также SOT-23, SOT-223, SOT-323).
  • TO-XX: широкий спектр корпусов с малым количеством выводов, часто используемых для дискретных компонентов, таких как транзисторы или диоды.
    • ТО-3 : Монтаж на панели с выводами
    • ТО-5 : металлическая банка с радиальными выводами
    • TO-18 : металлическая банка с радиальными выводами
    • ТО-39
    • ТО-46
    • ТО-66 : Форма похожа на ТО-3, но меньше
    • TO-92 : Корпус в пластиковом корпусе с тремя выводами
    • TO-99 : металлическая банка с восемью радиальными выводами
    • ТО-100
    • TO-126 : Корпус в пластиковом корпусе с тремя выводами и отверстием для монтажа на радиаторе.
    • TO-220 : Пластиковый корпус со сквозным отверстием, обычно с металлическим язычком радиатора и тремя выводами.
    • К-226
    • TO-247 : Корпус в пластиковом корпусе с тремя выводами и отверстием для монтажа на радиаторе.
    • TO-251 : также называется IPAK: корпус SMT, аналогичный DPAK, но с более длинными выводами для монтажа SMT или TH
    • TO-252 : (также называемый SOT428, DPAK): SMT-пакет, аналогичный DPAK, но меньшего размера
    • TO-262 : Также называется I2PAK: SMT-корпус, аналогичный D2PAK, но с более длинными выводами для монтажа SMT или TH
    • TO-263 : также называется D2PAK: SMT-корпус, аналогичный TO-220, без удлиненного выступа и монтажного отверстия
    • TO-274 : Также называется Super-247: SMT-корпус, аналогичный TO-247, без монтажного отверстия

Выводы

Компоненты в корпусах DIP обычно имеют от 8 до 40 выводов, также существуют компоненты с меньшим или большим чётным количеством выводов. Большинство компонентов имеет шаг выводов в 0,1 дюйма
(2,54 миллиметра
) и расстояние между рядами 0,3 или 0,6 дюйма
(7,62 или 15,24 миллиметра
). Стандарты комитета JEDEC также определяют возможные расстояния между рядами: 0,4 и 0,9 дюйма
(10,16 и 22,86 миллиметров
) с количеством выводов до 64; некоторые корпуса имеют шаг выводов 0,07 дюйма
(1,778 мм
)

Выводы нумеруются против часовой стрелки начиная с левого верхнего. Первый вывод определяется с помощью «ключа» — выемки на краю корпуса, или точки в виде углубления. Когда микросхема расположена маркировкой к наблюдателю и ключом вверх, первый вывод будет сверху и слева. Счёт идёт вниз по левой стороне корпуса и продолжается вверх по правой стороне. При нумерации выводов не следует ориентироваться только на маркировку или гравировку так как нередко она может быть перевернута. Приоритет при определении нумерации выводов следует отдавать «ключу».

Доброго дня всем. Часто бывает нужно заменить на плате микросхему или например, сборку транзисторов, в корпусе типа SO. Он выглядит так:

Но под рукой или у поставщиков только в корпусе DIP, таком:
Напрямую впаять их весьма непросто, из-за различий размеров и шага выводов — 2,54 мм против 1,27. Остается либо вешать микросхему на проводах, либо ставить ее на переходник. Выбрал второй вариант, поэтому была разработана печатная плата и заказана у продавца данного магазина. На днях выпала возможность попробовать переходник в работе.
Немного о заказе в этом магазине. В этом магазине я заказывал изготовление около десятка плат — платы делают отлично, все на высоте — и качество текстолита, и отверстия и лак и шелкография. За все время лишь однажды возникли непонятки по изготовлению полигона на плате, но тут скорее трудности перевода были.
Механизм заказа такой: готовите Гербер-файлы вашего проекта, я делал плату и герберы в «народной» программе радиолюбителей Sprint-Layout 6. Есть полезный сайт, на котором можно проверить, как будут выглядеть ваши Гербер файлы: Отсылаете файлы продавцу на почту и пишете партию плат. Он расценивает заказ, обычно сюда включена доставка, и присылает ответ типа такого:
OK dear,
1.Quotation (one time effective only)
It»s $25 for 50pcs PCB with Special Line Free Shipping. (Special Line is recommended, faster and safer than ePacket/China/HongKong/Singapore Post)
(2Layers FR4 1.6mm 1oz Green HASL Lead Time 3-4Day)
2.Payment
When paying, if choose 25pcs, the price changes to $25; it»s just a pay link, we will delivery 50pcs PCB for you.

В нем, в первом пункте, мы видим цену за партию, а также характеристики будущей платы. Во втором пункте он дает ссылку, перейдя по которой, мы, в моем случае, выбираем количество 25 штук. Дальше оплата как обычно.
Платы приходят обычно в коробке, сами платы в вакуумном пакете:
Получив эту партию, понял, что ошибся с обозначением, изначально планировал сделать Dip20 на SO20, но остановился на Dip16 на SO16. В Приложенных файлах все исправлено.
Вернемся к переходнику. Помимо платы нам понадобятся Соединители штыревые угловые, их обозначение PLLD1.27-40S. Это угловые штырьки с нужным нам шагом 1,27мм. Я брал линейку на 40 выводов, так дешевле, обошлась в 45р., 2 ряда по 20 выводов и отсекал нужную часть канцелярским ножом. Обязательно проверьте, как штырьки паяются, мне попались такие, которые пришлось лудить активным флюсом
Дальше все стандартно — припаиваем соединитель штыревой на контактные площадки на печатной плате. Надеваем на них нашу плату переходника. Ее можно отрезать по количеству выводов или оставить как есть, на свое усмотрение. Припаиваем соединитель к с центральными отверстиями в плате переходника. Вставляем микросхему и паяем ее, удобнее сверху, там сделана металлизация контактов. Готово.
В конечном итоге мой переходник выглядит так:
Максимальная высота готового переходника 5,3 мм.
Всем удачи в творчестве!

Сегодня трудно назвать сферу человеческой жизни, где бы не применялись интегральные микросхемы: телекоммуникации, автомобилестроение, системы управления технологическими процессами, компьютерная и бытовая техника и т.д. Такое широкое использование интегральных микросхем накладывает отпечаток на их конструктивные особенности.