Оглавление
- Крутизна — транзистор
- Определение полевого транзистора
- Технология изготовления биполярных транзисторов.
- Структура полевого транзистора
- ↑ Возможная модернизация
- Полевые
- Усилители
- Управление затвором полевого транзистора
- Полевые транзисторы с изолированным затвором (МДП-транзисторы)
- Основная операция
- Детали пробника
- Достоинства и недостатки полевых транзисторов
- Как открыть полевой транзистор
Крутизна — транзистор
Крутизна транзистора зависит от величины его эмиттерного тока. А та, в свою очередь, изменяется в зависимости от потенциала базы. Следовательно, прилагая на базу напряжения АРУ, изменяют коэффициент усиления транзистора, повышая его, когда вследствие замирания напряжения ВЧ в антенне становится слабее.
Крутизна транзистора 5 (1.24) на низких частотах имеет максимальное значение и с увеличением частоты уменьшается, стремясь в пределе к нулю. С ростом частоты они увеличиваются; У0бр стремится к максимальному значению СбК / т, а У; — к бесконечности.
Симметрирование параллельно включенных транзисторов с помощью эмиттерных резисторов. |
Крутизна транзистора и коэффициент усиления каскада с отрицательной обратной связью уменьшаются в у — 1 мин э 1 6 — 0 54 раза и, следовательно, минимальное значение крутизны SOCMHH составит 1 5 а / в. При работе в режиме класса В параллельно включенных транзисторов разброс выходных мощностей обусловлен не только различием крутизн транзисторов, но и разницей их напряжений отпи рания. Поскольку включением эмит-терного резистора в каскаде создается отрицательная обратная связь, TQ она пропорционально уменьшает и действие этого дестабилизирующего фактора.
Балансный преобразователь частоты.| Схемы преобразователей, выполненные в виде отдельных функциональных узлов. |
Крутизна транзисторов 7Л и Т2 изменяется под действием напряжения гетеродина одинаковым образом, поскольку это напряжение действует на них в одинаковой фазе. Напряжение сигнала, подлежащего преобразованию, поступает на базы транзисторов в противофазе. Поэтому составляющие тока промежуточной частоты будут также взаимно противофазны. В то же время токи с частотой гетеродина, поступающего к обоим транзисторам в одинаковой фазе, будут взаимно компенсироваться. В результате рассмотренных процессов колебания с частотой гетеродина не будут проникать в выходные цепи преобразователя.
Крутизна МДП транзистора однозначно связана с током.
Чтобы крутизна транзистора была достаточно высокой, толщина канала должна быть минимальной. С другой стороны, разброс значений напряжения отсечки U о определяется разбросом толщины канала. Это налагает жесткие требования на точность диффузии при образовании области канала.
Зависимость параметров транзистора Til4 от малых токов эмиттера. |
Уменьшение крутизны транзистора при переходе к малым коллекторным токам приводит к ухудшению его усилительных свойств.
Вследствие уменьшения крутизны транзистора,
Часто говорят о крутизне транзистора, и мы еще будем иметь случай более детально рассмотреть это понятие.
Задача 1.42. Чему равна крутизна транзистора, рассмотренного в задаче 1.41, при U3H — l В.
Операции умножения. |
В умножителях на основе переменной крутизны транзистора используется прямо пропорциональная зависимость между коэффициентом усиления — крутизной транзистора — и током коллектора.
Определение полевого транзистора
Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.
Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.
Технология изготовления биполярных транзисторов.
Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.
Берется кристалл германия и в него вплавляются кусочки индия.Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.
На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.
Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.
В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.
С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.
Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.
Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.
Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.
При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.
Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.
Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.
Структура полевого транзистора
Основополагающий принцип работы, на котором осуществляется действие полевого транзистора с использованием управляющего p-n-перехода основывается на изменении проводимости канала, которая возможна благодаря изменению поперечного сечения. Сток и исток включают напряжение полярности, при котором главные носители заряда (ими являются электроны в канале n-типа) движутся от истока к стоку. В свою очередь, между затвором и истоком включается отрицательное напряжение, управляющее запиранием p – n–переходом.
Рис. №2. Структуры (а) полевых транзисторов с управляющим p—n-перехода и (б) структура транзистора с изолированным затвором.
При большем значении напряжения расширяется запирающий активный слой и канал становится уже. С уменьшением поперечного размера канала происходит увеличение сопротивления и уменьшение величины тока между стоком и истоком. Это действие позволяет управлять протеканием тока. При невысоком значении напряжения затвор — исток происходит перекрытие канала запирающим слоем, что снижает проводимость канала. Ширина канала варьируется от нулевого значения до отрицательных величин, иначе говоря, p-n-переходы затвора сдвигаются в обратном направлении, сопротивление увеличивается.
Напряжение на затворе после исчезновения канала и смыкании p-n-перехода, определяется, как напряжение отсечки U– это величина считается одной из основополагающих для всех разновидностей полевых транзисторов.
Рис. №3. Структура полевого транзистора. Канал, расположенный между электродами стоком и истоком сформирован из слабообогащенного полупроводника n-типа.
Сфера использования полевых транзисторов
Полевой транзистор является устройством, рассчитанным на большую мощность, характерным в конструкции регуляторов, конвертеров, драйверов, электродвигателей, реле и мощных биполярных транзисторов. Они применяются в конструкции зарядных устройств, автоэлектроники, устройствах управления температурным режимом, широкополосных и малошумящих усилителях в схемах зарядочувствительных предусилителей и прочее. Для полевых транзисторов характерно наличие высокого входного сопротивления. Управление полевым транзистором производится непосредственно от микросхемы, без применения добавочных усиливающих каскадов.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
↑ Возможная модернизация
1. Транзисторы типа КТ814, вставленные в панельки «смотрят» надписями от пользователя. Для устранения надо зеркально поменять справа налево рисунок печатной платы.
2. Если пробит переход К-Б, на стабилитрон TL431 поступит напряжение без ограничительного резистора. Поэтому сомнительные транзисторы надо предварительно проверять на замыкание омметром тестера. Для защиты TL431 можно вместо резистора 100 кОм (он предотвращает режим с оторванной базой, я поставил его для перестраховки) поставить резистор 100 Ом и включить его последовательно с миллиамперметром.
3. При длительной подаче повышенного напряжения питания, мощность на балластном резисторе TL431 превышает номинальную. Резистор надо умудриться сжечь, но если есть такие таланты, можно поставить его мощностью 0,5 Вт сопротивлением 200 Ом.
Я не стал вносить эти изменения — делать «защиту от дурака» для себя в схеме из одного стабилитрона и нескольких резисторов считаю ненужным. Плата просто приклеена к кусочку пенопласта с жесткой пленкой. Выглядит неэстетично, но работает, меня это устраивает, как говорится: «дёшево, надёжно и практично».
Полевые
Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:
- Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
- Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
- Исток — вывод, через который в канал приходят электроны и дырки.
Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.
Транзистор.
Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.
Существует два вида приборов с изолированным затвором:
- со встроенным каналом.
- с индуцированным каналом.
Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.
Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.
Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:
- Входное сопротивление.
- Амплитуда напряжения.
- Полярность.
Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.
Усилители
Усилители крутизны
Усилитель крутизны ( г м усилитель) выдает ток , пропорционального его входное напряжение. В сетевом анализе усилитель крутизны определяется как источник тока, управляемый напряжением ( VCCS ). Обычно эти усилители устанавливаются в каскодной конфигурации, что улучшает частотную характеристику.
Усилители сопротивления
Transresistance усилитель выдает напряжение , пропорциональный его входной ток. Трансрезистивный усилитель часто называют трансимпедансным усилителем , особенно производителями полупроводников.
Термин для усилителя сопротивления в сетевом анализе — это источник напряжения, управляемый током ( CCVS ).
Базовый усилитель инвертирующего сопротивления может быть построен из операционного усилителя и одного резистора. Просто подключите резистор между выходом и инвертирующим входом операционного усилителя и подключите неинвертирующий вход к земле. Тогда выходное напряжение будет пропорционально входному току на инвертирующем входе, уменьшаясь с увеличением входного тока и наоборот.
Для усиления сигнального тока от фотодиодов на приемном конце сверхвысокоскоростных оптоволоконных линий широко используются специальные микросхемы трансрезисторных (трансимпедансных) усилителей.
Операционные усилители крутизны
Операционный усилитель крутизны (ОТ) является интегральной схемой , которая может функционировать в качестве усилителя крутизны. Обычно они имеют вход, позволяющий контролировать крутизну.
Управление затвором полевого транзистора
В большинстве схем самодельных генераторов высокого напряжения для электростатической коптильни используется полевой транзистор, но к сожалению управление его затвором часто организовано неправильно.
Речь пойдёт о схемах высоковольтных источников напряжения для получения электростатики, их мощность как правило не превышает 7 ватт – большего и не нужно. Хотя небольшая мощность источников позволяет достаточно вольно обходиться с выбором применяемых компонентов, для успешного построения рабочего блока требуется соблюдение некоторых правил, некоторые из которых мы и рассмотрим.
Для начала возьмем любую типовую схему на достаточно древнем чипе UC384x, стоит он копейки, есть в любом ларьке, имеет минимальную обвязку и неплохой ток выходного каскада в 1 Ампер. Рассмотрим выходной каскад:
В выходном каскаде мы видим диод, как правило это 1n4148: с помощью него идёт разряд затвора и резистор Rg, через который происходит заряд. Сделаем резистор Rg равным 12 Ом и посмотрим осциллограммы:
Здесь и далее цена клетки 2v/200ns, красный щуп на выходе чипа а желтый непосредственно на гейте, транзистор IRF3710. Затвор достаточно тяжелый: Qg = 130nC. Открытие транзистора происходит достаточно шустро, управляющий чип даёт нужный ток а закрытию помогает диод. Особых нареканий всё это не вызывает.
Теперь заменим резистор Rg с 12 на 100 Ом:
Картина стала значительно хуже: время увеличилось в несколько раз, так делать не стоит. Теперь посмотрим работу с таймером 555, фото макетки выше, схема выходного каскада ниже:
Резистор Rg сделаем равным 100 Ом, диод ставить не будем. Почему это плохо:
Время открытия и закрытия затянуто: в таком режиме работы транзистор перегреется даже на небольших мощностях.
Поставим резистор Rg 12 Ом:
Несмотря на всего 200мА тока, который даёт выходной каскад чипа NE555, транзистор открывается неплохо, для быстрого закрытия параллельно резистору Rg требуется диод как на вышеприведенной схеме.
Как сделать совсем хорошо? Для этого нам потребуется комплементарная пара биполярных транзисторов, из которых мы соберем примитивный драйвер. Транзисторы рекомендую SS8050 и SS8550, имея ток коллектора 1,5 Ампер они с избытком покроют все наши потребности, посмотрим схему:
Плёночный или керамический конденсатор С1 – 1-2u, равно как и резистор Rp – 5-10k можно не ставить, но правильнее что б они были. Резистор Rg – 1 Ом, Rb – 47-100 Ом. Запустим схему:
Бинго! Так и нужно дёргать полевик, несколько деталей общей ценой до 50 рублей заменили полноценный драйвер, который кстати стоит примерно так же
Дополнительно снял видеоролик в котором так же отражены некоторые нюансы управление полевым транзистором:
Полевые транзисторы с изолированным затвором (МДП-транзисторы)
Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).
Технология МДП-транзистора с встроенным затвором приведена на рисунке:
Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).
Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.
Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.
ВАХ представлена на рисунке:
Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:
При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.
ВАХ представлена на рисунке:
В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.
К основным параметрам полевых транзисторов относятся:
- Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
- Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
- Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
- Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
- Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
- Дифференциальное сопротивление (внутреннее): при Uзи = const;
- Статистический коэффициент усиления: μ = S · ri
Основная операция
В идеальном OTA выходной ток является линейной функцией дифференциального входного напряжения, рассчитываемой следующим образом:
- яотытзнак равно(Vяп+-Vяп-)⋅граммм{\ displaystyle I _ {\ mathrm {out}} = (V _ {\ mathrm {in +}} -V _ {\ mathrm {in-}}) \ cdot g _ {\ mathrm {m}}}
где V in + — напряжение на неинвертирующем входе, V in− — напряжение на инвертирующем входе, а g m — крутизна усилителя.
Выходное напряжение усилителя является произведением его выходного тока и сопротивления нагрузки:
- Vотытзнак равнояотыт⋅рлоаd{\ displaystyle V _ {\ mathrm {out}} = I _ {\ mathrm {out}} \ cdot R _ {\ mathrm {load}}}
Коэффициент усиления по напряжению равен выходному напряжению, деленному на дифференциальное входное напряжение:
- граммvолтаграммезнак равноVотытVяп+-Vяп-знак равнорлоаd⋅граммм{\ displaystyle G _ {\ mathrm {Voltage}} = {V _ {\ mathrm {out}} \ over V _ {\ mathrm {in +}} -V _ {\ mathrm {in-}}} = R _ {\ mathrm {load} } \ cdot g _ {\ mathrm {m}}}
Крутизна усилителя обычно регулируется входным током, обозначаемым I abc («ток смещения усилителя»). Крутизна усилителя прямо пропорциональна этому току. Это функция, которая делает его полезным для электронного управления усилением усилителя и т. Д.
Детали пробника
PA1 — микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 — СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 — МЛТ-0,25, С2-23 и другие. Переключатели SA1 — 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 — П2К. Тумблеры SA2 — SA4 — МТ-1, П1Т-1-1 и другие. Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II — 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.
Транзисторы VT1 — КТ315, КТ3102, VT2, VT3 — КТ801А, КТ801Б, VT4 — КТ805Б и другие, диоды VD1, VD2 — КД522, КД521, VD4-VD7 — КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 — К555ЛН1, К155ЛН1.
В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.
Достоинства и недостатки полевых транзисторов
Использование полевых транзисторов благодаря их универсальным характеристикам позволило обойти другие виды транзисторов. Они широко применяются для интегральной схемы в качестве выключателя.
Достоинства:
- каскады детали расходуют малое количество энергии;
- показатели усиления превышают, значения других аналогичных устройств;
- достижение высокой помехоустойчивости осуществляется за счет того, что отсутствует ток в затворе;
- обладают более высокой скоростью включения и выключения, работают с недоступными для других транзисторов частотами.
Недостатки:
- менее устойчивы к высоким температурам, которые приводят к разрушению;
- на частотах более 1,5 ГГц, количество потребляемой энергии стремительно увеличивается;
- чувствительны к статическим видам электричества.
Благодаря характеристикам, которыми обладают полупроводниковые материалы, взятые в качестве основы для полевого транзистора, позволяют использовать устройство в бытовой и производственной сфере. Полевыми транзисторами оснащается различная бытовая техника, которая используется современным человеком.
Как открыть полевой транзистор
Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».
Режим насыщения элемента через транзистор
Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».