Кто первым изобрел лампу накаливания

Характеристики

Лампы различаются друг от друга конструкцией и техническими характеристиками

Для потребителя важно знать свойства тех или иных источников света. Ознакомимся с ними подробнее

Мощность. Измеряется в Вт. Мощность говорит о количестве электричества, которое потребляет источник света. Чем она больше, тем ярче светит лампочка. Одновременно большая мощность говорит о больших расходах на электроэнергию и размере счетов за нее.

Поскольку номинальная мощность напрямую зависит от конструкции, то для сравнения разных типов ламп удобнее использовать другую характеристику – световой поток.

Световой поток. Измеряется в лм. Световой поток показывает, насколько ярко светит лампочка. Новые модели источников света (люминесцентные и светодиодные) имеют большую яркость при меньшей мощности. Именно за счет этого достигается энергосбережение.

Сравнительная характеристика мощностей самых популярных бытовых лампочек со световым потоком 1200 лм приведена в таблице.

Таким образом, при равном световом потоке мощность светодиодных ламп более чем в пять раз меньше, чем у ламп накаливания.

Светоотдача. Измеряется в лм/Вт. Светоотдача показывает световой поток в расчете на 1 Вт мощности. Также удобный параметр для сравнения разных типов осветительных приборов. Чем больше светоотдача, тем меньшая мощность обеспечивает максимальную яркость.

Коэффициент цветопередачи (Ra, CPI). Показывает, насколько искажаются реальные цвета при искусственном освещении. Обозначается цифрами от 1 до 100. Чем ниже значение коэффициента, тем сильнее искажаются оттенки. Индекс 100 означает, что цвета передаются максимально точно. Для зрения в помещении безопаснее использовать источники света с Ra не менее 80.

Цветовая температура. Измеряется в К. Определяет теплоту света, ведь разные цвета в зависимости от освещения воспринимаются глазом по-разному.

Цветовая температура

Различают несколько типов цветовых температур:

  • 2700-3200 – теплый белый;
  • 3300-4000 – нейтральный белый;
  • 4000-5000 – холодный белый;
  • 5000-6000 – дневной свет;
  • свыше 6000 – холодный дневной.

Цветовая температура заметно влияет на настроение и работоспособность человека. При выборе ламп, особенно для домашнего и рабочего использования, внимательно изучите маркировку. Помните, что теплый цвет способствуют расслаблению, а холодные – бодрости и работоспособности. Но в больших количествах холодный свет угнетает нервную и зрительную систему. Подробнее можно почитать в статье о цветовой температуре

Срок службы. Это количество часов, которое прослужит источник света. На упаковке обычно указывается срок службы при работе в идеальных условиях. В реальных он может отличаться от заявляемого производителем. Сроки службы популярных бытовых лампочек приведены в таблице.

К тому же у многих моделей источников света со временем падает яркость. Это происходит из-за физических процессов, которые делают возможным само свечение. К таким лампам относятся светодиодные, газоразрядные.

Угол рассеивания света. Это угол, на который расходится световой поток. Лампа накаливания светит во все стороны на 360⁰. Но не все виды источников света могут похвастаться тем же. Например, из-за конструктивных особенностей led  (и других типов) угол рассеивания составляет от 30⁰ до 360⁰.

Угол рассеивания света

Исходя из задачи светильника, выбирается оптимальный угол. Для точечной подсветки достаточно 30⁰, а для общего освещения лучше выбирать максимальный угол.

Коэффициент пульсации (мерцания). Характеризует равномерность освещения. Измеряется в процентах. Чем меньше коэффициент, тем ровнее световой поток, тем меньше будут уставать глаза. В идеале для дома и офиса стоит выбирать источники света с коэффициентом пульсации около 5%. Лампы с коэффициентом свыше 35% опасны для зрения.

Пульсации — как проверить?

Обязательно проверяйте пульсации при покупке. Иначе повесите такие лампы у себя в зале и спальне как основной источник света, а затем будете мучиться с глазами.

Если подходить к этому вопросу по всей строгости закона,
то лампы с плохими показателями коэффициента пульсации, вообще не имеют права
даже находиться на прилавках магазинов.

Существует постановление правительства России №1356 “Требования к осветительным приборам и осветительным лампам”. Оно запрещает продажу источников света с пульсацией более 10% и CRI<80.

Заметьте, что у одних и тех же по размеру лампочек внутри может быть два разных драйвера. Один полноценный с коэффициентом пульсации 1% и менее, другой – на основе дешевых комплектующих.

Секрет №7
Кстати, косвенно(!) проверить какой драйвер стоит внутри, не разбирая цоколь, можно при помощи радиоприемника.

Хороший драйвер при поднесении к нему радио будет фонить. А вот дешевый, не создаст никаких серьезных импульсных помех в эфире.

В некоторых моделях “свеча” с миниатюрным цоколем E14,
драйвер помещают в специальную проставку между цоколем и колбой, так как
воткнуть что-то качественное в бочонок диаметром 14мм вообще не реально.

Второй недостаток – стеклянная колба, которую легко можно разбить при небрежном отношении или транспортировке.

Третий – малая мощность. А еще не забываем:

проблемы с диммированием большинства моделей

плохая совместимость со световой автоматикой, которая плавно зажигает и гасит свет

низкое качество цветопередачи

тепличные условия эксплуатации (не любит жары и холода)

Поэтому на сегодняшний день можно точно сказать, что за филаментами не стоит будущее развитие светотехнической индустрии. Да, они напоминают привычные нам лампочки Ильича, приятно смотрятся в интерьере, но все таки подобная имитация ламп накаливания, это в первую очередь большой-большой компромисс.

И ученым в отдаленном будущем следовало бы разработать в освещении что-то более совершенное и прорывное. Филамент таковым, к сожалению, не стал.

Источники — Кабель.РФ, 5watt

Как выбрать лампу освещения

При выборе стоит обращать внимание на ряд параметров. Наиболее важные факторы:

Наиболее важные факторы:

  • Светоотдача – или отношение мощности потока света к этому показателю в ваттах на входе. Если требуется повышенная освещенность, предпочтительно максимальное значение параметра.
  • Долговечность – предпочтительный срок эксплуатации является определяющим показателем в условиях сложной замены лампочки. Чаще этот параметр коррелирует с потребностью в энергии.
  • Сложности при утилизации – не каждый тип можно запросто выкинуть в ведро. Варианты, содержащие в составе ртуть, требовательны к отсутствию механических повреждений.
  • Уровень освещенности – определяется поддержанием светового потока в заданном диапазоне. Важна его стабильность на протяжении эксплуатационного периода.

  • Вспомогательное оборудование – потребность в трансформаторе или установке реостата подходит не всем. Чаще дополнительные работы, связанные с установкой, перечеркивают достоинства выбранной лампы.
  • Тип цоколя – разумно выбирать распространенные стандартные модели. Они подразумевают легкость замены и доступность комплектующих.

Отдельно рассмотрим выбор светодиодных ламп, так как конструкционно они отличаются от остальных.

Обращайте внимание на светосилу, выраженную в люменах. Для небольшого помещения достаточно 250-400 Лм.
Проверяйте качество сборки – от него зависит долговечность устройства

Детали должны плотно примыкать друг другу, без зазоров и зазубрин. В теории срок службы составляет десятки тысяч часов, но некорректная сборка снизит показатель на порядок.

Люминесцентные лампы (КЛЛ и ЛЛ)

Устройства состоят из колбы, внутренняя поверхность которой покрыта люминофором. Емкость, где находятся электроды, заполняется смесью ртутных паров с инертным газом.

Для пуска используется специальный блок – электронный или механический балласт. При включении внутрь колбы посылается заряд, который вызывает образование ультрафиолетовых волн, под воздействием которых люминофор начинает равномерно светиться.

Люминесцентные лампы могут испускать свет разных оттенков. Для его обозначения используются разнообразные маркировки. Как пример, можно назвать ЛТБ – лампа теплого, ЛХБ – холодного, ЛЕ – естественного света

Модели делятся на два вида:

  • линейные устройства (ЛЛ) – громоздкие трубки, на концах которых находятся два штырька;
  • компактные лампы (КЛЛ), имеющие вид закрученной спирали, у которых пусковой блок запрятан в цоколь.

Маркировка G обозначает приборы со штырьковой конструкцией, а буква E – резьбовой патрон.

Технические характеристики КЛЛ:

  • светоотдача — 40-80 Лм/вт;
  • мощность — 15-80 Ватт;
  • период службы — 10000-40000 часов.

Важным преимуществом люминесцентов является низкая рабочая температура. Даже до включенного изделия можно спокойно дотронуться голой рукой, благодаря чему его безопасно устанавливать у любой поверхности.

В то же время у подобных устройств есть немало отрицательных сторон. Прежде всего, они недостаточно экологичны — находящиеся внутри ртутные пары ядовиты.

Хотя в закрытой колбе они не оказывают губительного влияния на человека, разбитые или перегоревшие лампочки могут представлять опасность. Из-за этого им требуется процедура утилизации: предстоит отработавшие изделия сдавать на пункты переработки, найти которые не всегда легко.

Люминесцентные приборы потребляют ощутимо меньшее количество электроэнергии, нежели лампы накаливания, они имеют длительный срок службы и хорошую отдачу света

К другим недостаткам можно отнести:

  1. Нестабильное функционирование при низких температурах. При -10 °C даже мощные устройства светят крайне тускло.
  2. При включении лампы зажигаются не сразу, а через несколько секунд или минут.
  3. Их стоимость довольно высока.
  4. Работа может сопровождаться низкочастотным гулом.
  5. Такие модели сложно совместимы с диммерами, что затрудняет регулировку интенсивности света. Нежелательно также использовать их вместе с выключателями, имеющими индикаторы подсветки.
  6. Хотя срок службы довольно велик, он значительно сокращается при частом включении и выключении.

Кроме того, световой поток, излучаемый этими приборами, сильно пульсирует, что утомляет глаза.

Более подробно о устройстве люминесцентных ламп, их достоинствах и недостатках можно прочесть здесь.

Экономия электричества – меняем лампы накаливания!

Тема эта, пожалуй, банальна, наверняка все в курсе, что можно уменьшить потребление электроэнергии в 5-10 раз, заменив старые добрые лампы накаливания на энергосберегающие или светодиодные. Однако на практике частенько видишь, что люди по-прежнему используют лампы накаливания, не спеша переходить на новые, хотя преимущества их вроде бы и очевидны. Так что давайте ещё раз поговорим о том, чем хороши новые лампы, как и сколько они позволят нам сэкономить.

Итак, у нас есть три варианта ламп: лампы накаливания – это всем известная прозрачная колба и раскалённая вольфрамовая спираль внутри, энергосберегающие ламы (официальное название – компактные люминесцентные лампы, КЛЛ) – такой небольшой вариант лампы дневного цвета с белыми трубками, светится люминофорное покрытие внутри трубок, светодиодные лампы – как понятно из названия, свет излучают светодиоды (о четвёртом виде ламп – галогенных, в отдельной статье). У этих видов ламп при примерно одинаковой яркости будут отличаться потребляемая мощность, срок службы и цена. Я предлагаю вашему вниманию сравнительную таблицу, за основу которой возьмём популярную шестидесятиваттную лампу накаливания и посмотрим на её экономные аналоги:

Тип лампы Потр. мощность, Вт Срок службы, часов Цена, руб.
Накаливания 60 1.000 15
Энергосберегающая (КЛЛ) 12 6.000 120
Светодиодная (LED) 8 30.000 250

И что мы можем увидеть из этой таблицы? Мы можем увидеть, что каждая следующая лампа выгоднее предыдущего вида хотя бы потому, что у неё больше срок службы! Если взять за основу срок службы светодиодной лампы (разные производители указывают от 25 до 50 тыс. часов), то получается, что за это время надо сменить 5 энергосберегающих – что будет стоить 5*120=600 рублей, или 30 штук ламп накаливания на 15*30=450 рублей. Получается, что переход на светодиодные лампы себя уже оправдывает!

Теперь посмотрим, что мы сможем сэкономить на электричестве. Предположим, лампочка работает у нас в среднем по 2 часа в день (понятно, что зимой – больше, летом – меньше, но в целом за год возьмём цифру в два часа). Итого за год она будет работать 700 часов (будем считать, что две недели в году вы уезжаете на отдых, округлим до 350 дней). Лампа накаливания за это время сожжёт 700*60=42 кВт*час, что при округлённой цене электричества в 5 руб. за 1 кВт*час «скушает» у вас 210 рублей. В то же время энергосберегающая лампа заберёт из бюджета лишь 700*12/1000*5=42 рубля, а светодиодная ещё в полтора раза меньше – 28 рублей. Как видите, энергосберегающая лампа оправдает себя меньше чем за год, а светодиодная – меньше чем за пару лет. Если у вас в квартире 20 ламп накаливания, то заменив их, через год-два вы будете получать чистую экономию около 3500 рублей в год!

Какую лампу выбрать на замену: светодиодную или энергосберегающую? По соображениям экономии электроэнергии не так принципиально, если она не горит по пол дня (тогда точно светодиодную). С другой стороны, срок эксплуатации светодиодной лампы выше, так что она выгоднее. И по эксплуатационным параметрам светодиодная, пожалуй, лучше: хорошо работает при низких температурах, не критична к частым включениям/выключениям, экологичнее (в КЛЛ используется ртуть, которая загрязнит землю при нашей «утилизации» в помойку), прочнее. Светодиодные также имеют более привычную форму колбы или свечи, в отличие от трубочек энергосберегающих ламп.

Из расчёта также видно, что менять лампу энергосберегающую на светодиодную смысла нет: экономия лишь 14 рублей в год, что при стоимости новой лампы в 250 рублей оправдается лишь через 18 лет. Причём энергосберегающая лампа прослужит вам до 10 лет, после чего перегорит и тогда уже вы купите изрядно подешевевшую и, возможно, ещё более экономичную светодиодную лампу :).

В общем, я призываю всех произвести замену старых ламп! Оставляйте лампу накаливания, только если она работает совсем мало (десятки часов за год), или если вы пользуетесь диммером. К сожалению, ни энергосберегающие, ни светодиодные лампы с диммерами не очень дружны (варианты есть, но как показывает практика, они либо дорогие, либо недостаточно яркие). Кстати, если у вас стоит диммер, но вы им не пользуетесь, может, проще вынуть, поставить обычный выключатель и таки заменить лампы?

Ну а если вы используете галогенные лампы, то в следующей статье посмотрим, можно и стоит ли заменить их на что-то более экономное.

Устройство лампы с нитью накала

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно и сейчас их все еще покупают – они могут работать как “во всю силу”, ярко освещая помещение, так и снижать яркость с помощью диммера. Из-за распространенности традиционных лампочек среди населения с их конструкционными особенностями знакомы многие.

Причем часто приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570 °С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422 °С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850 °С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Этапы развития

Лодыгин, Суон и Эдисон являются создателями современных ламп, но не первой лампочки вообще. Устройство прошло долгий путь «становления»:

В 1840 году английский астроном Де ла Рю во время опыта поместил платиновую проволоку в стеклянную вакуумную трубку и пропустил через нее ток. Это была первая электрическая лампа, принцип работы которой лег в основу дальнейших изобретений.

Первые лампы значительно отличались от современных

Угольные нити появились только в 1844 году. Идея была высказана и опробована американцем Старом, который успел получить патент, но вскоре умер.

Важно! В 1840 году в России Милашенко начинал работу над созданием угольных нитей накаливания, но результата не получил. В 1854 году часовщик из Германии Гёбель использовал обугленную нить из бамбука вместо угольной. Вакуум в верхней части трубки создавался при помощи ртути

Такая лампа могла работать несколько часов и стала прототипом современной

Вакуум в верхней части трубки создавался при помощи ртути. Такая лампа могла работать несколько часов и стала прототипом современной

В 1854 году часовщик из Германии Гёбель использовал обугленную нить из бамбука вместо угольной. Вакуум в верхней части трубки создавался при помощи ртути. Такая лампа могла работать несколько часов и стала прототипом современной.

В 1860 году Суон также продемонстрировал свою лампу и даже получил патент, но его изобретение горело недолго и было малоэффективно. Впрочем через несколько лет изобретатель станет одним из создателей «настоящей» лампочки.

1874 год — получение Лодыгиным патента.

Первая электрическая лампочка работала примерно так же, как и более «молодые»

В 1875 году устройство Лодыгина было усовершенствовано русским электротехником Дидрихсоном. Последний полностью откачал воздух из колбы и использовал несколько нитей, чтобы при перегорании одной автоматически включалась другая.

В 1875-1876 годах электротехник Яблочков изобрел дуговую лампу. Он использовал каолиновую нить накала, которая могла работать вне вакуума, не перегорала на воздухе, однако его изобретение не снискало славы.

Первые вольфрамовые нити начали использовать в 1905 году (патент австро-венгры Юст и Ханаман получили годом ранее). Вскоре вольфрам вытеснил все прочие материалы.

Проблема с быстрым испарением нитей в вакууме решили в начале ХХ века: американец Ленгмюр начал использовать инертные газы.

Сегодня используют вольфрамовую нить

История современных ламп накаливания тесно связана с электричеством. После его изобретения в разных странах начали проводиться исследования, которые привели к появлению «Электрической свечи». И хотя первым патент получил россиянин Лодыгин, «отцом» лампочки считается Эдисон, который не только улучшил свое изобретение, но и много сделал для его популяризации.

https://youtube.com/watch?v=AlmUGFL2Xy0

Характеристики лампочек

При выборе лампы обычно обращают внимание на такие характеристики:

Важно, чтобы свет был комфортным для глаз и способствовал сохранению здоровья зрения. Желательно, чтобы потребление электрической энергии при постоянном использовании было относительно небольшим

Нужны лампы не имели свойств, которые вредны для здоровья человека.

Электролампа

При выборе необходимо учитывать технические характеристики изделий:

Могут использоваться различные типы цоколя. При покупке нужно приобретать только такую лампу, которая подойдет к патрону. Каждый вид имеет условное обозначение, состоящее из буквы «E» и одной или двух цифр, которые равны диаметру, измеренному в миллиметрах. Мощность используемых ламп ограничивается величиной, которая указывается в спецификации светильника. Если необходимо установить в нем несколько экземпляров, ограничение относится к суммарной характеристике. В некоторых светильниках используются переходники, которые позволяют применять с двумя или четырьмя штырьками. У ламп может быть различная форма колбы

Они могут быть в форме груши, шарика, свечи или в какой-нибудь другой

Важной характеристикой является яркость освещения. Принято считать, что в помещении высотой 2,7 м на 10 кв

метров нужно потратить мощность 100 Вт. Измерение освещенности квартиры или офиса осуществляют в люксах. Существуют нормативы, определяющие освещение, необходимое для различных типов офисов или жилых помещений.

Большое разнообразие свойств позволяют выбрать наиболее подходящий вариант.

Старая отечественная маркировка

В настоящее время поставляемые на российский рынок лампы маркируются именно по международным стандартам. Старое же оборудование, выпускавшееся в прошлые годы, может иметь и другой шифр — отечественный. Маркировка в этом случае включает в себя буквы кириллицы:

  • Л — лампа.

  • Д — дневной свет.

  • Б — белый.

  • Т — теплый.

  • Е — естественный.

  • Х — холодный.

К примеру, шифр ЛХБ будет проставлен на лампе с белым холодным светом. Для компактного оборудования этого типа в начале кода предусматривается также буква К. У люминесцентных ламп с улучшенной цветопередачей в маркировке дополнительно присутствуют одна или две буквы Ц.

Также отечественные шифры могут содержать и указания на цвет узкого спектра: красный — К, желтый — Ж и т. д. То есть на колбе будет стоять код ЛК, ЛЖ и пр.

И международная и российская маркировка люминесцентных ламп дает покупателю, таким образом, исчерпывающую информацию о данной конкретной модели. Каждая нанесенная на колбу буква или цифра либо их комбинация означают определенную характеристику оборудования. Зная шифры параметров, легко можно подобрать лампу, наиболее подходящую в данном конкретном случае.

Что выбрать: светодиоды или вольфрамовые лампы?

Обычная лампа накаливания

Это вопрос, ответ на который каждый находит для себя сам, оценив для себя лампы накаливания, их достоинства и недостатки. Советов здесь быть не может. С одной стороны, светодиоды потребляют во много раз меньше электроэнергии и более долговечны в работе, чего нельзя сказать о «лампочках Ильича», а с другой – лампы накаливания оказывают более щадящее действие на зрение человека.

И все же есть статистика, а согласно ей, продажи светодиодов и энергосберегающих ламп в последнее время возросли более чем на 90%, т. к. человеку свойственно идти в ногу с прогрессом, а значит, недалеко время, когда лампы накаливания уйдут в прошлое.

Как шли к открытию?

История лампы накаливания началась в начале XIX века. В школьном курсе физике принято считать изобретателем лампы накаливания Томаса Эдисона (1847–1931), однако, у изделия имелись прародители.

В 1803 году русский изобретатель Василий Владимирович Петров (1761–1834) изучая проводимость материалов, получил электрическую дугу между угольными проводниками. Он предложил пользоваться явлением для освещения пространства. Однако, из-за быстрого сгорания угля, практического применения открытие в те годы не получило.

Подробнее о В.П. Петрове рассказано в видео:

Научно описал в 1809 г. дуговой разряд между угольными стержнями сэр Гемфри Дэви (1778–1829) – создатель английской школы электрохимии. Труды стали основой для последующих открытий. Только в 1838 году бельгийцем Жобаром создан устойчиво работающий прототип лампы с угольным сердечником, горение проходило в воздушной среде, поэтому разрушение электрода завершалось очень быстро.

Вскоре, в 1840 году членкор Петербургской академии наук англичанин по происхождению Уоррен Деларю (1815–1989) в качестве материала нити накаливания использовал платину. Устройство успешно освещало помещение, но из-за дороговизны драгоценного металла и его низких прочностных свойств, до промышленного использования дело не дошло.

Устройства Жобара и Деларю стали прорывом в науке, но запатентованы не были.

Первый патент удалось получить ирландцу Фредерику де Моллейну в 1841 году. Устройство представляло собой спираль из платины, находящуюся в вакууме – это увеличивало срок использования.

Американец Джон У. Старр в 1844 г. получил американский, а в следующем году британский патент на лампочки с углеродной нитью. Работы остановились, серия лампа не пошла в связи со смертью изобретателя.

Не прошел мимо изучения электрической дуги и великий французский ученый Жан Бернар Фуко. Заменив в 1844 древесный уголь на ретортные угольные электроды, он добился увеличения срока использования устройства, придумав попутно «первый диммер» – интенсивность света регулировалась изменением длины электрической дуги.

Следующий шаг был сделан Генрихом Гебелем из Германии. Он вел эксперименты, использовав в качестве электродов обугленные палочки бамбука, находящиеся в вакууме колбы. Прибор Гебеля считается прототипом первой лампочки.

С 1860 по 1878 год англичанин Джозеф Вильсон Свон (Суон) работал над применением угольного волокна и получил в итоге патент на изобретение лампы. Особенностью прибора стала разреженная кислородная атмосфера, в которой нагревалось и излучало видимый свет угольное волокно. Технология позволила увеличить видимое свечение.

Параллельно со Своном проводил эксперименты и получил в 1874 г. патент на нитевую лампу российский ученый А.Н.Лодыгин. Василий Федорович Дидрихсон российский ученый усовершенствовал конструкцию своего соотечественника. Из колбы откачали воздух, и было установлено несколько электродов. После сгорания одного, начинал светиться следующий электрод – время службы повысилось.

В 1976 г. российский физик Павел Николаевич Яблочков, изучая изоляционные материалы, применил обмазку нити белой глиной (каолином). Лампа светилась на воздухе, не требуя создания вакуума. Для пуска приходилось подогревать нити спичками. Сам изобретатель скептически относился к  электрическому освещению и прекратил работу в этом направлении. Однако, некоторое время лампы Яблочкова выпускались в промышленном масштабе, но в итоге были вытеснены лампами накаливания. Такими приборами освещался Париж, Лондон, Санкт-Петербург, устанавливались светильники на паровозах и кораблях.

Томасу Эдисону (США) удалось усовершенствовать изобретения Лодыгина и Яблочкова. В 1880 году был получен патент на лампу с угольными электродами.

Виды ламп накаливания, область применения и электрические характеристики.

Классификация данных осветительных приборов.

  1. Общего назначения. Предназначены для общего, местного и декоративного освещения в домах и офисах.
  2. Местного освещения. Подобны предыдущей группе, но с низким напряжением (12, 24, 36 В). Применяются для подсветки рабочих мест, в том числе и на специальных станках.
  3. Декоративные модели. Изготавливаются со специальными фигурными колбами (в виде свечей, шаров и др.). Применяются для украшения интерьера в квартирах и общественных зданиях.
  4. Иллюминационные. Выпускаются с ярко окрашенными колбами. Имеют малую мощность. Применяются в иллюминационных установках.
  5. Сигнальные. Прибор малой мощности, но долгого срока службы. Используются в светосигнальных устройствах.
  6. Зеркальные. Изготавливаются с колбой специальной формы, покрытой отражающим слоем из алюминия. Применяются для локализации местного освещения в определенную точку.
  7. Транспортные. Предназначены для различных видов транспорта. Выпускаются с высокой механической и вибрационной стойкостью. Имеют специальный цоколь.
  8. Лампы для оптических приборов (измерительных, медицинских и др.).
  9. Прожекторные лампы. Имеют большую мощность (до 10кВт) и световую отдачу.
  10. Специальные:
  • коммутаторные (миниатюрные, маломощные);
  • фотолампы (сейчас практически не используются);
  • проекционные (для кинопроекторов);
  • двухнитевые и лампы-фары для автомобилей, самолетов и железнодорожных светофоров;
  • нагревательные и лампы специального спектра излучения для различной техники (принтеры, сушильные камеры и др.).

Номенклатура осветительных приборов определяет их характеристики.

Диапазон мощности составляет от 0,1 Вт до 23 кВт. Для бытовых лампочек интервал значительно уже: от 15 до 150 Вт.
Цветовая температура находится в интервале от 2100 до 3000 К, что весьма близко к естественному солнечному спектру.
Коэффициент полезного действия у ламп накаливания довольно низкий: примерно 5%. Это обусловлено тем, что большая часть электроэнергии расходуется на тепловой нагрев нити накаливания и невидимое глазу инфракрасное излучение.
При работе осветительный прибор не требует дополнительных устройств для ограничения тока. Он подключается напрямую к электрической сети. Это связано со свойствами вольфрама. Он имеет положительный коэффициент температурного расширения. Значит, с ростом температуры увеличивается электрическое удельное сопротивление: стабилизация потребляемой мощности осветительного пробора достигается автоматически.
Световой поток или яркость свечения у лампы накаливания зависит от мощности. Для бытовых приборов он находится в рамках 90−2200 лм. Световая отдача при этом составляет 9−15 лм/Вт.
Индекс цветопередачи Rа 100

Следовательно, цвета предметов не искажаются.
Важной для потребителя характеристикой является размер и тип цоколя лампы. Чаще всего у бытовых осветительных приборов встречается резьбовой цоколь

Кроме него выпускают лампы со штифтовым одно- или двухконтактным цоколем. В зависимости от размера в Европе выпускают цоколи Е14, Е27 и Е40. Цифра соответствует диаметру цоколя в миллиметрах. В странах с меньшим напряжением сети (110В) лампы меньше. Цоколи для них имеют размеры Е12, Е17, Е26 и Е39.