Шар с молниями внутри

Самостоятельное изготовление

Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.

Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм. Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов. Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
  3. изготовить платформу. Подойдет обычная плита из ДСП;
  4. можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
  5. способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
  6. не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
  7. когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.

В качестве питания установки многие используют обычную крону Дюрасель.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Страничка эмбеддера » Плазменный шар

Однажды мне посчастливилось приобрести на развалах колбу от китайского плазменного шара. Электроника шара сгорела, а корпус выбросили. Вообщем, ничто не ограничивало полет моей фантазии.

Выношу на общественный суд мою конструкцию и электронику для плазменного шара.

Электроника шара в моем исполнении довольно проста – это полумост на одной микросхемке. В качестве трансформатора я использую строчник ТВС-110ПЦ15 со штатными обмотками, тоесть ничего своего не мотаю, и это хорошо.

Не смотря на простоту, и тут есть несколько граблей, на которые можно наступить, их я и хочу обсудить. Перед тем, как обсуждать, впрочем, вам нужно посмотреть схему:

В схеме две неочевидных вещи.

Первая – “молнии” в плазменном шаре – это ток. Ток должен течь откуда-то и куда-то, то есть образовывать замкнутый контур. Надеюсь, этот рисуночек поможет понять о чем это я. Голубым обозначен контур, по которому должен протечь ток. Куда утекает ток, мы знаем — он через емкость шар-земля утекает в землю. Нужно теперь придумать как его из земли забирать (замыкать контур). Проще всего для этого использовать заземление, однако заземление не всегда доступно в наших суровых пост-советских реалиях. Поэтому нужно сделать свое, виртуальное, заземление.

На схеме для этого используются конденсаторы C1 и C2, которые обладают значительно меньшим импедансом (сопротивлением), чем конденсатор шар-земля. Один из проводов в розетке всегда соединен с землей, но мы не знаем заранее, который поэтому используем сразу оба.

Возникает вопрос — если шар и его молнии остаются связанными с розеткой, не ударит ли нас, когда мы прикоснемся к шару? А если друг, случайно, один из этих конденсаторов (С1 или С2) выйдет из строя, что тогда? Ударит?

Во-первых конденсатор емкостью 2.2нФ не способен пропустить через себя ток, достаточный чтобы навредить человеку. На схеме написан квалификатор конденсатора – Y2. Конденсаторы с таким обозначением во-первых очень сложно вывести из строя, а во-вторых, они гарантированно разорвут цепь если что-то пойдет не так.

Вторая неочевидная вещь в схеме была связанна с резистором питания микросхемы – R2. В даташите ничего толкового я не нашел, поэтому пришлось его подбирать. 180кОм – это максимальное сопротивление из стандартного ряда, при котором схема работала стабильно. Если у вас стримеры будут мерцать, нужно будет уменьшить это сопротивление.

Теперь про конструкцию. В качестве первичной обмотки я использовал выводы 12 и 9 строчника ТВС-110ПЦ15. Где расположены эти выводы можно увидеть на картинке

Оранжевй провод – идет к виртуальному заземлению, белый и фиолетовый – первичка, синий – высоковольтный

Я сделал рабочую частоту полумоста равной 30кГц. Потому как чем меньше частота, тем меньше энергопотребление. Для того, чтобы на выходе напряжение было побольше, я заставляю строчник работать в резонансе. Резонанс подбирается конденсатором С9.

Его, кстати, лучше поставить на напряжение не меньше 620В. Подбирать резонанс можно и частотой (вместо резистора R3 поставить подстроечник, к примеру), но при изменении рабочей частоты меняется потребление и схема может начать работать нестабильно.

Механика тоже довольно проста. В качестве корпуса я использовал редуктор от вентиляции. Такие можно найти практически в любом строительном магазине. Все узлы держатся на трении. Для того, чтобы фанерка не вставлялась дальше, чем нужно, я приклеил деревянные брусочки-ограничители. Провод питания посадил на скобы и облил термоклеем, чтобы и не думал вырываться.

А вот с колбой пришлось немного помудрить. Во-первых, колбе обязательно нужна металлическая поверхность снизу, иначе “молнии” начинают бить исключительно вниз. Металлическая поверхность приобретает тот-же заряд, что и молнии и отталкивает их. Естественно, эта поверхность должна быть соединена с высоковольтный проводом.

Для удержания колбы, я вырезал деревянный кружек, который очень плотно входит в корпус, и не требует дополнительной фиксации. В разобранном виде колба получилась вот такой:

После сборки дрожащими руками всовываем вилку в розетку, ииии…. Видем красивый плазменный шарик!

На последок, поделюсь печатной платой. Плата отзеркалена.

Шар с молниями

Электроника такой игрушки довольно несложная – это полумост на микросхеме. В работе трансформатора применяется строчник ТВС-110 ПЦ-115 с ординарными обмотками.

Плазменный шар с молниями является зарядом тока, который должен постоянно откуда-то выходить и куда-то течь, чтобы сформировывался закрытый контур. Сам ток протекает сквозь сосуд сферы и идет в почву. Для того чтобы энергию брать из земли, лучше всего применять заземление. Идеально будет сделать его собственноручно, так как в реальном мире оно не всегда доступно.

Твердотельное реле: виды, практическое применение, схемы подключения

Особенности эксплуатации плазменного шара

Чтобы ваша «плазма» могла приносить вам радость и умиротворение на протяжении многих лет, за ней нужен правильный уход, который предполагает следующее:

  • запрещается класть на лампу разнообразные металлические предметы. Часто, из любопытства, на сферу кладут монетки различного номинала. Даже небольшая монетка может послужить причиной удара током. При этом сама сфера может лопнуть и выпустить наружу уже не столь красивые и безопасные разряды;
  • лампа должна подключаться к сети питания на 220 В. Также для ее питания можно использовать и USB-порт (если имеется такая возможность). Такой разъем можно подсоединить своими руками, если у вас имеется старая модель светильника;
  • время работы лампы не должно превышать более двух часов. Иначе это может привести к перегреву, а это негативным образом скажется на прочности прозрачной колбы и в дальнейшем может привести к нарушению ее герметичности.

Как видите, правила более чем просты и понятны. Главное здесь следить, чтобы дети, которых плазменные разряды будут неизменно притягивать, не повредили сферу с газом и не выпустили «фейерверки» наружу.

Конструкция плазменного шара

В качестве первичной обвивки лучше использовать выводы 9, 12 строчника ТВС-110 ПЦ15. Оранжевый проводок соединен с виртуальным заземлением, синий — с высоковольтным, а фиолетовый и белый провода – с первичным.

Рабочая частота полумоста должна равняться 30 кГц – это будет экономить электроэнергию. Чтобы напряжение на выходе было большим, строчник должен действовать в резонансе, который подбирается конденсатором С9. И его лучше выставить на напряжение не менее 620 В. Выбирать резонанс можно аналогично и частотой. Но если изменится рабочая частота, тогда и повысится энергопотребление, и схема может выйти из строя.

Где применяются катушки Теслы

Сами катушки или их действие применяется в некоторых сферах жизни. Кроме комнат, описанных выше, созданные молнии высокого напряжения могут применяться в красочных лампах, которые можно трогать рукой, и разряд будет стремиться к ней.

Созданные молнии могут показать, где есть повреждение вакуумной системы — они всегда стремятся к месту нарушения герметичности. Эффект находит место даже в косметологии. Дело в том, что параметры тока в катушке Теслы относительно безопасны для человека и лишь ходят по поверхности кожи, слега ”пробирая” ее изнутри. Приборы, основанные на таком эффекте, позволяют стимулировать и тонизировать кожу, решая некоторые проблемы с венами, морщинами и другими неприятными изменениями. Но пользоваться такими приборами должен профессионал, так как полностью безопасными назвать их нельзя.

Катушки Теслы применяются даже в косметологии.

Лампа с разрядами и интерьер

Установка плазменного светильника в доме или квартире будет отличным решением по следующим причинам:

  • лампа имеет компактные размеры и хорошо впишется как на полку, так и на журнальный столик;
  • возможность декорирования внешнего вида прибора расширяет перечень стилей, в которые он сможет гармонично вписаться, не нарушив общий замысел;
  • это отличный ночничок, который способен создать атмосферу таинственности и сказки;лампа способствует снятию раздражения, усталости и стрессов.

Плазменная лампа-шар и дети

Несмотря на то, что это очень красивый и практичный ночник, в детской размещение такого прибора не рекомендуется, так как из-за подвижных игр дети могут повредить его стеклянную часть и порезаться. Лучшим решением будет размещение лампы на специальной полке и выставление ее на стол для выполнения функции ночника уже в вечерние часы. Таким образом, вы и порадуете своего ребенка, и убережете его от травм. Кроме детской, подобный светильник станет оригинальным решением для спальни или гостиной. Наиболее подходящими стилями для размещения такой лампы будет «хай-тек», «эклектика», «минимализм», «классика». При этом «хай-тек», как наиболее приближенный стиль к тесловским творениям, будет самым лучшим решением. В стиле «ретро» такая лампа также займет свое достойное место.

Интерьер в стиле хай-тек

А вот для других стилей (например, «ампир», «готика» и т.д.) необходимо дополнительная стилизация светильника. Помните, цвет свечения разрядов стоит выбирать под цвет стен, потолка и мебели. Например, на фоне кофейных стен фиолетовые вспышки будут смотреться просто отлично. Кроме этого плазменная лампа отлично впишется ориентальный дизайн, где превалируют темные цвета отделки стен, мебели, штор и занавесок.

Плазменная лампа из пластиковой бутылки своими руками

С помощью видео канала “Александр Полулях”попробуем сделать плазменную лампу, конструкция которой будет состоять из обычной пластиковой бутылки, а питаться он будет высоковольтным напряжением. Ее не очень сложно изготовить своими руками.

А дешево такие агрегаты продаются в этом китайском магазине.

Берем пластиковую бутылку, проделываем два отверстия в ее донышке, и также сделаем два в крышке. Из донышка такой же бутылки делаем подставку, которую приклеим таким образом, как показано в ролике. Далее в дырки нужно продеть по одному тонкому одножильному проводу без изоляции.

Также эти провода просовываем через крышку. Рассчитываем, чтобы когда она закрывалась, не было замыкания. То есть нужно сначала закрутить противоположную сторону – пару витков – затем продеть внутрь отверстия, и после этого закручивать ее.

По идее, они должны будут раскрутиться и не замыкать между собой.

Электроника для самодельщиков в китайском магазине.

Далее на окончаниях проводов делаем узелки. В одно из этих отверстий со стороны пробки закачиваем инертный газ аргон. После продувки также заделываем герметично термоклеем.

К этим проводам подсоединяем любой источник высоковольтного напряжения, и смотрим, что получается. Смотрите плазменную эффектную лампу, созданную собственными руками на видео ниже.

Предупреждение! Высокое выходное напряжение опасно и может привести к поражению электрическим током или ожогам. За любую травму, вызванную этим устройством, я не несу никакой ответственности. Все, что вы делаете на свой страх и риск.

Простейший самодельный плазменный шар,

Биография Николы Теслы

Великий изобретатель родился 10 июля 1856 года в Хорватии. Начальное образование получал сначала в Смилянах, затем, после переезда, продолжил обучение сначала в школе, потом — в гимназии Госпича. Далее будущий физик поступил в училище в Карловаце и жил у своей тети.

Вам будет интересно:Ты, Кирилл, нас удивил: рифма к имени Кирилл

После окончания учебного заведения в 1873 году Тесла решает вернуться домой к семье, несмотря на то что в это время там была эпидемия холеры. Никола заражается и находится при смерти, но чудом выздоравливает. В будущем сам Тесла предполагал, что этому поспособствовало то, что отец разрешил ему заниматься инженерным делом. После болезни Никола стал видеть вспышки света, с которыми к нему на ум приходили его будущие изобретения. Он представлял их и мысленно тестировал, словно компьютер.

После выздоровления изобретатель должен был пойти на службу в Австро-Венгерскую армию, но родители, решив, что он еще недостаточно здоров, спрятали его в горах.

В 1875 году Никола поступил в Грацкое техническое училище и стал изучать электротехнику. Уже на первых курсах Тесла задумывался о несовершенстве машин постоянного тока, но подвергся критике профессора. На третьем курсе физик стал зависим от азартных игр. Он просаживал большие суммы денег до тех пор, пока его мать не стала брать средства в долг для него у знакомых. После этого он перестал играть.

Комплектация плазменного светильника

Современные лампы-шары, формирующие у себя внутри плазменные разряды, содержат в себе:

  • сам плазменный светильник. У современных моделей должен иметься разъем для USB. У страх моделей такой разъем можно сделать своими руками, отрезав вилку для розетки и подсоединив к ней USB от старого шнура. Только перед проведением таких работ своими руками убедитесь в том, что USB разъем работает нормально;
  • USB-кабель. Это обязательный элемент всех современных моделей;
  • инструкция по эксплуатации. С помощью инструкции вы сможете выяснить все нюансы и тонкости работы прибора, возможность его починки своими руками, а также другие важные моменты, которые приводят производители.

Набор плазменной лампы

Покупая такой светильник, необходимо обязательно убедиться в исправности лампы (особенно прозрачной сферы). Ее прозрачная часть не должна быть повреждена, покрыта царапинами или трещинами. При их наличии обязательно требуйте замену продукции. Обычно осветительный прибор имеет следующие технические характеристики:

  • питание – 220 В (стандартное);
  • мощность — 8 Вт;
  • материалы изготовления: пластик, стекло и электронные компоненты.

Технические характеристики лампы должны быть указаны как на упаковке, так и в инструкции к ней. Приобретая плазменный светильник нужно знать, что диаметр его сферической колбы может варьироваться в достаточно широком диапазоне (от 8 до 20 см).

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Как Тесла зажигал лампочки

У Николы было много изобретений. Однако большинство знает его, потому что Тесла изобрел лампочку. Кроме того, он был удивительным человеком, который умел делать физические трюки. К таким относится и фокус с лампочкой. Тесла зажигал ее в руке посредством пропуска через себя тока высокого напряжения.

Никола является автором многих изобретений, без которых нельзя представить современный мир. В их числе двигатель переменного тока, катушка Теслы, радио, рентгеновские лучи, лампочка Тесла, лазер, плазменный шар и многое другое. Его гениальность и склад ума даже пугали некоторых людей.

Работа

С 1881 года Никола Тесла служит инженером в Центральном телеграфе Будапешта. Ему открывается возможность лицезреть некоторые изобретения, а также подумать над воплощением в реальность собственных идей. Именно здесь великий физик представил миру двухфазный электродвигатель переменного тока, названный затем его именем.

Изобретения Николы позволяли передавать энергию на огромные расстояния, питая приборы освещения, например, лампочки. Тесла, однако, уже через год переехал в Париж, чтобы работать у предпринимателя Томаса Эдисона. Его компания занималась строительством электрической станции на железнодорожном вокзале города Страсбурга, мэру которого позже Никола продемонстрирует работу изобретенного им асинхронного электродвигателя.

В 1884 году Тесла уезжает в Америку. Он был обижен тем, что ему не выплатили в Париже обещанную премию. Там он начинает работать инженером, ремонтирующим электродвигатели в очередной компании Эдисона.

Однако последнего начинают раздражать блестящие идеи великого физика. В результате этого между ними завязывается спор на миллион долларов. Николе удалось победить, но Эдисон свел все к шутке и деньги не выплатил. После этого Тесла уволился и стал безработным. Спасением для него стало знакомство с американским инженером Брауном Томпсоном, благодаря которому о юном физике стало узнавать больше людей.

Заключение

Плазменная лампа-шар, при правильном подходе к ее выбору, станет эффектным дополнением практически любого интерьера и стиля. При этом она будет радовать глаз и не надоест вам даже через несколько лет работы. Такой светильник можно смело использовать как эффективный способ борьбы с усталостью и чрезмерной напряженностью, от чего страдают многие из нас.

Приветствуем Вас, наши дорогие покупатели и желаем всем доброго здоровья и приятных подарков! Сегодня мы расскажем о необычном предмете интерьера -это плазменный светильник «Магический шар», который также можно найти в интернете по запросам: плазма шар, шар Тесла, домашняя катушка Теслы, «шар с молниями», ну и собственно «магический шар». Почему мы склоняемся к названию «магический шар»? Как ни странно, но в последнее время подавляющее большинство покупателей этого девайса, составляют всевозможные работники магических салонов, гадалки и, великие и ужасные «маги и чародеи».

И это не случайно,испокон веков центральным предметом любого «волшебного» салона являлся хрустальный шар, в котором гадалки и предсказатели, якобы, видели прошлое и будущее человека. Раньше это были обычные шары из стекла или хрусталя, чаще сплошные, иногда полые, которые некоторые предприимчивые «маги» перед сеансом наполняли дымом и затыкали пробкой. В наши же дни, для создания атмосферы мистики и всепронизывающей магии всё чаще используются именно плазменные шары. Согласитесь, разноцветные всполохи молний переливающиеся в хрупком сосуде, выглядят куда как эффектней обычной стеклянной сферы и позволяют «окучивать» клиента на более профессиональном уровне.

Изобретение плазменного светильника и принцип работы.

Давайте разбираться что это за чудо-шар такой и откуда он появился. Изобретение плазма шара приписывают выдающемуся физику и ученому Николе Тесла (1856-1943 г.г.). В 1894 году Тесла подробно описал устройство плазменной лампы, состоящей из стеклянной колбы и электрода, на который подавался переменный ток, в результате чего, на его конце возникало свечение. Тесла назвал своё изобретение «Одноконтактная лампа» или «Газоразрядная трубка». В те времена это не выглядело так эффектно как сегодня, потому как технология использования инертных газов была ещё не доступна. Свой современный вид плазма-шар получил благодаря другому изобретателю Джеймсу Фалку, который уже в 70-х годах нашего века, конструировал необычные светильники, в принципе работы которых лежали разработки Теслы, и продавал их в научные музеи и коллекционерам. В наши дни пространство между внешней колбой и электродом заполняют инертным газом, благодаря чему и создаётся эффект непрерывного пульсирования разноцветных молний.

Плазма-шар в подарок.

Шар Теслы – это идеальный подарок. Ведь его завораживающая красота придется по вкусу всем без исключения, независимо от пола и возраста. Взрослым будет приятно украсить дом стильным и необычным предметом интерьера, а дети очень любят трогать поверхность шара и любоваться миниатюрными молниями, бьющими в место соприкосновения с рукой. Мерное, успокаивающее свечение, окажет благоприятное воздействие на нервную систему и поможет снять усталость после тяжёлого трудового дня. А ещё, с помощью магического шара, можно показывать детям фокусы и проводить вместе с ними различные физические опыты, например такие как в этом видео.

Нас часто спрашивают, опасны ли магические шары для окружающих, а особенно для детей

Отвечаем – нет, не опасны, нужно лишь соблюдать несколько основных правил предосторожности:

  • Не подносить к поверхности шара электронные и радио устройства ( мобильные телефоны, плееры тачпады и т.д.)
  • Не класть на поверхность шара металлические предметы ( за исключением случаев, когда это необходимо для опытов)
  • Не прикасаться одновременно к поверхности шара и заземлённому объекту (батарее например)
  • Естественно, не стучать по шару и не ронять его.
  • Рекомендуется отключать светильник на 10-15 минут, через каждые 3-4 часа непрерывной работы.

Итак

Плазменный светильник «Магический шар» – вещь очень необычная и притягивающее внимание. Он будет отличным подарком для Ваших друзей, шикарным предметом интерьера в Вашем доме и увлекательным развлечением для Ваших детей

и.