Оглавление
- Сборка схемы
- Моделирование
- Ученые разработали эффективный метод тепловой левитации
- Левитирующий горшок для растений LePlant: подробности
- Подъёмная сила
- Диамагнитная левитация
- Способы размагничивания магнита
- Использование МЛ
- Техническая левитация
- Что это такое
- Шаг 7: Тестируем
- Высокотемпературные сверхпроводники
- Исторические верования
- Видео практики левитации
- Диамагнетизм
- История
- Механическая конструкция
Сборка схемы
Теоретически можно подключить оба передатчика напрямую к аналоговым портам Arduino Nano, так как они потребляют очень малого тока. Но это ограничит нас 5-вольтовым питанием от Arduino, что значительно снизит мощность левитации. Для усиления сигнала будем использовать микросхему H-моста типа L293D, которая используется в драйверах шаговых двигателей.
Если хотите работать с микросхемой L293D напрямую, можно заменить плату драйвера шагового привода типа L298N. Просто подключите два из четырех входов к портам Arduino A0 и A1 и подключите GND и 5V, как показано на схеме.
При этом обязательно включите два конденсатора по питанию. Они будут отфильтровывать шум, вызванный преобразователями.
Моделирование
Теперь можно синтезировать управление. Для исследований был выбран пакет Matlab. Ниже приведён код получения коэффициентов регулятора по состоянию:
Чтобы понять, можно ли синтезировать управление для полученной системы, нужно знать матрицу управляемости, по определителю которой и делается вывод:
Определитель отличен от нуля, следовательно, линеаризованная система управляема.
Вектор poles — это вектор, который содержит в себе желаемые полюса линеаризованной системы магнитной левитации.
При подаче тестового воздействия в виде единичной ступеньки получаем следующий результат:
Как видно, получается, что объект улетел на довольно большое расстояние при небольшом воздействии, хотя и остался в одном положении. Чтобы вход соответствовал выходу, можно подсчитать масштабирующий коэффициент km и домножить на него входной сигнал, что и реализовалось во второй модели. Тогда переходный процесс будет выглядеть следующим образом:
Получающееся положение всё равно велико для подобной установки. Пока оставим без внимания ток и перейдём непосредственно к моделям Simulink, где рассмотрим оставшиеся вещи.
Масштабируем входной сигнал так, чтобы выходные значения было удобно представлять в сантиметрах. Подадим на вход несколько тестовых воздействий, чтобы проверить, как выглядят переходные процессы в системе, а также протекающий ток.
Получается, что величина тока при таких положениях объекта не столь значительна. Сами переходные процессы по положению имеют апериодический характер, без перерегулирования и статической ошибки. Собственно, так и было задано желаемыми полюсами скорректированной системы.
Однако это приближение в рабочей точке может некорректно сработать с исходной нелинейной моделью. Проверим это. Нелинейная модель системы с подключённым регулятором приведена ниже.
Это уже окончательный вариант, оставленный после всех экспериментов. Были установлены ограничения на входное напряжение (0-12В) и само положение объекта (0-4см). Вторая составляющая регулятора была исключена, поскольку с ней переходный процесс был неустойчив:
После изменений в схеме переходные процессы теперь выглядят так:
Был сразу проверен возможный диапазон работы такой системы. Можно увидеть, что нужное положение будет достигаться при незначительных отклонениях от начальной точки. При этом возможно проявление существенной колебательности.
При этом величина тока выглядит следующим образом:
Раз уже была проверка для нелинейной модели объекта, то можно и взглянуть, каким может быть максимальное значения положения для объекта, при котором он ещё не теряет устойчивости.
Проведя моделирование с разными входными сигналами, было замечено, что у линеаризованной модели всё очень даже хорошо. Так что здесь будут продемонстрированы переходные процессы по изначальному входному сигналу, увеличенному в 10 раз.
Сама математическая модель могла бы выглядеть несколько иначе. Её описание взято из описания математической модели.
Ученые разработали эффективный метод тепловой левитации
Явление левитации сейчас еще во многом походит на волшебство, но позади его стоят совершенно традиционные законы физики и некоторые хитроумные уловки.
Магнитная левитация уже используется в железнодорожном транспорте, к примеру, оптическая – больше в научных целях, а акустическая – в производстве лекарственных препаратов и научных исследованиях.
Однако, все вышеперечисленные методы работают лишь по отношению к объектам с определенными свойствами, а исследователи из Чикагского университета разработали новый метод “тепловой” левитации, который работает за счет искусственно создаваемой разницы температур и может действовать на любые объекты, независимо от их природы и свойств.
Воспользуйтесь нашими услугами
“Магнитная левитация работает только с магнитными материалами, оптическая – с объектами, реагирующими на поляризованный свет. Найденный нами метод является первым в своем роде, который не зависит ни от материала, ни от формы и других свойств объекта” – рассказывает Ченг Чин (Cheng Chin), один из исследователей.
Основой нового метода левитации является процесс под названием термофорез (thermophoresis), в результате которого между двумя источниками тепла с разной температурой возникают достаточно ощутимые силы.
В данном случае в качестве одного источника тепла выступала медная пластина, температура которой поддерживалась на уровне комнатной температуры, а вторая пластина охлаждалась при помощи жидкого азота до температуры -184 градуса Цельсия.
Поток тепла об более горячей пластины к более холодной создавал силы, достаточные для поднятия частиц с небольшой массой.
“Большой температурный градиент приводит к возникновению сил, которые могут уравновесить силу гравитации, что приводит к появлению стабильной левитации” – рассказывает Фрэнки Фанг (Frankie Fung), ведущий исследователь, – “Мы экспериментальным путем сумели определить величину сил, создаваемых явлением термофореза, и выяснили, что это значение очень близко к значению, полученному при помощи теоретических расчетов. Это, в свою очередь, позволит определять нам возможность поднятия различных объектов при помощи технологии “тепловой” левитации”.
Для работы системы “тепловой” левитации на полной мощности требуется пластины с точно выдержанными размерами, разнесенные на строго заданное расстояние.
Так же важную роль играет значение теплового градиента и положение дополнительных элементов, позволяющих контролировать направление движения потока тепла и увлекаемого им воздуха.
“Все это работает только в очень узком диапазоне давления, температурного градиента и геометрических размеров используемых пластин” – рассказывает Ченг Чин, – “Также на силы тепловой левитации влияет форма и материал частиц, поднимаемых таким способом”.
Это позволит ученым исследовать некоторые области без необходимости отправки объектов исследований в космос, кроме этого, новая технология позволит манипулировать объектами, которые очень чувствительны к загрязнению, не прикасаясь к их поверхности.
Следующим шагом, которые собираются сделать ученые, станет модернизация технологии “тепловой” левитации для того, чтобы при ее помощи можно было поднимать объекты, размером более 1 сантиметра.
Кроме этого, ученые будут искать способы управления несколькими объектами, помещенными в одно “левитационное поле” для того, чтобы заставить эти объекты взаимодействовать друг с другом и с окружающей средой.
Воспользуйтесь нашими услугами
Левитирующий горшок для растений LePlant: подробности
Мы уже несколько раз публиковали на Geektimes статьи о левитирующих гаджетах. Некоторые выглядят просто изумительно, но не все из них работают идеально. На днях мы получили на обзор горшок LePlant, поэтому сегодня я расскажу о новинке, которая на некоторое время парализовала работу всего коллектива.
Горшок собран и сделан в России, постарались отечественные разработчики. Выглядит LePlant как смесь мечты садовода с мечтой гика. Один горшок хорошо, но если представить себе, как будет выглядеть офис или квартира, если поставить пару десятков таких устройств — «вау-эффект» однозначно обеспечен. Посмотрим, как все это работает.
Как работает LePlant?
Понятно, никаких проводков/подвесов и т.п. здесь нет. Работает система на принципе магнитной левитации. Устройство состоит из двух частей. Это подставка и сам горшок. Подставка изготовлена из дуба, а внутри скрывается достаточно сложная плата с более чем 100 компонентов и датчиками, которые фиксируют пластины и магниты, и позволяют удерживать горшок в воздухе. Благодаря правильно подобранному размеру магнитов, горшок не слетаем в сторону, а медленно парит над платформой, периодически ускоряясь или замедляясь. К основе подключен адаптер питания (длина шнура — 170 см), который подает ток в конструкцию.
В инструкции, которая идёт в комплекте, производители советуют избегать нахождения вблизи LePlant электронных приборов и металлических предметов на расстоянии менее 20 см. По факту, никаких аномалий в процессе эксплуатации рядом с ПК замечено не было (пока что).
Как запустить LePlant?
В первую очередь необходимо подключить основу (деревянную коробочку) к сети. Затем, чтобы правильно разместить горшок с растением, стоит взять его двумя руками. Горшок нужно поднести к центру платформы, крепко держа. В точке, в которой почувствуется гравитация, можно попробовать отпустить горшок и посмотреть, что получится. Мне удалось запустить LePlant раза с пятого, со временем можно научиться делать это с 1-2 раза, в этом нет ничего сложного. Важный момент — горшок необходимо держать ровно, чтобы он правильно крутился и не наклонялся в одну из сторон.
Для того, чтобы полить растение, и избежать возможного нарушения работы устройства из-за попадания воды на основание — горшок лучше всего снимать.
Сам горшок 12-ти гранный и небольшой, его диаметр — 9,5 см. Подставка в два раза больше, её размеры составляют 15*15*3 см. Горшок можно разместить на любой плоской поверхности — на подоконнике, столе или даже на полу. В случае, если кто-то захочет потрогать или подвинуть растение в горшке — нужно готовиться его ловить, наблюдать за LePlant лучше на безопасном расстоянии.
На данный момент горшок представлен в 3 расцветках — светлый, темный и венге. Поставляется горшок как отдельно, так и в комплекте с растением, это может быть бонсай, тилландсия, хамедорея или канадская ель
Важно отметить, что за каждым из этих растений нужен особый уход. Бонсай предпочитает рассеянный свет и умеренное увлажнение грунта, тилландсия питается влагой, содержащейся в воздухе, а для ели потребуется прохладная среда и редкий полив. Вся необходимая информация по пересадке и уходу за растениями написана в инструкции
Благодаря тому, что горшок не просто висит в воздухе, а вращается — все части растения получают одинаковое количество света
Вся необходимая информация по пересадке и уходу за растениями написана в инструкции. Благодаря тому, что горшок не просто висит в воздухе, а вращается — все части растения получают одинаковое количество света.
Характеристики:
- Материал основания: дуб;
- Размер основы: 150 х 150 мм;
- Высота основания: 30 мм;
- Материал левитирующего горшка: пластик;
- Диаметр левитирующего горшка: 95 мм;
- Питание: 220 В;
- Производитель: Россия.
В целом, горшок LePlant идеально подойдет как для дома, так и для офиса
В него можно посадить любое растение — небольшое деревце, парящее в воздухе, привлекает внимание как гостей офиса, так и его сотрудников
Подъёмная сила
Преодоление земного притяжения заставляет левитирующий объект зависать в воздухе. В случае МЛ сила, заставляющая это сделать, – магнитное поле, действующее на него. Кроме того, существует способность магнетиков и систем, собранных с их использованием, воздействовать друг на друга. Сила, с которой они либо притягиваются, либо отталкиваются, зависит от магнитной поверхности и создаваемого ими МП.
Исходя из этого, можно, применив формулу, рассчитать магнитное давление P mag
P mag = B2/2µ0,
где:
- B – магнитная индукция, Тл;
- µ0 – магнитопроницаемость в вакууме, µ0 = 4π×10−7 Н·А−2.
Искомая сила на 1 м2 поверхности (Pmag) измеряется в Паскалях.
Левитирующий магнит – результат действия подъёмной силы МП
Диамагнитная левитация
Диамагнитная левитация имеет ту же природу что и эффект Мейснера (полное вытеснение магнитного поля из материала), она наблюдается при гораздо более сильных полях, но зато не требует предварительного охлаждения. Некоторые опыты доступны любителям. Например, редкоземельный магнит с индукцией около 1 Тл может висеть между двух пластин висмута. В поле с индукцией 11 Тл можно стабилизировать и удерживать маленький магнит в воздухе между пальцами не касаясь его.
Магнитная восприимчивость материалов
Магнитная восприимчивость χ для изотропных тел определяется выражением
χ = Y / H
Y | — | намагниченность 1 г тела; |
H | — | напряженность внешнего намагниченного поля. |
Материал | t , °С | χ · 10 6 |
---|---|---|
Азот | 18 | -0.34 |
Алюминий | 18 | 0.65 |
Алюминий сернокислый | 18 | -0.48 |
Алюминий хлористый | 19 | -0.6 |
Аммиак (газ) | 16 | -1.1 |
Аргон | 18 | -0.48 |
Ацетон | 15 | -0.58 |
Барий | 20 | 0.91 |
Барий сернокислый | — | -0.306 |
Барий хлористый | 15 | -0.41 |
Бензол | 16.8 | -0.71 |
Бериллий хлористый | 17 | -0.6 |
Висмут | 18 | -1.38 |
260 | -1.02 | |
Висмут бромистый | 19 | -0.33 |
Висмут иодистый | 20 | -0.49 |
Вода | 10 | -0.72 |
Водород | 18 | -1.98 |
Водород хлористый | 22 | -0.66 |
Воздух | 20 | 24.2 |
Вольфрам | 16 | 0.28 |
Гадолиний хлористый | 18 | 91 |
Гадолиния окись | 20 | 130.1 |
Гелий | 18 | -0.47 |
Глицерин | 20 | -0.54 |
Железа окись | 20 | 189.1 |
Железо бромное | 18 | 48 |
Железо сернокислое | 19 | 74.2 |
Железо хлористое | 17 | 101.2 |
Железо хлорное | 20 | 86.2 |
Золото | 18 | -0.15 |
Золото | -256.6 | -0.13 |
Иридий | 25 | 0.14 |
200 | 0.17 | |
450 | 0.2 | |
850 | 0.26 | |
1150 | 0.31 | |
Кадмий | 18 | -0.18 |
Калий | 20 | 0.52 |
Калий бромистый | — | -0.377 |
Калий железосинеродистый | 21 | 7.08 |
Калий марганцевокислый | 21 | 0.175 |
Калий хлористый | 20 | -0.52 |
Кальций | 20 | 1.1 |
Кварц | 20 | -0.49 |
Кислород | 20 | 106.2 |
Кислород жидкий | -195 | 259.6 |
Кислород твердый | -240 | 60 |
Кислота азотная | 22 | -0.467 |
Кислота серная | 22 | -0.44 |
Кислота уксусная | 20 | -0.53 |
Кобальт иодистый | 18 | 32 |
Кобальт сернокислый | 22 | 59.6 |
Кобальт хлористый | 25 | 90.5 |
Кремний | 20 | -0.13 |
Литий | 16 | 0.5 |
Магний | 18 | 0.55 |
Магний бромистый | 20 | -0.57 |
Магний жидкий | 700 | 0.55 |
Магний хлористый | 12 | 0.58 |
Марганец | 22 | 9.9 |
Марганец сернокислый | 24 | 88.5 |
Марганец хлористый | 24 | 107 |
Медь | 18 | -0.085 |
Молибден | 18 | 0.04 |
Натрий | 18 | 0.51 |
Натрий сернокислый | 16 | -0.86 |
Натрий хлористый | 18 | -0.5 |
Неон | 18 | -0.33 |
Нефть | 15–20 | ок. -0,8 |
Никель бромистый | 18 | 19 |
Никель сернокислый | 15.9 | 26.7 |
Никель хлористый | 24 | 44.7 |
Никеля закись | — | 48.3 |
Олово | 18 | 0.025 |
Олово двуххлористое | — | -0.34 |
Олово жидкое | 400 | -0.036 |
Олово серое | 18 | -0.35 |
Палладий | 18 | 5.4 |
200 | 4.6 | |
750 | 2.6 | |
1230 | 1.7 | |
Парафин | 20 | ок. -0,5 |
Платина | 18 | 1.1 |
250 | 0.66 | |
700 | 0.45 | |
1220 | 0.3 | |
Ртуть | 18 | -0.19 |
Ртуть твердая | -80 | -0.15 |
Свинец | 16 | -0.11 |
Свинец бромистый | 20 | -0.28 |
Свинец жидкий | 330 | -0.08 |
Свинец иодистый | 19 | -0.33 |
Свинец хлористый | 15 | -0.32 |
Сера ромб | 18 | -0.49 |
Сера жидкая | 113 | -0.49 |
Сера жидкая | 220 | -0.49 |
Серебро | 16 | -0.2 |
Спирт бутиловый | — | -0.74 |
Спирт метиловый | -3 | -0.65 |
Спирт этиловый | 19 | -0.74 |
Стекло (крон) | — | -0.9 |
Сурьма | 16 | -0.87 |
Сурьма жидкая | 800 | -0.49 |
Сурьма треххлористая | 15 | -0.36 |
Сурьмы трехокись | 14 | -0.19 |
Тантал | 18 | 0.87 |
820 | 0.77 | |
Углекислота | 18 | -0.42 |
Углерод алмаз | 18 | -0.49 |
400 | -0.51 | |
1200 | -0.56 | |
Углерод графит | 20 | -3.5 |
-170 | -6 | |
600 | -2 | |
1000 | -1.3 | |
Фосфор белый | 20 | -0.9 |
Хлор жидкий | -60 | -0.57 |
Хлороформ | 15 | -0.49 |
Хром | 18 | 3.6 |
1100 | 4.2 | |
Хром сернокислый | 21 | 29.5 |
Хром хлористый | 19 | 44.3 |
Хрома трехокись | 17 | 0.51 |
Цинк | 18 | -0.157 |
Цинк бромистый | 19 | -0.4 |
Цинк жидкий | 450 | -0.09 |
Цинк сернокислый | — | -0.48 |
Цинк хлористый | 22 | -0.47 |
Шеллак | — | -0.3 |
Эбонит | 20 | 0.6 |
Эрбий | 18 | 22 |
Этилацетат | 6 | -0.607 |
Этилен | 20 | -1.6 |
Этилен хлористый | — | -0.602 |
Эфир этиловый | 20 | -0.77 |
Способы размагничивания магнита
Потеря свойства притягивания металлических предметов может произойти как естественным образом, так и при проведении ряда действий. При соблюдении правил эксплуатации и хранения, качества неодимовых элементов сохраняются на протяжении 100 и более лет, а ферритовые аналоги продолжают притягивать металл в течение 8-10 лет. Размагничивание неодимов естественным образом нецелесообразно, если требуется выполнить процедуру для нового предмета.
Нагрев изделия
Этот способ применяется как в промышленных, так и бытовых условиях: если магнит выполнен из стандартного сплава неодима с бором и железом, он утратит свойства при помещении в кипящую при 80 градусах по Цельсию воду или в случае контакта с нагретой до указанной температуры поверхностью. Если речь идет об изделии с повышенной стойкостью к термальным перепадам, выполнить процедуру в бытовых условиях вряд ли получится: температура размагничивания неодимовых магнитов с такими свойствами – 200 градусов по Цельсию. Для проведения процедуры в подобных случаях используется специальное промышленное оборудование.
Механические действия
Неодим может утратить свои качества в результате сильного направленного воздействия, например, удара: данный материал имеет порошковую структуру, которая разрушается при падении с высоты или при воздействии ударного оборудования. Кроме того, размагничивание может произойти случайно в процессе сверления или разрезания магнита: виной тому является чрезмерное механическое давление или повышение температуры изделия без принудительного охлаждения.
Обработка внешним магнитным воздействием
Наиболее часто, если есть возможность использовать промышленное оборудование повышенной мощности, используют другой магнит, который позволяет сформировать поле с силой индукции порядка 4 Тесла. Неодимовый магнит размагничивается в считанные секунды, поэтому такой способ, несмотря на технологическую сложность, отличается максимально быстрым достижением результата.
Использование МЛ
Применения МЛ не исчерпывается демонстрацией, где левитирующая лягушка подвешена в воздухе при помощи сильного МП. Небольшой перечень возможностей использования левитации с воздействием магнитного поля:
- на транспорте;
- в энергетике;
- в летательных аппаратах;
- ветряных генераторах;
- магнитных подшипниках.
Транспорт с магнитной левитацией
Основной плюс использования маглевов – экономный режим потребления энергии, за счёт снижения трения между рельсами и колёсами в традиционных вариантах. Основные затраты приходятся на преодоление сопротивления воздушных масс. Современное оформление вагонов, практическое отсутствие шумов и вибрации делают этот вид транспорта перспективным.
История супер поездов
В России не производят маглевы, но в Санкт-Петербурге подобные разработки грузовых поездов на магнитной подушке уже ведутся. Ученые создали прототип грузового маглева, в дальнейшем обещают сконструировать и пассажирский.
Страны лидеры – Китай и Япония, представляют свои разработки, которые работают уже не один год. Коммерческая скоростная линия в Шанхае позволяет перемещаться из одной точки в другую со скоростью более 430 км/ч.
Японский вариант
Скоростное первенство по праву достаётся японским поездам подобного типа. Весной 2015 года опытный экземпляр поезда установил рекорд на участке, построенном в префектуре Яманаси. Модель Синкансэн L0 развила на этом участке скорость 603 км/ч. Японцы ведут разработки ещё с 70-х годов прошлого века. Работы ведутся в институте ж/д техники (JRTRI), в тесном сотрудничестве с оператором Japan Railways.
Японский JR-Maglev
Магнитные подшипники
В лазерных установках и в оборудовании, где необходима высокая точность (оптические системы), нашли своё применение магнитные подшипники. Они обладают целой линейкой положительных качеств:
- отсутствие трения, потери равны нулю;
- повышенная скорость вращения;
- низкий коэффициент вибрации;
- возможность герметизации;
- автоматический электронный контроль.
Газовые турбины, электрогенераторы, работающие на высоких оборотах, криогенные установки – это только некоторые решения для использования таких подшипников.
Бесконтактный магнитный подшипник
Применение в энергетике
Избавление от трения в магнитных подшипниках позволяет говорить о применении магнитной левитации в энергетике. КПД газовых турбин на ТЭС (тепловых электрических станциях) повысился с применением таких деталей. Возможность контролировать и регулировать работу подшипниковых узлов высокооборотных генераторов тока позволила модернизировать и повысить коэффициент автоматизации процесса получения электроэнергии.
Летательные аппараты
Обычный вертолёт тоже можно назвать левитирующим объектом, однако силу земного притяжения он преодолевает с помощью воздушного потока, создаваемого лопастями. Летательные аппараты, использующие МП и движущиеся целенаправленно в разных плоскостях, – это ещё только будущее. В отличие от поездов, проблема конструктивного выполнения стороннего МП находится только в процессе поиска решения.
Самолёт на магнитной подушке
Использование МЛ в ветрогенераторах
Всё дело – в магнитной подвеске, которая значительно увеличивает срок службы генератора. При её наличии ветряная турбина требует гораздо меньших затрат в обслуживании.
Переход транспорта любых видов на МЛ позволит в корне изменить транспортные системы. Кроме коллективного использования таких видов транспорта, возможен переход на индивидуальные системы передвижения человека. Экономия энергии, долговечность вращающихся механизмов, подъём и перемещение грузов – всё это в корне изменит структуру промышленных и сельскохозяйственных объектов, а также внешний облик планеты.
Техническая левитация
Собственно, магнитная разновидность относится к более обширному термину преодоления гравитационного притяжения. Итак, техническая левитация: обзор методов (очень краткий).
С магнитной технологией мы вроде бы немного разобрались, но существуют еще электрический метод. В отличие от первого, второй может быть использован для манипуляций с изделиями из разнообразных материалов (в первом случае – только намагниченных), даже диэлектриков. Разделяется также электростатическая и электродинамическая левитация.
Возможность частиц под воздействием света осуществлять движение была предугадана еще Кеплером. А существование давления света доказано Лебедевым. Движение частицы в направлении источника света (оптическая левитация) именуется положительным фотофорезом, а в обратном направлении – отрицательным.
Левитация аэродинамическая, отличаясь от оптической довольно широко применима в технологиях дня нынешнего. Кстати, «подушка» — один из ее разновидностей. Простейшая воздушная подушка получается очень легко — в подложке-носителе сверлятся множество отверстий и через них продувается сжатый воздух. При этом воздушная подъемная сила уравновешивает массу предмета, и тот парит в воздухе.
Последний известный науке на данный момент способ – левитация с использованием акустических волн.
Что это такое
Неодимовым магнитом является магнитный элемент, который состоит из неодимового редкоземельного борного и железного материала. Обладает кристаллической структурой, тетрагональной формой и формулой Nd2Fe14B.
Неодимовый магнит как самый распространенный вид
Впервые был создан организацией General Motors в 1982 году. Является самым сильным постоянным магнитным элементом, величина мощности которого в несколько раз больше обычного. Оснащен большой магнитной индукцией в 12 400 гаусс.
Обратите внимание! Это хрупкий сплав, имеющий формулу NdFeB, а также жесткий никелированный защитный слой и соответствующий класс. Пользуется большой популярностью и выпускается в разной форме. Полное определение материала
Полное определение материала
Шаг 7: Тестируем
Отрежьте кусок пластика или картона, чтобы сделать платформу. Платформа укладывается поверх основания с магнитами. Волчок раскручивается на этой платформе, затем платформа с волчком поднимается, чтобы волчок попал в «магнитную яму».
Если вы сможете заставить волчок висеть, то вам крупно повезло. Чтобы волчок работал как следует, вам, возможно, придется потратить на это уйму времени.
Вот несколько советов, как можно отрегулировать работу устройства. Во-первых, нужно сбалансировать основание. Используйте картонные открытки или листки бумаги для заметок, чтобы поднять стороны основания и выровнять его.
Если волчок продолжает отклоняться в одну сторону, вам нужно будет поднять эту сторону. Здесь лучше использовать трехточечную систему нивелирования.
Вес волчка также является ключевым фактором. В устройстве есть некая «яма», то есть зона, магнитное поле в центре которой немного слабее, чем у краев. Чтобы волчок оставался в этой яме, вам нужно либо добавить ему вес, либо снизить его.
Если волчок сразу вылетает, то вам, вероятно, нужно добавить ему веса. Если волчок не отрывается от платформы, возможно, он слишком тяжелый.
Также нужно убедиться, что высота платформы выбрана правильно. Если волчок плохо вращается, попробуйте подложить бумажки или картонки под платформу.
Посмотрите видео, чтобы узнать, как это работает!
Высокотемпературные сверхпроводники
В природе мало чистых сверхпроводников. Большинство их материалов, обладающих свойствами сверхпроводимости, являются сплавами, у которых чаще всего наблюдается лишь частичный эффект Мейснера.
В сверхпроводниках именно способность полностью вытеснять магнитное поле из своего объема разделяет материалы на сверхпроводники первого и второго типов. Сверхпроводниками первого типа являются чистые вещества, например, ртуть, свинец и олово, способные даже при высоких магнитных полях продемонстрировать полный эффект Мейснера. Сверхпроводники второго типа – чаще всего сплавы, а также керамика или некоторые органические соединения, которые в условиях магнитного поля с высокой индукцией способны лишь на частичное вытеснение магнитного поля из своего объема. Тем не менее в условиях очень малой индукции магнитного поля практически все сверхпроводники, в том числе и второго типа, способны на полный эффект Мейснера.
Известно несколько сотен сплавов, соединений и несколько чистых материалов, обладающих характеристиками квантовой сверхпроводимости.
Исторические верования
Легенды о магнитной левитации были распространены в древние и средневековые времена, и их распространение из римского мира на Ближний Восток, а затем и в Индию было задокументировано классическим ученым Данстаном Лоу. Самый ранний известный источник Плиний Старший (первый век нашей эры), который описал архитектурные планы железной статуи, которая должна была быть подвешена на магнит из свода храма в Александрии. Многие последующие сообщения описывали левитирующие статуи, реликвии или другие предметы, имеющие символическое значение, а версии легенды появлялись в различных религиозных традициях, включая христианство, ислам, буддизм и индуизм. В некоторых случаях они интерпретировались как божественные чудеса, в то время как в других они описывались как природные явления, ошибочно считающиеся чудесными; один из примеров последнего исходит от святого Августина, который упоминает статую на магнитной подвеске в своей книге. Город Бога (ок. 410 г. н.э.). Другая общая черта этих легенд, по словам Лоу, — это объяснение исчезновения объекта, часто связанное с его разрушением неверующими в результате нечестивых действий. Хотя само явление сейчас считается физически невозможным, как впервые было признано Сэмюэл Эрншоу в 1842 году рассказы о магнитной левитации сохранились до наших дней, одним из ярких примеров является легенда о подвешенном памятнике в Конарк Храм Солнца в Восточной Индии.
Видео практики левитации
Обучение левитации человека, техника и практика
Искусство левитации сохранилось до наших дней не только в Индии, но и в Тибете.
Левитировать может лишь тот, кто достиг самой высокой ступени своего духовного развития. Человек может даже не догадываться о своих скрытых способностях. Иногда левитации проявляется как врожденная способность, но обучение в Тибетских монастырях доказывает, что этому можно научиться.
Проводились эксперименты, где группа учёных следила за изменениями (биологическими и физиологическими) участников. Результаты были такими: у йогов была остановка дыхания на 1-3 минуты, менялся характер дыхания; тела участников были сильно расслаблены, находились трансе; учащался пульс (90-100 ударов в минуту).
Повторимся ещё раз, левитация – это феномен, при котором предмет или человек левитирует без видимой опоры, не притягиваясь к какой-либо поверхности.
Для неподготовленного человека левитирование может быть опасным. Если у человека очень развитая способность к левитации, но духовно он не подготовлен, это будет мощнейший удар по организму, которому трудно перенести такие нагрузки. Результаты могут быть очень печальными. Человек может просто «сгореть», как будто по нему пропустили ток.
Каждый из вас может пройти массу психологических тестов, которые помогут вам понять есть ли у вас способности к левитации, какой уровень этих способностей; уровень вашего духовного развития; предрасположенность к левитации.
Диамагнетизм
Диамагнетизм отмечает умение объекта формировать магнитное поле, вступающее в сопротивление к внешнему. Поэтому они не притягиваются, а отталкиваются, что приводит к таким поразительным вещам, как левитация диамагнитного материала, если его установить над мощным магнитом.
Пиролитический углерод, левитирующий над постоянным магнитом
По большей части диамагнетизм присутствует во всех материалах, и он всегда слабо влияет на реакцию материала по отношению к магнитному полю. У всех проводников заметен эффективный диамагнетизм, если магнитное поле меняется. К примеру, сила Лоренца на электронах заставит их циркулировать вокруг вихревых токов. Далее токи создадут индуцированное магнитное поле, сопротивляющееся перемещению проводника.
Магнит и магнитные поля |
|
Магниты | |
Магнитная сила на движущемся электрическом заряде |
|
Движение заряженной частицы в магнитном поле |
|
Магнитные поля, магнитные силы и проводники |
|
Применение магнетизма |
|
История
- 1839 Теорема Ирншоу показала, что электростатическая левитация не может быть стабильной; позже теорема была распространена на магнитостатическую левитацию другими
- 1913 Эмиль Бачелет получил патент в марте 1912 г. на свой «левитирующий передающий аппарат» (патент № 1,020,942) на систему электромагнитной подвески.
- 1933 Супердиамагнетизм Вальтер Мейснер и Роберт Оксенфельд (в Эффект Мейснера)
- 1934 Герман Кемпер «Монорельсовый транспорт без колес». Патент Рейха номер 643316
- 1939 БраунбекРасширение показало, что магнитная левитация возможна с диамагнитными материалами.
- 1939 Алюминиевая пластина Бедфорда, Пера и Тонкс, помещенная на две концентрические цилиндрические катушки, демонстрирует 6-осевую стабильную левитацию.
- 1961 Джеймс Р. Пауэлл и коллега из BNL Гордон Дэнби электродинамическая левитация с использованием сверхпроводящих магнитов и катушек «Null flux» в форме 8
- 1970-е годы Спин-стабилизированная магнитная левитация Рой М. Харриган
- 1974 Магнитная река Эрик Лэйтуэйт и другие
- 1979 сверхбыстрый поезд перевозил пассажиров
- 1981 публично выставлена первая одинарная система магнитной левитации (Том Шеннон, Компас любви, коллекция Musee d’Art Moderne de la Ville de Paris)
- 1984 Низкоскоростной шаттл на магнитной подвеске в Бирмингеме Эрик Лэйтуэйт и другие
- 1997 Диамагнитно левитирующая живая лягушка Андре Гейм
- 1999 Inductrack электродинамическая левитация на постоянных магнитах (General Atomics)
- 2000 В Китае была успешно разработана первая в мире испытательная машина на магнитной подвеске HTS «Century» с загрузкой человека.
- 2005 униполярный электродинамический подшипник
Механическая конструкция
Прибор был сделан из оргстекла, сначала он должен был быть алюминиевым, но так дешевле и как оказалось это удобный материал для обработки. Элементы которые должны были быть закруглены, после нагревания зажигалкой могли быть согнуты под углом 90 градусов.
Схема начала работать правильно с первого запуска. После регулировки напряжения на обоих фоторезисторах потенциометрами всё стала полностью устойчивым к внешним условиям освещения. Во время работы через соленоидные катушки максимально протекает ток около 2 А, это вызывает довольно высокий нагрев BD911, но например с помощью BUZ90 или 6N60 можно уменьшить нагрев, ведь их сопротивление включенное невелико. На испытании через час обнаружили, что температура радиатора не превышает 90 градусов, поэтому достаточно пассивного охлаждения, мостовой выпрямитель и 7805 также немного нагреваются, у них есть небольшие радиаторы. Единственный недостаток, который появился после долгой работы устройства это то, что дешевые лазеры после получаса непрерывного освещения теряют интенсивность света.
В принципе левитрон подходит для непрерывной работы, правильно держит мелкие и крупные объекты, сила электромагнита действительно высока, если установить большой винт напротив него и притянуть — его будет трудно снять. Даже удалось поднять большой подшипник весом почти 0,3 кг, он левитировал примерно в пол сантиметрах от магнита. В общем смело делайте устройство — схема реально рабочая!