Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Чему равно ЭДС индукции?

Для определения величины возникающей ЭДС рассмотрим контур помещенный в однородное магнитное поле с индукцией В, по данному контуру свободно может перемещаться проводник длиной l.

Под действием силы F проводник начинает двигаться со скоростью v. За некоторое время ∆t проводник пройдёт путь db. Таким образом, затрачиваемая работа на перемещение проводника составит

Так как проводник состоит из заряженных частиц – электронов и протонов, то они также движутся вместе с проводником. Как известно на движущуюся заряженную частицу действует сила Лоренца, которая перпендикулярна к направлению движения частицы и к вектору магнитной индукции В, то есть электроны начинают двигаться вдоль проводника приводя к возникновению электрического тока в нём.

Однако на проводник с током в магнитном поле действует некоторая сила Fт, которая в соответствии с правилом левой руки будет противоположна действию силы F, за счёт которой проводник движется. Так как проводник движется равномерно, то есть с постоянной скоростью, то силы Fт и F равны по абсолютному значению

где В – индукция магнитного поля,

I – сила тока в проводника, возникающая по действием ЭДС индукции,

l – длина проводника.

Так как путь db пройденный проводником зависит от скорости v и времени t, то работа, затрачиваемая на перемещения проводника, в магнитном поле составит

При перемещении проводника в магнитном поле практически вся затрачиваемая на эту работу механическая энергия переходит в электрическую энергию, то есть

Таким образом, преобразовав последнее выражение, получим значение ЭДС индукции при движении прямолинейного проводника в магнитном поле

где В – индукция магнитного поля,

l – длина проводника,

v – скорость перемещения проводника.

Данное выражение соответствует движению проводника перпендикулярно линиям магнитной индукции. Если происходит движение под некоторым углом к линиям магнитной индукции, то выражение приобретает вид

На практике достаточно трудно посчитать скорость перемещения проводника, поэтому преобразуем выражение к следующему виду

где dS – площадка, которую пересекает проводник при своём движении,

dΦ – магнитный поток пронизывающий площадку dS.

Таким образом, ЭДС индукции равна скорости изменения магнитного потока, который пронизывает контур.

Для обозначения направления движения тока в контуре вводят знак «–», который указывает, что ток в контуре направлен против положительного обхода контура. Таким образом

Зачастую в магнитном поле движется контур, состоящий из множества витков провода, поэтому ЭДС индукции будет иметь вид

где w – количество витков в контуре,

dΨ = wdΦ – элементарное потокосцепление.

Перефразируя предыдущее определение, ЭДС индукции в контуре равна скорости изменения потокосцепления этого контура.

Изображение линий магнитной индукции

Чтобы наглядно изучить распределение поля в пространстве, уменьшают размеры измерительных элементов. Для эксперимента подойдут железные опилки, равномерно рассыпанные на поверхности картонного листа или другой электрически нейтральной плоскости.


Линии магнитной индукции – наглядное изображение распределения силового поля

Если поднести с обратной стороны магнит, металлические частицы, как миниатюрные стрелки компаса, распределяться вдоль силовых полос. По расстоянию между ними можно судить об энергетических параметрах поля в определенном месте. Аналогичным образом создают рисунок. Большая густота (около полюсов) свидетельствует об увеличенном значении индукции.

К сведению. Физическим разделением постоянного магнита на части не получится создать отдельные полюса. В этом – принципиальное отличие от электростатических зарядов определенной полярности, которые также создают силовое поле.

Представленные знания применяют для решения разных инженерных задач. В частности, пригодятся простые правила определения направления тока в проводнике и стороны, в которую перемещается сердечник соленоида.


Поезд на магнитной подушке разгоняется до высоких скоростей с минимальными энергетическими потерями

Вектор напряжённости магнитного поля как вспомогательный вектор для описания поля в магнетиках

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство: где $\overrightarrow{j}$ — вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow{j_m}$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow{j_m}$ — объемная плотность молекулярных токов, $\overrightarrow{J\ }$ — вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Модуль вектора магнитной индукции. Сила Ампера

Подробности
Просмотров: 760

«Физика — 11 класс»

Магнитное поле действует с некоторой силой на проводник с током, а точнее на все элементы этого проводника.

В 1820 г. А. А м п е р сумел установить выражение для силы, действующей на отдельный элемент тока.

Модуль вектора магнитной индукции

От чего зависит сила, действующая на проводник с током в магнитном поле?
Пусть свободно подвешенный горизонтально проводник находится в поле постоянного подковообразного магнита.

Поле магнита сосредоточено в основном между его полюсами, поэтому магнитная сила действует практически только на часть проводника длиной , расположенную между полюсами.
Сила направлена горизонтально, перпендикулярно проводнику и линиям магнитной индукции.

m

Модуль вектора магнитной индукции определяется отношением максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока на длину этого отрезка:

Итак, в каждой точке магнитного поля можно определить направление вектора магнитной индукции и его модуль, если измерить силу, действующую на отрезок проводника с током.

Модуль силы Ампера.

В общем случае вектор магнитной индукции ожет составлять угол α с направлением отрезка проводника с током (с направлением тока).
Вектор магнитной индукции можно разложить на две составляющие.

Модуль силы зависит лишь от модуля составляющей вектора , перпендикулярной проводнику, т. е. от В = В sin α, и не зависит от составляющей В, направленной вдоль проводника.

Закон Ампера для силы, действующей на участок проводника с током в магнитном поле:

F = I | | Δl sin α

Модуль силы Ампера равен произведению силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока.

Направление силы Ампера.

Направление силы Ампера определяется правилом левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец укажет направление силы, действующей на отрезок проводника.

Единица магнитной индукции.

За единицу модуля вектора магнитной индукции можно принять магнитную индукцию однородного поля, в котором на отрезок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила Fm = 1 Н.

Единица магнитной индукции равна

Единица магнитной индукции получила название тесла (Тл) в честь сербского ученого-электротехника Н. Тесла (1856—1943).

Следующая страница «Электроизмерительные приборы. Громкоговоритель»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы

Источники магнитного поля

Приведенный выше эксперимент наглядно демонстрирует, как любой человек может определить направление силовых линий магнитного поля Земли. Стрелка прибора покажет направления на южный и северный полюс. Продольная ось этого индикатора будет совпадать с вектором (В).

Электромагнитное поле проводника

Если аналогичный опыт выполнить около проводника с током, по движению стрелки можно определить круговое расположение силовых линий. Они образуют замкнутые кольца, перпендикулярные осевой линии кабеля.

Электромагнитная индукция

Достаточно сильное поле образует индукционная катушка. Практический пример – соленоид реле или запорного устройства. При включении такой узел втягивает внутрь металлический сердечник.

Что такое магнитный поток?

Магнитным потоком называется физическая величина пропорциональная количеству силовых линий магнитного поля на определённой площади пространства. Так как силовые линии являются абстрактным понятием, то, следовательно, магнитный поток характеризует интенсивность магнитного поля, то есть магнитную индукцию на данной площади. Магнитный поток обозначается Ф и имеет размерность Вб (Вебер).

Таким образом, магнитный поток можно выразить следующим выражением

где В – магнитная индукция,

S – площадь поверхности, для которой рассчитывается магнитный поток.

На рисунке изображены силовые линии магнитного поля, которые перпендикулярны к поверхности S, то есть угол между вектором магнитной индукции В и поверхностью S равен 90°. Однако часто бывает, что необходимо вычислит магнитный поток на плоскости не перпендикулярной вектору магнитной индукции. Для определения такого магнитного потока необходимо привести вектор магнитной индукции к нормали

Таким образом, итоговое выражение для нахождения магнитного потока будет иметь вид

где В – вектор магнитной индукции,

S – площадь поверхности, на которой находят магнитный поток,

α – угол между вектором магнитной индукции и нормалью к поверхности S.

Советуем изучить Заземляющий контур

Индуктивность.Электродвижущая сила самоиндукции

• Электромагнетизм •
  • Магнитное поле тока, магнитная индукция, магнитный поток
  • Электромагнитная сила
  • Взаимодействие парал лельных проводов с токами
  • Магнитная проницаемость
  • Напряженность магнитного поля,магнитное напряжение
  • Закон полного тока
  • Магнитное поле катушки с током
  • Ферромагнетики,их намагничивание и перемагничивание
  • Ферромагнитные материалы
  • Магнитная цепь и ее расчет
  • Электромагниты
  • Электромагнитная индукция
  • Принцип работы электричес кого генератора
  • Принцип работы электродви гателя
  • Вихревые токи
  • Индуктивность.Электродви жущая сила самоиндукции
  • Энергия магнитного поля
  • Взаимная индуктивность
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:

Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):

Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.

Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)

а индуктивность её

Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):

Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):

Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.

Магнитное поле. Формулы ЕГЭ

3.3 МАГНИТНОЕ ПОЛЕ

3.3.1 Механическое взаимодействие магнитов

Около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем. Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Магнитное поле. Вектор магнитной индукции

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитная индукция B — векторная физическая величина, являющаяся силовой характеристикой магнитного поля.

Принцип суперпозиции магнитных полей — если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности

Линии магнитного поля. Картина линий поля полосового и подковообразного постоянных магнитов

3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током

Магнитное поле существует не только вокруг магнита, но и любого проводника с током. Опыт Эрстеда демонстрирует действие электрического тока на магнит. Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.

3.3.3 Сила Ампера, её направление и величина:

Сила Ампера — сила, действующая на проводник с током в магнитном поле. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

где I — сила тока в проводнике;

B — модуль вектора индукции магнитного поля;

L — длина проводника, находящегося в магнитном поле;

α — угол между вектором магнитного поля и направлением тока в проводнике.

3.3.4 Сила Лоренца, её направление и величина:

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца. Сила Лоренца определяется соотношением:

где q — величина движущегося заряда;

V — модуль его скорости;

B — модуль вектора индукции магнитного поля;

α — угол между вектором скорости заряда и вектором магнитной индукции.

Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно

Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного, например электрона), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца Fл.

Движение заряженной частицы в однородном магнитном поле

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса R:

R=mv/qB