Люминесцентная лампа: устройство и принцип работы

Как правильно выбрать

Выбирая люминесцентную лампу, необходимо обращать внимание на:

  • температурный режим использования;
  • напряжение;
  • размер;
  • силу светового потока;
  • температуру освещения.

В быту эффективны устройства с резьбовым цоколем и минимальными показателями мерцания.

Рисунок 9

При покупке обратите внимание на размер цоколя. В прихожих нужно сильное освещение, поэтому подбирайте лампы с интенсивным световым потоком

А вот в спальне или гостиной уместны компактные устройства с мягким приглушенным светом

В прихожих нужно сильное освещение, поэтому подбирайте лампы с интенсивным световым потоком. А вот в спальне или гостиной уместны компактные устройства с мягким приглушенным светом.

Будет полезно ознакомиться: Выбор люминесцентных ламп для растений.

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Значения люменов для разных осветительных приборов

Современные требования к упаковке осветительных приборов обязывают доводить до потребителя их технические характеристики в полном объеме. Поэтому найти значение в люменах под сокращением «лм» или «lm» будет просто. Например:

  • лампа накаливания 100 Вт — 1300-1500 лм;
  • лампа накаливания 60 Вт «General Electric» — 660 лм;
  • лампа энергосберегающая «NetHaus», галогеновая 13 Вт — 250 лм;
  • лампа светодиодная (LED) «Gauss Elementary» 12 Вт «как на 100 Вт» — 1130 лм;
  • лампа светодиодная (LED) «Gauss Elementary» 6 Вт «как на 60 Вт»- 420 лм;
  • светодиодный светильник Elektrostandard LTB0201D 60 см 18В — 1200 лм;
  • настольная светодиодная лампа Maytoni Nastro, 15 Вт — 900 лм;
  • офисный светильник TL-ЭКО на светодиодах 48,5 Вт — 4530 лм (итоговый световой поток после всех потерь).

Как видно из отношения светового потока к мощности устройства, светодиодные осветительные приборы являются самыми экономичными и эффективными на световую отдачу.

Что такое люмен

Понятие люмен было установлено международной системой измерений в середине ХХ века.

В люменах измеряют количество всего света, излучаемого источником. Параметр напрямую связан с понятием люкс, но существует между ними и разница.

Следовательно, если лампа, излучающая 100 Лм, освещает 1 м2 поверхности, то на нее будет падать поток равный 100 Лк. Если та же лампочка светит в помещении 10 м2, то его освещенность будет значительно ниже

Важно знать, что при расчетах следует учитывать весь световой поток, во всех направлениях

В понимании этого скрывается одно из преимуществ светодиодных приборов перед лампами накаливания и люминесцентными устройствами, светящиеся во всех направлениях. У диодных светильников угол освещения приближается к 120 или 180 градусам. С помощью встроенных или наружных линз получают лучи любой ширины.

Вывод: световой поток направляется и используется в нужном направлении, увеличивая свою концентрацию.

Эту особенность производители активно применяют при разработке светодиодных ламп, устанавливаемых вместо галогеновых и ксеноновых, d2s lamp, приборов в автомобильные фары. Они дешевле ксенона, меньше нагружают электрику машин, чем галогеновые, не уступая по уровню освещенности.

Современные диоды используются для изготовления и замены ламп 20 Вт в габаритных фонарях и 55 W в фарах авто.

Люминесцентные светильники: характеристики и устройство

Люминесцентными светильниками принято считать устройства, работающие с соответствующим видом газоразрядных ламп. Принцип работы источников света основан на способности электрического тока излучать световые волны ультрафиолетового спектра при прохождении через металлизированный газ.

В люминесцентных лампах используются ртутные пары и минеральный люминофор, преобразующий ультрафиолетовое свечение в свет видимого спектра. Лампы имеют продолжительный срок службы (> 5 лет), хорошую яркость, превышающую аналогичный показатель ламп накаливания в несколько раз, и более широкие возможности в плане оттенков и температуры свечения.

Принцип действия

Принцип действия заключается в возникновении разряда между электродами при подключении источника питания. Разряд взаимодействует с парами ртути и газа, вызывая невидимое для глаз ультрафиолетовое излучение. Для преобразования его в видимый свет, служит люминофор. Состав люминофора влияет на оттенки свечения лампы.

При использовании лампы необходимы дроссель или балласт, обеспечивающий запуск лампы, устранение мерцания. Применяют типы балластов:

  • электромагнитные — имеют механический принцип действия, сокращают срок службы лампы;
  • электронные — работают без звука, обеспечивают мгновенное включение ламп.

Что такое лампа накаливания

Лампа накаливания, далее ЛН – это источник искусственного света, в котором световой поток получают разогревом тонкой металлической нити до температуры свечения раскаленного металла. Для нагрева по нити пропускают электрический ток. Первые лампы имели нить из обугленного органического вещества, например, из бамбука, в виде волокна.

Чтобы нить быстро не сгорала, из колбы откачивали воздух и герметизировали. Или заполняли колбу газовым составом, в котором нет окислителя – кислорода. Такие газы называют инертными – аргон, неон, гелий, азот и пр. Эти газы названы так потому, что они не вступают в реакцию с металлами, т.е. инертны.

Лампа с угольной нитью

Первые лампы с угольной нитью накаливания имели рабочий ресурс не более десятка часов. Он был значительно увеличен после замены угольной нити на тонкую металлическую проволоку.

Такой свет называли светом каления, т.е. светом раскаленного металла. А нить назвали нитью накаливания. Например сталь, нагретая до температуры 1200°C, светится желто-белым светом, а при 1300°C – практически белым.

В конце 19 века угольную нить, которая быстро перегорала, заменили тугоплавкими металлами – вольфрамом, молибденом, осмием или окисями металлов – циркония, магния, иттрия и др.

При большой мощности нити накаливания делают «разветвленной» формы. Проекционные источники света для создания направленного потока имеют нить сложной конфигурации, образуя плоскую конструкцию, перпендикулярную оси излучения. Внутри колбы при этом размещается отражатель света, например в виде тонкого слоя напыленного металла – серебра или алюминия.

Лампа накаливания общего назначения – ЛОН, в колбе «груша». Прямая короткая нить в виде спирали свидетельствует о небольшом рабочем напряжении – 12, 24 или 48-50 В и мощности не выше 10-20 Вт.

Для питания лампы напрямую от существовавшей в то время электросети, имевшей постоянное напряжение 110 В нужна была длинная и тонкая металлическая нить. Это обеспечивало увеличенное сопротивление, а значит для разогрева требовался меньший ток.

Для плотной «упаковки» в небольшом объеме колбы из прозрачного стекла нить, многократно сгибая, размещали на проволочных держателях.

«Сложенная» в несколько раз длинная нить накаливания в лампе Эдисона современного исполнения.

Еще одна современная лампа Эдисона. Хорошо видны параллельно расположенные участки нити накаливания.

Такое изгибание нити усложнило конструкцию первых источников света, которые работали значительно дольше «угольных». Прорывным в разработке конструкции лампочек накаливания стало предложение скручивать нить в спираль. Это уменьшило ее размеры в разы.

Еще меньший размер тела накаливания получили, свернув тонкую спираль во вторую спираль, но большего диаметра. Двойную спираль назвали би-спиралью.

Би-спираль увеличена в 10-20 раз. Видно что она введена и обжата в петле проволочной арматуры, растягивающей нить накаливания на тоненьких штырьках.

Следующим этапом развития источников света стал переход на сети переменного тока и применение трансформатора для снижения напряжения питания ламп.

Специфика искусственного освещения офисных помещений

Искусственное освещение офиса

Искусственное освещение необходимо большую часть года. Только летом в солнечную погоду достаточно будет естественного света. Освещение влияет на следующие факторы:

  • работоспособность;
  • настроение;
  • продуктивность;
  • концентрация внимания.

Выделяют несколько уровней подсветки: общий, локальный, декоративный.

Общее освещение создает основной световой поток. Оно должно быть равномерным, без темноты в углах или иных зонах. Также не стоит делать общий свет излишне ярким – это способствует быстрой утомляемости глаз. Общая подсветка организуется при помощи потолочных светильников.

Локальный свет нужен для отдельного рабочего места. Он создается при помощи настольных ламп или подвесных светильников с непросвечивающими плафонами прямо над столом. Особенно важна локальная подсветка для рабочих мест, связанных с постоянным зрительным трудом: чертежники, проектировщики, дизайнеры.

К локальному освещению много требований:

  • отсутствие резкого контраста между яркостью настольной лампы и общего освещения;
  • нужный уровень яркости: не слишком малая, но не слепящая (мощность источника света примерно 60 Вт лампы накаливания или 8-10 Вт для светодиодной);
  • настольная лампа должна располагаться с левой стороны от человека, пишущего правой рукой;
  • свет должен выделять рабочие инструменты конкретного работника: клавиатуру, чертежную доску.

Декоративная подсветка служит для выделения интерьерных объектов: дипломов, наград, сувениров, картин. Ее создают направленными источниками света малой мощности.

Какую цветовую температуру лучше выбрать для офиса

Правильный рабочий настрой легко задать при помощи цветовой температуры.

Цветовая температура разделяется на три большие группы:

  • теплую (2700-3300 К);
  • нейтральную (3300-5000 К);
  • холодную (свыше 5000 К).

В зависимости от теплоты свет может способствовать расслаблению или, наоборот, бодрости. Например, холодные тона бодрят, заставляют концентрироваться на задании, но при долгом использовании вызывают расстройство глаз, нервной системы. Теплые цвета способствуют расслаблению. Они хороши для зон отдыха, столовых.

Для рабочих, учебных комнат, офисов больше всего подходит нейтральное освещение. Оно создает рабочую продуктивную атмосферу, помогает сосредоточиться.

Нейтральный диапазон цветовой температуры делят на:

  • естественный белый (3300-4000 К);
  • холодный белый (4000-5000 К).

Оба варианта хороши для офисов, рабочих пространств. Однако холодный белый не подойдет для маленьких комнат – атмосфера будет слишком тревожной.

Хорошим вариантом станет цветовая температура равная 4000 К.

Холодный белый

Естественный белый

Нормы и стандарты освещения офиса

Уровень освещенности и другие требования к свету приводятся в нескольких нормативных документах: СНиП 23-05-2010 «Естественное и искусственное освещение» (взамен СНиП 23-05-95), СП  52.13330.2011 «Естественное и искусственное освещение», СаНПиН 2.2.1-2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий».

Нормы освещенности определяются назначением помещения.

Вид помещения, работы в нем Освещенность, лк
Работы с чертежами 500
Работы с компьютером, техникой 400
Офисные помещения, приемные, серверные 200-300
Коридоры, холлы, санузлы, кладовые 50-100
Конференц-залы, переговорные, комнаты приема пищи 200
Комната отдыха 150
Кладовые 50

Нормы приводятся для горизонтальной поверхности высотой 0,8-1 м над уровнем пола. Обычно, это рабочий стол и 0,5 м в радиусе от сотрудника, работающего за эти столом.

Высокоточные или связанные с высоким цветоопределением работы требуют увеличенной нормы освещенности.

Нормируется не только освещенность, но и коэффициенты отражения от поверхностей (мебели, стен, потолка).

Поверхность Коэффициент отражения
Стены 0,3-0,5
Пол 0,1-0,4
Потолок 0,6-0,8
Рабочие поверхности 0,2-0,7

Также помните, что светлые тона увеличивают общую освещенность, а темные снижают. Для отделки лучше использовать светлые краски, материалы.

 Также СаНПиН 2.2.1-2.1.1.1278-03 нормирует коэффициент пульсации света: не более 15%, для особо точных работ – не более 10%.

Помните, что закладывать освещенность необходимо с некоторым запасом (10-30%). Это связано с тем, что лампы перегорают по одной, а заменять их удобнее группой. Оставшееся рабочее количество ламп должно также обеспечивать необходимые нормативы. К тому же у некоторых типов источников света (например, у светодиодных) с течением времени падает яркость из-за физической деградации светодиодов. Заложенный запас освещенности поможет справиться с этим недостатком.

Преимущества современных энергосберегающих ламп

Теперь мы можем перечислить все те достоинства, которыми обладают энергосберегающие люминесцентные лампы:

  • Серьезная экономия электроэнергии. Благодаря тому, что КПД у таких ламп очень высокий, они отдают в 5 раз больше световой энергии, чем лампы накаливания. Люминесцентная лампа мощностью всего в 20 Вт выдает столько же света, сколько 100 ваттная лампа накаливания. Экономия при этом составляет около 80%. Со временем снижения светимости не наблюдается в отличие от ламп накаливания.
  • Качественные люминесцентные лампы имеют срок службы, в несколько раз (от 5 до 15) больший, чем у простых лампочек. Производитель указывает 5 – 12 тысяч часов работы. Это обусловлено тем, что в них отсутствуют нагревающиеся до высоких температур детали. Это свойство удобно в тех местах, где частая замена ламп проблематична.
  • Люминесцентные лампы обладают низкой теплоотдачей, так как вся их энергия преобразуется в световой поток. Такие лампы слабо нагреваются. Поэтому их можно использовать в любых люстрах и светильниках, даже в тех, где обычная лампа более высокой мощности может расплавить патрон.
  • Повышенная светоотдача появляется благодаря тому, что энергия не тратится на нагревание вольфрамовой нити, как в лампах накаливания. Энергосберегающая лампа отдает свет абсолютно со всей своей поверхности. Ее свет более мягкий и рассеянный, что благоприятно сказывается для глаз. Различные оттенки люминофора позволяют изготавливать лампы с мягким или холодным, желтым или белым светом. Каждый волен выбирать более подходящий для себя оттенок.

Перечисленные выше преимущества во многом обусловили популяризацию люминесцентных ламп в последние годы. Этому способствовала и унификация цоколя с обычными лампочками. Тем не менее существуют недостатки, которые пока препятствуют полному замещению ламп накаливания люминесцентными.

Принцип работы

Из-за особого строения лампы для долговременной работы ее обязательно снабжают балластом, позволяющим нивелировать негативные последствия того, что через лампу пропускается большое количество тока. Балласты бывают электромагнитные и электронные. Электромагнитный балласт более дешевый и простой по конструкции. Однако данная модель имеет ряд серьезных недостатков. Самым значительным из них является то, что лампы с таким балластом сильно и часто мерцают. Это ведет к быстрой усталости, потере сил, а также увеличивает нагрузки на глаза при долговременной работе в помещении с таким освещением.

В добавок ко всему варианты с электромагнитным балластом производят неприятный жужжащий шум, от которого быстро наступает головная боль. Есть и недостатки, не связанные с самочувствием человека. Например, лампы, оснащенные электромагнитным балластом, требуют времени на запуск. Обычно оно колеблется в пределах 1-3 секунд, но по мере износа модели будет увеличиваться. Также светильники потребляют больше электроэнергии, чем модели на электронном балласте.

Электронный балласт преобразует стандартное напряжение сети в высокочастотный переменный ток, использующийся в дальнейшем для питания лампы. Такие модели немного дороже, но они не производят шума, не мерцают, сам балласт занимает меньше места и весит тоже меньше. Встречаются модели, которые мгновенно загораются, однако подобная система пуска плохо сказывается на сроке службы люминесцентных ламп. Гораздо лучше, если имеется система предварительного прогрева. В таком случае пуск занимает примерно одну секунду, которая обычно не играет особой роли.

Устройство и принцип действия

В основе функционирования изделий лежит процесс люминесценции. Внутренняя часть колбы покрывается люминофором, «впитывающим» ультрафиолет и выдающим свечение в спектре, видимом для глаз человека. Для формирования ультрафиолетовых лучей используется ртуть или инертный газ, которым заполнена колба. При прохождении электрического заряда капли ртути начинают испаряться, образуя излучение.

Изделия состоят из колбы с электродами, одного или двух цоколей и пускорегулирующей аппаратуры (ПРА). Последний компонент бывает встроенным и вынесенным.

Включение изделия обеспечивается путем реализации следующих этапов:

  • нагрев электродов;
  • подача импульса для поджига;
  • уменьшение и стабилизация напряжения.

Преимущества и недостатки люминесцентных ламп

Как и все вокруг нас, люминесцентные лампы обладают своими положительными и отрицательными сторонами. К счастью, вторых гораздо меньше.

Как было сказано ранее, люминесцентные лампы – явный лидер среди средств освещения. Превосходство перед лампами накаливания не трудно заметить даже самому не опытному в электрике человеку.

Достоинства

К числу достоинств этого элемента относятся следующие:

  • светоотдачу она совершает в куда большей степени, да и качество света несколько выше, чем у других осветительных элементов;
  • длительный срок эксплуатации, обеспечивающий отсутствие перебоев в работе с лампами;
  • КПД такого изделия значительно выше;
  • Рассеянный свет, оказывающий меньший вред на состоянии сетчатки глаза, а значит, при эксплуатации этой лампы вы сможете значительно уменьшить риск проблем со зрением;
  • широкий диапазон в плане цветовых решений света.

Устройство

Устройство люминесцентной лампы имеет некоторые сходства с конструкцией ламп накаливания и галогенных изделий. Состоит она из герметичной колбы и электродов.

Колба заполнена инертным газом и небольшим количеством ртути (до 30 мг). Внутренние стенки колбы покрыты люминофором, который преобразует ультрафиолетовое излучение в свет, видимый человеку. Электроды установлены с обеих сторон колбы (на торцах). Конструкция электрода представляет собой все ту же вольфрамовую нить, к которой припаяны контактные ножки, пропускающие электрический ток. Принцип действия следующий — при прохождении электроэнергии электрод нагревается и возникает ультрафиолетовое излучение, которое проходя через стенки колбы, преобразуется в видимый световой поток.