Путь от схемы до устройства. часть 2: монтажная плата и резак

Макетная плата

Все люди в мире от мала до велика знают, что перед тем, как создать что-либо , надо сначала создать макет этого «что-либо», будь это макет здания, стадиона или даже небольшого сельского туалета.

В электротехнике это называют прототипом. Прототип — это работающая модель устройства.

Поэтому опытные электронщики, перед тем собрать устройство по схеме в интернете, выложенной не пойми кем и не пойми зачем, должны убедиться, что эта схема реально заработает.

Поэтому, схему надо быстренько тяп-наляп собрать и убедиться в ее работоспособности, то есть собрать макет. Ну а для того, чтобы его собрать нам то как раз и понадобится макетная плата.

Толстый картон

Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли :-), использовали толстый картон. Это самый быстрый и дешевый способ проверки схем.

В картоне прорезались дырочки под выводы радиоэлементов и с другой стороны они соединялись с помощью проводов и других элементов, если те не влезали на лицевую сторону.

Выглядело это примерно как-то так:

А — типа лицевая сторона, В — обратная сторона.

Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока «лепишь» эту схемку можно даже ненароком растеряться :-). Да и не красиво как-то.

Самодельные макетные платы

Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.

Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.

Одноразовые макетные платы

Производители все-таки это дело «чухнули», или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.

Кстати, их можно найти на Али сразу целым набором.

Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.

Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:

В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.

Беспаечные макетные платы

Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились беспаечные макетные платы.

Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.

Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре.

Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело мультиметром. Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык.

Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.

Если Вы собираете крупногабаритную схему и в ней присутствуют высокие частоты, то могут возникнуть помехи и различного рода наводки, так как все радиоэлементы обладают паразитными параметрами.

Поэтому, чтобы схемка работала как полагается, общий провод соединяют с металлической пластиной сзади макетной платки. Общий провод на схеме может быть или минусом или назван как GND, что в сокращенном английском варианте означает «земля».

Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (от английского — прыгать), нужны для соединения радиодеталей на самой макетной плате.

Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:

Ремонт макетной платы

Макетные платы не доставляют особых проблем и там практически нечему ломаться. Единственная проблема, которая может встретиться, — это расшатывание контактных пластин. При вставке толстых проводов, разъемов или кабелей можно значительно расширить контакты. Со временем это приводит к их деформации. Стоит избегать частой установки элементов с толстыми выводами в одно и то же место на плате!

Если плата действительно так повреждена, можно попробовать снять удалить двусторонний скотч, вытащить пластины и подогнуть их до нужной формы. Однако будьте осторожны, чтобы не повредить их еще больше, когда их вытаскиваете.

Паяльный фен YIHUA 8858
Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

Подробнее

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.

Простейшим примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Макетные платы  breadboard оптимальны для создания практически любых цифровых схем и не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и высокого качества соединения рабочих контактов.

Виды макетных плат

Далее мы рассмотрим все виды макетных плат.

Толстый картон

В прежние времена, когда с доступностью некоторых видов товаров были проблемы, умельцами использовался толстый картон как один из самых простых, недорогих и быстрых способов для проверки схемы. Достаточно было проделать отверстия в куске картона под конкретные радиоэлементы и установить. Далее припаять выводы деталей друг к другу либо при помощи провода согласно схеме.

Такой вид макета, помимо его простоты, имеет массу недостатков: высокая вероятность замыкания, риски неправильного соединения элементов, возможность прожечь картон. Да и с точки зрения эстетики такой макет явно не лидер.

Самодельные макетные платы

Макетную плату из фольгированного текстолита можно изготовить самостоятельно. Для этого используется режущий инструмент – как правило резец. С его помощью на отрезке текстолита подходящего размера прорезаются канавки, образуя тем самым небольшие квадратики на фольгированной стороне. После чего она покрывается припоем.

Ряд контактов при необходимости можно соединить между собой припоем благодаря небольшому расстоянию между ними и создать дорожку. В результате образуется надёжный проводник, который не выглядит при этом убого. В случае успешной проверки устройства на работоспособность прототип можно оставить в исходном виде и использовать как готовое устройство.

Одноразовые макетные платы

На сегодняшний день в продаже имеется целый ряд разнообразных макетных плат: любых форм, размеров и цветов. Одно- и двухсторонние.

Шаг между отверстиями подобран таким образом, чтобы в них без проблем размещались радиодетали и микросхемы различных форм-факторов. Это придаёт удобство и упрощает сборку для проверки устройства. Стоимость подобных макетных плат, как правило, невысока.

При обилии преимуществ у такого рода макетных плат имеется существенный недостаток: при повторном использовании оловянные пятачки могут сорваться с платы, что приводит к её непригодности.

Беспаечные макетные платы

Следующим поколением макетных плат можно назвать беспаечные (контактные, зажимные, цанговые) макетные платы.

Они ещё проще в обращении, надёжнее и долговечнее предыдущих. Соответственно, и цена на них отличается в большую сторону.

Беспаечные макетные платы отличаются простотой и удобством установки деталей, а также соединением нескольких плат между собой. Существуют ограничения по диаметру контактов радиодеталей и проводов от 0,4 мм до 0,7 мм. С помощью мультиметра можно определить ряды дорожек, расположенных на одном проводнике. На случай создания прототипа с большим количеством узлов, предусмотрена возможность соединения нескольких макетных плат между собой с помощью специальных креплений на торцах.

При создании разветвлённой схемы с высокочастотными узлами, существует риск возникновения помех и наводок по причине паразитных параметров радиодеталей. Для уменьшения негативных последствий, т. к. «масса» (общий провод) подсоединяется к пластине из металла на обратной стороне макетной платы. Обычно общим проводом служит минус, либо он имеет название GND (ground — от англ. земля). Металлическая пластина может идти в комплекте с макетной платой как в закреплённом, так и в незакреплённом варианте, что потребует её установки при необходимости.

Для соединения радиодеталей на данной макетной плате, а также для соединения нескольких макетных плат между собой используются специальные соединительные провода – джамперы (jump — от англ. прыгать). Купить джамперы.

Для установки джампера требуется подогнать его по длине, зачистить от изоляции, подогнуть под 90° и вставить в отверстия.

Рассмотрим пример создания элементарной схемы: включение LED светодиода посредством кнопки на макетной плате.

На лабораторном блоке питания установить напряжение 5 вольт, подключить клеммы и нажать на кнопку. При нажатии светодиод загорается, что говорит о работоспособности прототипа.

Основные виды макетных плат для Arduino

Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами и мы их рассмотрим в другой статье.


Большая макетная плата


Цветные макетные платы


Макетная плата с клеймами

В зависимости от характеристик наиболее распространены такие виды:

  • Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
  • С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
  • С наличием самоклейки на основании для надежного закрепления на устройстве;
  • С нанесенными на плату обозначениями для подключения устройств.

В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.

Электрическая цепь

Предположим у нас есть один резистор, один светодиод и батарея «крона». Соединим их в цепь с помощью макетной платы.

Сначала ставим светодиод.

Затем ставим резистор таким образом, чтобы одна из его ног был под, либо над анодом светодиода (анод — это положительный вывод, он длиннее, чем катод). Используем резистор номиналом 1 кОм.

Зеленым цветом подсвечиваются скрытые проводники.

Теперь соединяем всё с батареей. Положительный контакт батареи подключаем ко второй ноге резистора, а отрицательный — к катоду светодиода (короткая нога).

Цепь замыкается и светодиод мгновенно вспыхивает!

Питание

Для начала, всё что нам понадобится — это докупленная отдельно батарейка «Крона». В наборе есть разъем под неё, который, по инструкции, надо впаять в первую схему. Мой совет: не делайте этого, оставьте её так и используйте в обеих схемах — и для тестирования первой, и для настройки второй.

Устройства, которые мы соберём, потребляют какое-то безумное количество мА\час.

Если речь идёт об электрической цепи, то наши ресурсы и то, как мы их быстро потратим, измеряются в А\ч (Ампер в час, mAh). Ёмкость типичной «Кроны» (по паспорту):

625 мА·ч ≈ 0,5 А·ч

Первое устройство, «Хамелеон», потребляет до 200 мА·ч. Поэтому нашей Кроны этой схеме хватит на:

625мАч/200мА = 3,125 часа.

а значит использовать её рекомендуется только для проверки работы схемы. Хорошим выходом будет аккумулятор на 12 вольт и ёмкостью не менее 0,5 А·ч.

Было бы круто иметь возможность припаять на платы один из таких разъёмов, и затем включить в него вот такой лабораторный блок питания. Но ни под один из доступных разъёмов на плате нет подходящих отверстий. Следовательно, подключить блок питания мы пока не можем.

Макетная плата в электронных схемах

Редко какой реальный проект Arduino содержит менее 5-10 элементов схемы, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.

Макетная плата без пайки

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания  прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Cкрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.
  • Плата для монтажа без пайки. Английский вариант названия беспаечной макетной платы – breadboard.
  • Можно еще деражть контакты руками или зубами, склеивать клеем-пистолетом, скреплять изолентой или скотчем. В этой статье мы такие экзотические варианты не рассматриваем.

Макетная плата для монтажа с пайкой

Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз, изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.

Макетная плата

Конечно, есть у этого варианта монтажа и недостатки:

  • В реальных проектах соединения у платы не будут столь же надежны, как при пайке. Любая вибрация будет потихоньку ослаблять контакты и это обязательно со временем приведет к неожиданным проблемам. Поэтому в реальных проектах используют другие виды монтажа элементов.
  • Внешний вид проектов с лапшой в виде проводов над бескрайними белыми пространствами платы нельзя назвать профессиональным и эстетичным. Хотят такой вид всегда завораживает зрителей и формирует у проекта имидж чего-то “жутко сложного, раз столько проводов”.
  • Плата с таким видом монтажа всегда будет занимать больше места за счет нависающих проводов. Значит, для нее нужен корпус больших объемов с фиксацией и защитой от вибрации.
  • Стоимость макетной платы. Пусть платы и не являются дорогими устройствами, но все равно вам нужно будет их приобрести дополнительно к микроконтроллеру и другим элементам. К счастью, сегодня на рынке есть большое количество недорогих вариантов и готовых наборов с монтажными платами в комплекте. Некоторые варианты можно найти в следующем разделе нашей статьи.

Не смотря на некоторые недостатки, альтернативных вариантов по простоте и доступности для монтажа первых схем у начинающих практически нет. Сегодня можно встретить огромное количество проектов, в которых все элементы размещены именно на макетной плате. Почти все примеры из учебников по основам робототехники и Ардуино используют этот вариант монтажа. Поэтому рекомендуем вам обязательно познакомиться с этим конструктивным элементом поближе.

Простая электросхема с использованием беспаечной монтажной платы

Основы работы с беспаечной монтажной платой мы рассмотрели. Давайте рассмотрим пример простой электрической цепи, в которой будем использовать breadboard.

Ниже приведен список узлов, которые понадобятся для нашей цепи. Если у вас нет именно этих деталей, можете заменить их на аналогичные. Не забывайте: одну и ту же электрическую цепь можно собрать, используя разные компоненты.

  • Breadboard
  • Регулятор/стабилизатор напряжения
  • Блок питания
  • Светодиоды
  • Резисторы на 330 Ом 1/6 Вт
  • Коннекторы
  • Тактовые кнопки (квадрат 12 мм)

Собираем электрическую цепь

Фотография собранной электрической цепи с использованием беспаечной монтажной платы приведена ниже. В проекте используются две кнопки, резисторы и светодиоды

Обратите внимание, что две аналогичные цепи собраны по разному

Красная плата слева — стабилизатор напряжения, который обеспечивает питание 5 В на рельсах макетки.

Схема собирается следующим образом:

  • К позитивной ноге (аноду) светодиода подключается питание 5 В от соответствующей рельсы breadboard «а.
  • Отрицательная нога (катод) светодиода, подключена к резистору 330 Ом.
  • Резистор подключен к тактовой кнопке.
  • Когда кнопка нажата, цепь замыкается с землей и светодиод зажигается.

При прототипировании важно разбираться в электрических схемах. Давайте кратко рассмотрим электрическую схему нашей небольшой электрической цепи

Электрическая схема — это схематическое изображение, в котором используются универсальные обозначения для отдельных электрических компонентов и отображается последовательность их подключения. Подобные элекрические схемы можно получить, используя программу Fritzing .

Электрическая схема нашего проекта показана на рисунке ниже. Питание 5 В изображено стрелкой в верхней части схемы. 5 В подключается к светодиоду (треугольник и горизонтальная линия со стрелками). После этого светодиод подключается к резистору (R1). После этого установлена кнопка (S1), которая замыкает цепь. И в конце цепи — земля (Gnd — горизонтальная линия снизу).

Наверняка возникает вопрос: а зачем нам электрические схемы, если можно просто создать принципиальную схему подключения с использованием того же Fritzing? Например, как на подобном рисунке:

Как уже упоминалось выше, собрать одну и ту же схему можно по-разному, а вот электрическая принципиальная схема останется одинаковой. То есть, практическая имплементация может отличаться, что дает вам пространство для фантазии и более общее понимание процессов, которые происходят в вашем проекте.

При конструировании и сборке новых электронных схем обязательно требуется их отладка. Она проводится на временной монтажной плате, позволяющей достаточно свободно расположить компоненты с целью обеспечения возможности быстрой и удобной их замены, проведения контрольно-измерительных работ.

Детали в такой плате могут крепиться при помощи пайки, а сама площадка будет называться макетной платой. Чтобы лишний раз не подвергать компоненты механическим и тепловым воздействиям, монтажниками и конструкторами используется беспаечная макетная плата. Часто радиолюбители называют это приспособление макеткой.

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.

Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

Как правильно пользоваться

Чтобы успешно и рационально пользоваться макеткой, необходимо иметь еще такие приспособления:

  • несколько монтажных проводов диаметром 0,4-0,7 мм для устройства различных перемычек и подключения питания;
  • кусачки-бокорезы;
  • плоскогубцы;
  • пинцет.

Паяльник при монтаже без пайки, разумеется, не нужен, но он может понадобиться, чтобы припаять провода к клеммам источника питания, если отсутствуют разъемные изделия. Иногда пайку придется применить для осуществления экранирования.

Зная расположение токопроводящих дорожек на макетной плате, легко осуществить монтаж любой схемы и, подключив ее к источнику питания, проверить работоспособность. Для сборки нужно только вставить выводы компонентов в зажимы разъемов и соединить их в нужной последовательности.

При этом необходимо четко представлять расположение токопроводящих дорожек, чтобы не допустить короткого замыкания. При необходимости осуществления контактов между дорожками на макетной плате используются соединители.

В случае если выводы деталей по диаметру не подходят под монтажные отверстия, к ним можно подпаять или подмотать отрезки подходящего провода. Микросхемы и компоненты в BAG-корпусах устанавливаются в центре платы.

МОНТАЖНАЯ ПЛАТА ДЛЯ ПАЙКИ

Последнее время нахожусь в поиске оптимальной конструкции монтажной платы. Что-то похожее на стремление к совершенству )). Монтажная плата вообще штука удобная, смотришь на принципиальную схему и собираешь на ней тоже самое по конфигурации. Спаянные в единое целое электронные компоненты очертаниями повторяют рисунок принципиальной схемы. Это здорово выручает, когда работа над незаконченным электронным устройством была отложена на какое-то время (порой значительное). При возвращении к проекту достаточно положить перед собой схему и монтажку, и ничего не нужно вспоминать – всё видно и понятно. Последними «сработал» монтажки с установленными на них трансформаторами. И если на одной он предназначен для конкретного устройства (после отладки будет снят и установлен в его корпус), то на другой (меньшего размера) он стационарный.

Специально ничего не подбирал, попалась на глаза одна из плат блока питания от телевизора «Рубин» — вот и занялся ей.

Убрал всё лишнее, оставив только выключатель, трансформатор и то, что имелось из разъёмов, да держатели предохранителей.

С обратной стороны платы имелось некоторое количество весьма мощных дорожек, которые, несомненно, могут пригодиться в дальнейшем. Однако значительная часть из них (отмечена красным фломастером), в случае не изменения их соединения, явилась бы проводником напряжения в 220 вольт, что недопустимо для эксплуатации монтажной платы открытого типа.

Вследствие чего были произведены следующие изменения – печатные проводники лишены соединения с контактами выключателя, а сетевой провод питания к этим контактам припаян напрямую.

Для удобства дальнейшей работы над будущей монтажной платой и её использования, прикрепил к ней импровизированные ножки, на выключатель поставил клавишу. Держатели предохранителей пришлось снять (дорожки то перерезаны).

Стоящий на плате понижающий трансформатор будет подключатся к сети через провод имеющий в разрыве блок предохранителей номиналом по 0,5 А каждый. Наружные контакты выключателя находящиеся под напряжением 220 В были закрыты от случайного контакта пластмассовыми накладками (приклеены клеем).

Контакты выключателя с обратной стороны также были изолированы. Сетевой провод надёжно прикреплён к краю монтажной платы.

Официальные технические данные трансформатора ТП-8-3, стоящего на монтажной плате следующие:

I вторичных обмоток, А
II III II III
13,2 4,75 0,45 0,16

В действительности максимальное переменное напряжение на выходе составило 16,4 В. А выпрямленное максимальное напряжение равно 14,4 В.

Различное сочетание соединения концов вторичной обмотки, имеющей отвод, даёт на выходе ещё 8,6 В и 5,4 В. Имеющиеся напряжение и ток подойдут для питания большинства различных несложных схем. Диодный мост не имеет постоянного соединения с трансформатором и легко может быть исключён из схемы, в случае если будет нужно для питания переменное напряжение.

Готовая монтажная плата. На ней уже имеется достаточное количество отверстий для установки штырьковых контактов, к которым и будут припаиваться электронные компоненты. Контакты (штырьки) не имеют своего постоянного места, а устанавливаются в том месте монтажной платы, где это необходимо для конкретно собираемой схемы.

Монтажная плата является устройством вспомогательного характера, она не цель, а средство достижения цели. И рискну высказать мысль, что будет правильно такие вещи не делать «с нуля», лучше приспосабливать что-то подходящее. А то «руки могут так и не дойти до главного».

Полезные советы

ДИАГНОСТИКА И КОМПОНЕНТНЫЙ РЕМОНТ ЭЛЕКТРОНИКИ

ПОИСК ПРИЧИНЫ НЕИСПРАВНОСТИ ПРИБОРА

БЛОК ПИТАНИЯ 0-50 В 20 А НА LM2576

Подготовка и экранирование

Для того чтобы работать с макетной платой, особенно, если она предназначена для монтажа без пайки, сначала необходимо произвести подготовительные работы. Это тем более актуально, если плата не использовалась длительное время.

Подготовка включает в себя очистку макетной платы от пыли. Для этого можно воспользоваться мягкой кистью, а для очистки отверстий можно использовать пылесос или баллончик со сжатым воздухом.

Следующим этапом необходимо прозвонить мультиметром токопроводящие дорожки, чтобы избежать лишних трат времени на поиск возможной потери контакта при монтаже схемы.

При отладке устройств, они могут работать некорректно из-за различных помех и наведенных токов, возникающих при работе схемы. Для устранения этого явления необходимо применить экранирование макетной платы.

Для этого используют металлическую пластину, прикрепленную снизу и соединенную пайкой с общей шиной, которая впоследствии станет отрицательной.

Для успешного использования макетной платы под пайку и осуществления быстрой отладки целесообразно приобретать несколько макеток разных размеров.

Во-первых, это позволит собирать сложные схемы отдельными блоками, отлаживая каждый, и позже соединять в одно устройство. Во-вторых, так можно собрать дополнительные устройства, которые могут понадобиться для контроля работы основной схемы.

Приобретать макетную плату лучше с комплектом соединительных проводов. Их еще называют «джамперами».

Но в некоторых случаях можно сэкономить значительную сумму, если купить плату для беспаечного монтажа, неукомплектованную соединителями. Их в этом случае можно изготовить самостоятельно из подходящего провода.

Идеально подойдет кабель КСВВ 4-0,5, используемый при устройстве систем пожарной сигнализации. Этот кабель имеет 4 изолированных жилы из тонкого медного провода диаметром 0,5 мм. Одного метра кабеля будет достаточно, чтобы получить много соединительных перемычек.

При монтаже всегда нужно надежно подключать все выводы полупроводников и микросхем. Даже, если какие-либо выводы не используются, их необходимо подключить к общей шине, чтобы избежать возникновения наведенных токов.

При использовании макетных плат можно применять только слаботочные детали, работающие от напряжения не более 12 В. Подключать к макетной плате переменный ток напряжением 220 В от бытовой электросети запрещено.

Правильное использование макетной платы для монтажа без пайки существенно упростит сборку всей схемы и снизит затраты на изготовление устройства, в котором такая схема будет использоваться.

Схема макетной платы

Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства. Он достаточно прост.

Схема макетной платы

Макетная плата имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.

Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда. Следовательно, подключая контакты других устройств к остальным клипсам, мы связываем их проводником – рельсом с клипсами.

Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех макетных плат

То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.

Следует отметить, что хотя в каждом ряду расположены десять отверстий, они  все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.

Подключение микросхемы к макетной плате

Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.

Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-».  За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.

Внимание! Макетные платы абсолютно недопустимо использовать с напряжением 220В!

Если плата большая, то линии питания “разрываются” посередине. Это позволяет использовать большее количество вариантов подключения. Например, вы сможете собрать на одной плате устройства с питанием 3 и 5 Вольт.

↑ P.S. Немного воспоминаний, не совсем в тему

В далёкие школьные и студенческие времена, «идея» заложенная в описанную в статье макетную плату сильно пригодилась в условиях недостатка фольгированных материалов. Изрядно подустав крутить проволочки, стал собирать не очень сложные схемы, припаивая детали на устаноленных в нужных местах платы жестяных площадках и дорожках, в общем делал нечто среднее между печатным и навесным монтажом. Конечно способ не без недостатков, но обслуживание изделия, замену неисправных деталей, и внесение изменений в схему делать быстрей и удобней чем на стандартной «печатке». До сих пор сохранилось несколько артефактов изготовленных этим экзотическим способом:


Микрофонный усилитель

Одна из первых собственноручно спаянных удачных схем. Долгое время удивлял знакомых чувствительностью, позволяющей записывать тиканье часов из соседней комнаты:) До наших дней сохранился только чудом.


Одна из гитарных примочек

Как видите пара плат сделана из картона. Давно уже, лет двадцать назад. Видать торопился тогда. Подумываю заменить их на печатные да и схему изрядно перелопатить, только всё руки не доходят. Тем более в уличных концертах этому изделию уже вряд-ли предстоит участвовать.


Неведомая антинаучная фигня

Когда-то в докомпьютерные времена служила ритм-боксом и обеспечивала моё гитарное брыньканье ударным сопровождением бумканьем и дыцканьем :russian: Несмотря на опять же картонные платы, криво сделанную, не вполне законченную схему и общую неактуальность, работает до сих пор.

Ну, для изготовления рабочих плат я этот способ уж точно никому рекомендовать не буду. Так, для смеха вспомнил. Хотя, думаю, вполне можно использовать для быстрой сборки и настройки чего-нибудь не очень сложного, когда нет времени или настроения делать макетку описанную в статье.

Одна такая плата, сделанная под одну из первых гитарных примочек, впоследствии разобранную, в разное время «носила на себе» предусилитель, генератор, и ещё несколько похожих по смыслу и топологии платы схем. Некоторые из этих блоков после доведения до ума работают на других платах, сделанных уже специально под них.

Макетные платы для монтажа в гнёзда

Такие заготовки имеют тысячи отверстий, которые связаны между собой посредством металлических полосок. Выводы микросхем и радиодеталей вставляют в отверстия, а потом соединяют при помощи перемычек. Длинные ряды контактов, которые можно увидеть внизу, посередине и вверху платы, — это шины питания. Они используются, чтобы соединять многочисленные точки схемы с землёй и источником питания. Под каждым отверстием находится упругий контакт специальной формы, который обеспечивает высокую проводимость и долговечность соединений. Макетная плата может быть наращиваемой. В таких случаях на боковых гранях располагаются пазы, чтобы соединить несколько устройств в одно крупное.